Fossil

Check-in [8fe0fefb]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite to version 3.17.0 beta1
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 8fe0fefb24e30b6f51836b4b6cf55e0ad441f368
User & Date: drh 2017-02-07 13:54:44
Context
2017-02-09
19:56
Update the built-in SQLite to the first 3.17.0 release candidate. check-in: e734fdc6 user: drh tags: trunk
2017-02-08
18:28
On /dir page, add a link named "[history]" that point to the timeline affecting only the files inside the current directory. Use the "chng=dirname/*" query parameter of the /timeline page)
TODO: Implement the same in Tree-View mode (could add the link beside each directory)
check-in: c458c3f6 user: mgagnon tags: dir_history_link
2017-02-07
13:54
Update the built-in SQLite to version 3.17.0 beta1 check-in: 8fe0fefb user: drh tags: trunk
2017-02-06
22:31
Add '--no-dir-symlinks' command line option, which prevents traversing into symlinked directories. Make the '--verily' option to 'clean' imply '--no-dir-symlinks'. check-in: 8e659df6 user: mistachkin tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/sqlite3.c.

1
2
3
4
5
6
7
8
9
10
...
206
207
208
209
210
211
212








213
214
215
216
217
218
219
...
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
...
515
516
517
518
519
520
521



522

523
524
525
526
527
528
529
...
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
...
978
979
980
981
982
983
984



985
986
987
988
989
990
991
....
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
....
6448
6449
6450
6451
6452
6453
6454






6455
6456
6457
6458
6459
6460
6461
....
6471
6472
6473
6474
6475
6476
6477




6478
6479
6480
6481
6482
6483
6484
....
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
....
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450


8451
8452
8453
8454
8455
8456




8457
8458
8459
8460
8461
8462
8463
....
9153
9154
9155
9156
9157
9158
9159
9160

9161
9162
9163
9164
9165
9166
9167
....
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
....
9783
9784
9785
9786
9787
9788
9789
9790




9791
9792
9793
9794
9795
9796
9797
....
9798
9799
9800
9801
9802
9803
9804
9805


9806
9807
9808
9809
9810
9811
9812
....
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
.....
11535
11536
11537
11538
11539
11540
11541












11542
11543
11544
11545
11546
11547
11548
.....
11619
11620
11621
11622
11623
11624
11625



11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
.....
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353

12354
12355
12356
12357
12358
12359
12360
.....
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
.....
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
.....
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
.....
13174
13175
13176
13177
13178
13179
13180

13181

13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
.....
14005
14006
14007
14008
14009
14010
14011

14012
14013
14014
14015
14016
14017
14018
.....
14270
14271
14272
14273
14274
14275
14276

14277
14278
14279
14280
14281
14282
14283
.....
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
.....
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
.....
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
.....
16474
16475
16476
16477
16478
16479
16480





16481
16482
16483
16484
16485
16486
16487
.....
16752
16753
16754
16755
16756
16757
16758

16759
16760

16761
16762
16763
16764
16765
16766
16767
.....
16863
16864
16865
16866
16867
16868
16869

16870
16871
16872
16873
16874
16875
16876
.....
17191
17192
17193
17194
17195
17196
17197













17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
.....
18217
18218
18219
18220
18221
18222
18223

18224
18225
18226
18227
18228
18229
18230
.....
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290

24291
24292
24293
24294
24295

24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
.....
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
.....
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
.....
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
.....
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111

25112
25113
25114
25115
25116
25117
25118
25119
25120
.....
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
.....
25591
25592
25593
25594
25595
25596
25597


25598
25599
25600
25601
25602
25603
25604
25605
25606




25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
.....
25624
25625
25626
25627
25628
25629
25630

25631
25632
25633



25634
25635
25636
25637
25638
25639
25640
.....
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
.....
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
.....
28737
28738
28739
28740
28741
28742
28743




28744
28745
28746
28747
28748
28749
28750
.....
28751
28752
28753
28754
28755
28756
28757

28758
28759




28760
28761
28762
28763
28764
28765
28766
28767
28768

28769
28770




28771
28772
28773
28774
28775
28776
28777
.....
28779
28780
28781
28782
28783
28784
28785

28786
28787
28788
28789
28790
28791
28792
.....
47483
47484
47485
47486
47487
47488
47489
47490
47491
47492
47493
47494


47495


47496


47497
47498
47499
47500
47501
47502
47503
47504
.....
58622
58623
58624
58625
58626
58627
58628
58629
58630

58631
58632
58633
58634

58635

58636
58637


58638



58639
58640
58641
58642
58643
58644
58645



58646
58647
58648
58649
58650
58651
58652
.....
62095
62096
62097
62098
62099
62100
62101
62102
62103


62104
62105
62106
62107

62108
62109
62110
62111
62112
62113
62114
.....
62775
62776
62777
62778
62779
62780
62781




62782

62783
62784
62785
62786
62787
62788
62789
.....
63161
63162
63163
63164
63165
63166
63167
63168
63169
63170
63171
63172
63173
63174
63175
63176
63177
63178
63179
63180
63181
63182
63183
63184
63185
63186
63187
63188
63189
.....
63197
63198
63199
63200
63201
63202
63203
63204
63205
63206
63207
63208

63209
63210
63211
63212
63213
63214
63215
63216
63217
63218
63219
63220
63221
63222
63223
63224
63225
.....
63230
63231
63232
63233
63234
63235
63236
63237
63238
63239
63240
63241
63242
63243
63244
.....
63246
63247
63248
63249
63250
63251
63252
63253
63254
63255
63256
63257
63258
63259
63260
63261
63262
63263
63264
63265
63266
63267
63268
63269
63270
63271
63272
63273
63274
63275
63276
63277
63278

63279
63280
63281
63282
63283
63284
63285
63286
63287
63288
63289
63290
63291
63292


63293
63294
63295
63296
63297
63298
63299
63300
63301
63302
63303
63304
63305
63306
63307
63308
63309
63310
63311
63312
63313
63314
63315
63316
63317
63318
63319
63320
63321
63322
63323
63324
63325
63326
63327
63328
63329
63330
63331
63332
63333
63334
63335
63336
63337
63338
63339
63340

63341
63342
63343
63344
63345
63346
63347
63348
63349
63350
63351
63352
63353
63354
63355
63356
63357
63358
63359
63360
63361
63362
63363
63364
63365
63366
63367
63368
63369
63370
63371
63372
63373
63374
63375
63376
63377
63378

63379
63380


63381
63382
63383
63384
63385
63386
63387
63388
63389
63390
63391
63392
.....
63407
63408
63409
63410
63411
63412
63413






63414
63415






63416
63417
63418
63419
63420
63421
63422


63423
63424
63425

63426


63427
63428
63429
63430
63431
63432
63433
63434
63435
.....
63827
63828
63829
63830
63831
63832
63833

63834
63835
63836
















63837
63838
63839
63840
63841
63842
63843
.....
63965
63966
63967
63968
63969
63970
63971
63972

63973
63974
63975
63976
63977
63978
63979
.....
66008
66009
66010
66011
66012
66013
66014
66015
66016
66017
66018
66019
66020
66021
66022
.....
66687
66688
66689
66690
66691
66692
66693
66694
66695
66696
66697
66698
66699
66700
66701
66702
66703
66704
66705


66706
66707
66708
66709
66710
66711
66712
.....
66740
66741
66742
66743
66744
66745
66746





66747
66748
66749
66750
66751
66752
66753
66754
66755
66756
66757
66758
66759
66760
66761
66762
66763
66764
66765
66766
66767
66768
66769
66770
66771
66772
66773
66774
66775
66776
66777
66778
66779
.....
66853
66854
66855
66856
66857
66858
66859














66860
66861
66862
66863
66864
66865
66866
.....
71763
71764
71765
71766
71767
71768
71769
71770
71771
71772
71773
71774
71775
71776
71777
.....
73477
73478
73479
73480
73481
73482
73483
73484
73485
73486
73487
73488
73489
73490
73491
73492
73493
73494
73495
73496
73497
73498
73499
73500
73501
73502
73503
73504
73505
73506
73507
73508
73509
73510
73511
73512
73513
73514
73515
73516
73517
73518
73519
73520
73521
73522
73523
73524
73525
73526
73527
73528
73529
73530
73531
73532
73533
73534
73535
73536
73537







73538
73539
73540
73541
73542
73543
73544
.....
75565
75566
75567
75568
75569
75570
75571
75572
75573
75574
75575
75576
75577
75578
75579
75580
75581
75582
.....
75601
75602
75603
75604
75605
75606
75607




75608
75609
75610
75611

75612
75613
75614
75615
75616
75617
75618
.....
75627
75628
75629
75630
75631
75632
75633
75634
75635
75636
75637
75638
75639
75640
75641
75642
.....
77303
77304
77305
77306
77307
77308
77309

77310
77311
77312
77313
77314
77315
77316
77317



77318
77319
77320
77321
77322
77323
77324
.....
77336
77337
77338
77339
77340
77341
77342
77343
77344
77345
77346
77347
77348
77349


77350
77351
77352
77353
77354
77355
77356
77357
77358
77359
77360
.....
77399
77400
77401
77402
77403
77404
77405



77406
77407
77408
77409
77410
77411
77412
.....
77419
77420
77421
77422
77423
77424
77425
77426
77427
77428
77429
77430
77431
77432


77433
77434
77435
77436
77437
77438
77439
.....
78402
78403
78404
78405
78406
78407
78408
78409
78410
78411
78412
78413
78414
78415
78416
78417
.....
78418
78419
78420
78421
78422
78423
78424
78425
78426
78427
78428
78429
78430
78431
78432
.....
78779
78780
78781
78782
78783
78784
78785
78786
78787
78788
78789
78790
78791
78792
78793
.....
79014
79015
79016
79017
79018
79019
79020
79021
79022
79023
79024
79025
79026
79027
79028
.....
79501
79502
79503
79504
79505
79506
79507
79508
79509
79510
79511
79512
79513
79514
79515
79516
79517
.....
79959
79960
79961
79962
79963
79964
79965
79966
79967
79968
79969
79970
79971
79972
79973
79974
79975
79976
79977
79978
79979

79980
79981
79982
79983
79984
79985
79986
.....
80005
80006
80007
80008
80009
80010
80011

80012
80013








80014
80015
80016
80017
80018
80019
80020
.....
80039
80040
80041
80042
80043
80044
80045
80046
80047
80048
80049
80050
80051
80052
80053
.....
80595
80596
80597
80598
80599
80600
80601














80602
80603
80604
80605
80606
80607
80608
.....
82185
82186
82187
82188
82189
82190
82191
82192
82193
82194
82195
82196
82197
82198
82199
.....
82201
82202
82203
82204
82205
82206
82207
82208
82209
82210
82211
82212
82213
82214
82215
82216
82217
82218
82219
82220
82221
82222
82223
82224
82225
82226

82227
82228
82229
82230
82231
82232
82233
82234
82235
82236
82237
.....
82240
82241
82242
82243
82244
82245
82246
82247
82248
82249
82250
82251
82252
82253
82254
.....
82332
82333
82334
82335
82336
82337
82338
82339
82340



82341
82342
82343
82344
82345
82346
82347
.....
82451
82452
82453
82454
82455
82456
82457
82458
82459
82460
82461
82462
82463
82464
82465
82466
82467
82468
82469
82470
82471













82472
82473
82474
82475
82476
82477
82478
82479
82480
82481
82482
82483
82484
82485
82486
.....
82503
82504
82505
82506
82507
82508
82509
82510
82511
82512
82513
82514
82515
82516
82517

82518
82519
82520
82521
82522
82523
82524
.....
82898
82899
82900
82901
82902
82903
82904
82905
82906
82907
82908
82909
82910
82911
82912
.....
83020
83021
83022
83023
83024
83025
83026
83027
83028
83029
83030
83031
83032
83033
83034
.....
83662
83663
83664
83665
83666
83667
83668
83669
83670
83671
83672
83673
83674
83675
83676
.....
84603
84604
84605
84606
84607
84608
84609
84610
84611
84612
84613
84614
84615
84616
84617
.....
84839
84840
84841
84842
84843
84844
84845
84846
84847
84848
84849
84850
84851
84852
84853
.....
84903
84904
84905
84906
84907
84908
84909
84910
84911
84912
84913
84914
84915
84916
84917
84918
84919
84920
.....
84937
84938
84939
84940
84941
84942
84943
84944
84945
84946
84947
84948

84949
84950








84951

84952
84953
84954



84955
84956
84957
84958
84959
84960
84961
.....
84992
84993
84994
84995
84996
84997
84998
84999
85000
85001
85002
85003
85004
85005
85006
.....
85014
85015
85016
85017
85018
85019
85020
85021
85022
85023
85024
85025
85026
85027
85028
.....
85074
85075
85076
85077
85078
85079
85080
85081
85082
85083
85084
85085
85086
85087
85088
85089
85090
.....
85137
85138
85139
85140
85141
85142
85143
85144
85145
85146
85147
85148
85149
85150
85151
85152
85153
85154
85155
85156
85157
85158
85159
85160
85161
85162
.....
85165
85166
85167
85168
85169
85170
85171
85172
85173
85174
85175
85176
85177
85178
85179
85180
85181
85182
85183
85184
85185
85186
85187
85188
85189
85190
85191
85192
85193
85194
85195
85196
85197
85198
85199
85200
85201
85202
85203
85204
85205
85206
85207
85208
85209
85210
85211
85212
85213
85214
85215
85216
.....
88739
88740
88741
88742
88743
88744
88745
88746
88747
88748
88749
88750
88751
88752
88753
88754
.....
91235
91236
91237
91238
91239
91240
91241





91242
91243

91244
91245
91246
91247
91248
91249
91250
91251
91252

91253
91254
91255
91256
91257
91258
91259
.....
91680
91681
91682
91683
91684
91685
91686
91687



91688

91689
91690

91691
91692
91693
91694
91695
91696
91697
91698
91699
91700
91701
91702
91703
91704
91705
91706
91707
91708
91709
91710
91711
91712





91713
91714
91715
91716
91717
91718
91719
91720
.....
91771
91772
91773
91774
91775
91776
91777
91778
91779
91780
91781
91782
91783
91784
91785
.....
93880
93881
93882
93883
93884
93885
93886





93887
93888
93889
93890
93891
93892
93893
.....
93927
93928
93929
93930
93931
93932
93933
















93934
93935
93936
93937
93938
93939
93940
.....
94244
94245
94246
94247
94248
94249
94250






94251
94252
94253
94254
94255
94256
94257
94258
94259
94260









94261
94262
94263
94264


94265
94266
94267
94268

94269
94270
94271
94272
94273
94274
94275
.....
94284
94285
94286
94287
94288
94289
94290
94291
94292
94293
94294
94295
94296
94297
94298
94299
94300
94301
94302
94303
94304
94305
94306
94307
94308
94309
94310
.....
94350
94351
94352
94353
94354
94355
94356
94357
94358
94359
94360
94361
94362
94363
94364
.....
94422
94423
94424
94425
94426
94427
94428
94429
94430
94431
94432
94433
94434
94435
94436
.....
96966
96967
96968
96969
96970
96971
96972






96973
96974
96975
96976
96977
96978
96979
.....
97785
97786
97787
97788
97789
97790
97791
97792
97793
97794
97795
97796
97797
97798
97799
.....
98199
98200
98201
98202
98203
98204
98205

98206
98207
98208
98209
98210
98211
98212
......
104363
104364
104365
104366
104367
104368
104369
104370
104371
104372
104373
104374
104375
104376
104377
104378
104379
104380
104381
104382
......
104448
104449
104450
104451
104452
104453
104454
104455

104456
104457
104458
104459
104460
104461
104462
104463


104464
104465
104466
104467
104468
104469
104470
......
104527
104528
104529
104530
104531
104532
104533
104534
104535



104536
104537
104538
104539
104540


104541
104542
104543
104544
104545
104546
104547
......
104556
104557
104558
104559
104560
104561
104562

104563

104564
104565
104566
104567
104568
104569
104570
104571
104572
104573
104574
......
104714
104715
104716
104717
104718
104719
104720




104721
104722
104723
104724
104725
104726
104727
......
106510
106511
106512
106513
106514
106515
106516



106517
106518
106519
106520
106521
106522
106523
......
109665
109666
109667
109668
109669
109670
109671
109672
109673
109674
109675
109676
109677
109678
109679
......
109681
109682
109683
109684
109685
109686
109687



















109688
109689
109690
109691
109692
109693
109694
......
109698
109699
109700
109701
109702
109703
109704
109705
109706
109707
109708
109709
109710
109711
109712
109713
109714
109715





109716
109717
109718
109719
109720
109721
109722
109723
109724
109725
109726
109727
109728
109729
109730
109731
109732
109733
109734







109735





109736
109737
109738
109739
109740
109741

109742
109743
109744
109745
109746
109747
109748
109749
109750
109751
109752
109753
109754
109755
109756
109757
......
110152
110153
110154
110155
110156
110157
110158
110159
110160
110161
110162
110163
110164
110165
110166
......
110184
110185
110186
110187
110188
110189
110190
110191
110192
110193
110194
110195
110196
110197
110198
......
110969
110970
110971
110972
110973
110974
110975
110976
110977
110978
110979
110980
110981
110982
110983
......
112633
112634
112635
112636
112637
112638
112639
112640
112641
112642
112643
112644
112645
112646
112647
......
116147
116148
116149
116150
116151
116152
116153

116154
116155
116156
116157
116158
116159
116160
......
119675
119676
119677
119678
119679
119680
119681







119682

119683
119684
119685
119686
119687
119688
119689
......
119719
119720
119721
119722
119723
119724
119725

119726
119727
119728
119729

119730
119731
119732
119733
119734
119735
119736
......
119772
119773
119774
119775
119776
119777
119778
119779
119780
119781
119782
119783
119784
119785
119786
119787
......
120060
120061
120062
120063
120064
120065
120066
120067
120068
120069
120070
120071
120072
120073
120074
120075
120076
......
121141
121142
121143
121144
121145
121146
121147
121148
121149
121150
121151
121152
121153
121154
121155
......
121230
121231
121232
121233
121234
121235
121236
121237
121238
121239
121240
121241
121242
121243
121244
121245
......
122589
122590
122591
122592
122593
122594
122595

122596
122597
122598
122599
122600
122601
122602
122603
122604
122605
122606
122607
122608
......
122623
122624
122625
122626
122627
122628
122629
122630
122631
122632
122633
122634
122635
122636
122637
122638
122639
122640
122641
122642
122643
122644
122645

122646
122647
122648
122649
122650
122651
122652
122653
122654
122655




122656
122657
122658
122659
122660
122661
122662
......
122808
122809
122810
122811
122812
122813
122814





122815
122816
122817
122818
122819
122820
122821





122822
122823
122824
122825
122826
122827
122828
......
122867
122868
122869
122870
122871
122872
122873
122874
122875

122876
122877
122878
122879
122880
122881
122882
122883
122884
122885
122886
122887
122888
122889
122890
122891
122892
122893
122894


122895
122896
122897
122898
122899
122900
122901
122902
122903
122904
122905

122906
122907
122908













122909
122910
122911











122912






















122913
122914
122915
122916
122917
122918
122919
122920
122921
122922
122923
122924
122925
122926
122927
122928
122929

122930
122931
122932
122933
122934
122935
122936
122937
122938
122939
122940
122941
122942
122943
122944
122945
122946
122947
122948
122949
122950
122951

122952
122953
122954
122955


122956
122957
122958




122959
122960

122961
122962
122963
122964
122965
122966
122967
122968
122969

122970



122971
122972
122973
122974
122975
122976
122977
......
123088
123089
123090
123091
123092
123093
123094
123095
123096
123097
123098
123099
123100
123101
123102
......
123124
123125
123126
123127
123128
123129
123130
123131
123132
123133




123134
123135
123136
123137
123138
123139
123140
123141
123142
123143
123144
123145
123146
123147
123148
123149
123150
123151
123152



123153
123154
123155
123156
123157
123158
123159
......
123167
123168
123169
123170
123171
123172
123173
123174
123175



123176
123177
123178
123179
123180
123181
123182
......
127088
127089
127090
127091
127092
127093
127094
127095



127096
127097
127098
127099
127100
127101
127102
......
128452
128453
128454
128455
128456
128457
128458

128459
128460
128461
128462
128463
128464
128465
......
128481
128482
128483
128484
128485
128486
128487




128488
128489
128490
128491
128492
128493
128494
......
128723
128724
128725
128726
128727
128728
128729
128730

128731
128732
128733
128734
128735
128736
128737
128738
128739
128740
128741
128742
128743
......
133932
133933
133934
133935
133936
133937
133938
133939

133940
133941
133942
133943
133944
133945
133946
......
133996
133997
133998
133999
134000
134001
134002













134003
134004
134005
134006
134007
134008
134009
......
135444
135445
135446
135447
135448
135449
135450

























135451
135452
135453
135454
135455
135456
135457
......
135459
135460
135461
135462
135463
135464
135465
135466
135467
135468
135469
135470
135471
135472
135473
135474
135475
135476
135477
135478
135479
135480
135481
135482
135483
135484

135485
135486
135487
135488
135489
135490
135491
135492
135493
135494
......
135606
135607
135608
135609
135610
135611
135612












135613
135614
135615
135616
135617
135618
135619
135620
135621
135622
135623
135624
135625
135626
135627
135628
135629
135630
135631
135632

135633
135634

135635
135636
135637
135638
135639
135640
135641
......
138481
138482
138483
138484
138485
138486
138487



138488
138489
138490
138491
138492
138493
138494
138495
138496
138497
138498




138499
138500
138501
138502
138503

138504
138505
138506
138507
138508
138509
138510
......
138548
138549
138550
138551
138552
138553
138554



138555

138556
138557
138558
138559
138560
138561
138562
......
145673
145674
145675
145676
145677
145678
145679
145680
145681
145682
145683
145684
145685
145686
145687
145688
145689
......
147732
147733
147734
147735
147736
147737
147738
147739
147740
147741
147742
147743
147744
147745
147746
......
162636
162637
162638
162639
162640
162641
162642

162643
162644

162645
162646
162647
162648
162649

162650
162651
162652
162653
162654
162655
162656
162657
162658



162659
162660
162661
162662
162663
162664
162665
162666
162667
......
162882
162883
162884
162885
162886
162887
162888


























162889

































162890
162891
162892
162893
162894
162895
162896











162897
162898
162899
162900
162901
162902

162903
162904













162905
162906
162907
162908
162909
162910
162911
162912
162913
162914

162915
162916
162917
162918
162919
162920
162921
......
162922
162923
162924
162925
162926
162927
162928

162929
162930










162931
162932
162933
162934
162935

162936
162937
162938









162939
162940
162941
162942
162943
162944
162945
162946

162947
162948
162949
162950
162951
162952
162953
......
163021
163022
163023
163024
163025
163026
163027











163028
163029
163030
163031
163032
163033
163034
163035
163036
163037
163038
163039
163040
163041
163042
163043
163044
163045
163046
163047
......
163049
163050
163051
163052
163053
163054
163055
163056
163057





163058
163059















163060
163061
163062
163063
163064
163065
163066
163067
163068
163069
163070

163071
163072
163073
163074
163075
163076
163077
163078
163079
163080
163081
163082
163083
163084
......
163122
163123
163124
163125
163126
163127
163128
163129
163130
163131
163132
163133
163134
163135
163136
......
163256
163257
163258
163259
163260
163261
163262
163263
163264
163265
163266
163267
163268
163269




163270
163271
163272
163273
163274
163275
163276
......
163313
163314
163315
163316
163317
163318
163319
163320


163321
163322
163323
163324
163325
163326
163327
......
163351
163352
163353
163354
163355
163356
163357

163358
163359
163360
163361
163362
163363
163364
......
163366
163367
163368
163369
163370
163371
163372

163373
163374
163375
163376
163377
163378
163379

163380
163381
163382
163383
163384
163385
163386
......
163405
163406
163407
163408
163409
163410
163411

163412
163413
163414
163415


163416
163417
163418
163419
163420
163421
163422
......
163431
163432
163433
163434
163435
163436
163437
163438
163439
163440
163441
163442
163443
163444
163445
163446







163447
163448
163449
163450
163451
163452
163453
163454
163455
163456
163457
163458
163459
163460
163461
......
163474
163475
163476
163477
163478
163479
163480
163481
163482
163483
163484

163485
163486
163487
163488
163489
163490
163491
163492
163493
163494
163495











163496
















163497

163498
163499
163500
163501
163502
163503
163504
163505
163506
163507
......
163529
163530
163531
163532
163533
163534
163535

163536
163537
163538
163539
163540
163541
163542
......
163569
163570
163571
163572
163573
163574
163575

163576
163577
163578
163579
163580
163581
163582
......
163637
163638
163639
163640
163641
163642
163643
163644
163645
163646
163647
163648
163649
163650
163651
......
163885
163886
163887
163888
163889
163890
163891
163892
163893
163894
163895
163896
163897
163898
163899
......
163944
163945
163946
163947
163948
163949
163950
163951
163952
163953
163954
163955
163956
163957
163958
......
164073
164074
164075
164076
164077
164078
164079
164080
164081
164082
164083
164084
164085
164086
164087
......
164106
164107
164108
164109
164110
164111
164112
164113
164114
164115
164116
164117
164118
164119
164120
......
164121
164122
164123
164124
164125
164126
164127
164128
164129
164130
164131
164132
164133
164134
164135
......
164139
164140
164141
164142
164143
164144
164145
164146
164147
164148
164149
164150
164151
164152
164153
164154
164155
164156
164157
164158
164159
164160
164161
164162
164163
164164
164165
......
164231
164232
164233
164234
164235
164236
164237
164238
164239
164240
164241
164242
164243
164244
164245
......
164249
164250
164251
164252
164253
164254
164255
164256
164257
164258
164259
164260
164261
164262
164263
164264
164265
164266
164267
164268
164269
164270
164271
164272
164273
164274
164275
164276
164277
164278
164279
164280


164281
164282
















164283
164284
164285
164286
164287
164288
164289
164290
164291
164292
164293
164294
164295
164296


164297
164298
164299
164300
164301
164302
164303
164304
164305
164306
164307
164308
164309


164310
164311

164312
164313
164314


164315
164316
164317
164318
164319
164320
164321
164322
164323
164324
164325
164326
164327
164328
164329
164330
164331
164332
......
164353
164354
164355
164356
164357
164358
164359
164360
164361
164362
164363
164364
164365
164366
164367
......
165409
165410
165411
165412
165413
165414
165415
165416
165417
165418
165419
165420
165421
165422
165423
......
165498
165499
165500
165501
165502
165503
165504





















165505
165506
165507
165508
165509
165510
165511
......
165519
165520
165521
165522
165523
165524
165525

165526
165527
165528
165529
165530
165531
165532
......
165579
165580
165581
165582
165583
165584
165585
165586
165587
165588
165589
165590
165591
165592
165593
165594
165595
165596
165597
165598
165599
165600
165601
165602
165603
165604
165605
165606
165607
165608
165609
165610
165611
165612
165613
165614
165615
165616
......
165640
165641
165642
165643
165644
165645
165646
165647
165648
165649
165650
165651
165652
165653
165654
165655
165656
165657
165658
165659
165660
165661
165662
......
165786
165787
165788
165789
165790
165791
165792
165793

165794
165795
165796
165797
165798
165799
165800
165801
165802
......
165861
165862
165863
165864
165865
165866
165867
165868

165869
165870
165871
165872
165873
165874
165875
165876
165877
165878
165879
165880
165881
165882
165883
165884
165885
165886
165887
165888
......
166582
166583
166584
166585
166586
166587
166588
166589
166590
166591
166592
166593
166594
166595

166596
166597
166598
166599
166600
166601
166602
166603
166604
166605
166606
166607
166608
166609
166610
166611
166612
166613
166614
166615
166616

166617
166618
166619
166620


166621
166622
166623
166624
166625
166626
166627
......
169821
169822
169823
169824
169825
169826
169827
169828
169829
169830
169831
169832
169833
169834
169835
......
169896
169897
169898
169899
169900
169901
169902
169903
169904
169905
169906
169907
169908
169909
169910
169911
169912
169913
169914









169915
169916
169917
169918
169919
169920
169921
......
170088
170089
170090
170091
170092
170093
170094
170095
170096
170097
170098
170099
170100
170101

170102
170103
170104

170105
170106
170107
170108
170109
170110
170111
......
170270
170271
170272
170273
170274
170275
170276
170277
170278
170279
170280
170281
170282
170283
170284
......
170981
170982
170983
170984
170985
170986
170987

170988
170989
170990
170991
170992
170993
170994
170995
170996
170997
170998










170999

171000
171001
171002
171003
171004
171005
171006
......
175955
175956
175957
175958
175959
175960
175961
175962
175963
175964
175965
175966
175967
175968
175969
......
176422
176423
176424
176425
176426
176427
176428
176429






176430
176431
176432
176433
176434
176435
176436
......
176968
176969
176970
176971
176972
176973
176974



176975
176976
176977
176978
176979



176980
176981
176982
176983
176984
176985
176986
176987
176988
176989
176990

176991
176992
176993
176994
176995
176996
176997
176998
176999
177000

177001
177002
177003
177004
177005
177006

177007
177008
177009
177010
177011
177012
177013
......
177591
177592
177593
177594
177595
177596
177597
177598
177599
177600
177601
177602
177603
177604
177605
......
181642
181643
181644
181645
181646
181647
181648

























181649
181650
181651
181652
181653
181654
181655
......
181657
181658
181659
181660
181661
181662
181663
181664
181665
181666
181667
181668
181669
181670
181671
181672
181673
181674
181675
181676
181677
181678
181679
181680
181681
181682

181683
181684
181685
181686
181687
181688
181689
181690
181691
181692
......
181760
181761
181762
181763
181764
181765
181766












181767
181768
181769
181770
181771
181772
181773
181774
181775
181776
181777
181778
181779
181780
181781
181782
181783
181784
181785
181786

181787
181788

181789
181790
181791
181792
181793
181794
181795
......
186120
186121
186122
186123
186124
186125
186126
186127
186128
186129
186130
186131
186132
186133
186134
......
196861
196862
196863
196864
196865
196866
196867
196868
196869
196870
196871
196872
196873
196874
196875
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.16.2.  By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
................................................................................

/* What version of GCC is being used.  0 means GCC is not being used */
#ifdef __GNUC__
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif









/* Needed for various definitions... */
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
................................................................................
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.16.2"
#define SQLITE_VERSION_NUMBER 3016002
#define SQLITE_SOURCE_ID      "2017-01-06 16:32:41 a65a62893ca8319e89e48b8a38cf8a59c69a8209"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
................................................................................
** ^The sqlite3_int64 and sqlite_int64 types can store integer values
** between -9223372036854775808 and +9223372036854775807 inclusive.  ^The
** sqlite3_uint64 and sqlite_uint64 types can store integer values 
** between 0 and +18446744073709551615 inclusive.
*/
#ifdef SQLITE_INT64_TYPE
  typedef SQLITE_INT64_TYPE sqlite_int64;



  typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;

#elif defined(_MSC_VER) || defined(__BORLANDC__)
  typedef __int64 sqlite_int64;
  typedef unsigned __int64 sqlite_uint64;
#else
  typedef long long int sqlite_int64;
  typedef unsigned long long int sqlite_uint64;
#endif
................................................................................
** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
** information is written to disk in the same order as calls
** to xWrite().  The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
** after reboot following a crash or power loss, the only bytes in a
** file that were written at the application level might have changed
** and that adjacent bytes, even bytes within the same sector are
** guaranteed to be unchanged.  The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
** flag indicate that a file cannot be deleted when open.  The
** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
** read-only media and cannot be changed even by processes with
** elevated privileges.
*/
#define SQLITE_IOCAP_ATOMIC                 0x00000001
#define SQLITE_IOCAP_ATOMIC512              0x00000002
#define SQLITE_IOCAP_ATOMIC1K               0x00000004
................................................................................
** <li> [SQLITE_IOCAP_ATOMIC4K]
** <li> [SQLITE_IOCAP_ATOMIC8K]
** <li> [SQLITE_IOCAP_ATOMIC16K]
** <li> [SQLITE_IOCAP_ATOMIC32K]
** <li> [SQLITE_IOCAP_ATOMIC64K]
** <li> [SQLITE_IOCAP_SAFE_APPEND]
** <li> [SQLITE_IOCAP_SEQUENTIAL]



** </ul>
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and
** are aligned to an address which is an integer multiple of
** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
................................................................................
** ^In the case of an update, this is the [rowid] after the update takes place.
**
** ^(The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).)^
** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
**
** ^In the current implementation, the update hook
** is not invoked when duplication rows are deleted because of an
** [ON CONFLICT | ON CONFLICT REPLACE] clause.  ^Nor is the update hook
** invoked when rows are deleted using the [truncate optimization].
** The exceptions defined in this paragraph might change in a future
** release of SQLite.
**
** The update hook implementation must not do anything that will modify
** the database connection that invoked the update hook.  Any actions
................................................................................
**         being opened for read/write access)^.
** </ul>
**
** ^Unless it returns SQLITE_MISUSE, this function sets the 
** [database connection] error code and message accessible via 
** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. 
**






**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
................................................................................
**
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].




*/
SQLITE_API int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
................................................................................
  sqlite3_blob **ppBlob
);

/*
** CAPI3REF: Move a BLOB Handle to a New Row
** METHOD: sqlite3_blob
**
** ^This function is used to move an existing blob handle so that it points
** to a different row of the same database table. ^The new row is identified
** by the rowid value passed as the second argument. Only the row can be
** changed. ^The database, table and column on which the blob handle is open
** remain the same. Moving an existing blob handle to a new row can be
** faster than closing the existing handle and opening a new one.
**
** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
** it must exist and there must be either a blob or text value stored in
** the nominated column.)^ ^If the new row is not present in the table, or if
** it does not contain a blob or text value, or if another error occurs, an
** SQLite error code is returned and the blob handle is considered aborted.
................................................................................
** CAPI3REF: The pre-update hook.
**
** ^These interfaces are only available if SQLite is compiled using the
** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
**
** ^The [sqlite3_preupdate_hook()] interface registers a callback function
** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
** on a [rowid table].
** ^At most one preupdate hook may be registered at a time on a single
** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
** the previous setting.
** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
** with a NULL pointer as the second parameter.
** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
** the first parameter to callbacks.
**
** ^The preupdate hook only fires for changes to [rowid tables]; the preupdate
** hook is not invoked for changes to [virtual tables] or [WITHOUT ROWID]
** tables.
**
** ^The second parameter to the preupdate callback is a pointer to
** the [database connection] that registered the preupdate hook.
** ^The third parameter to the preupdate callback is one of the constants
** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
** kind of update operation that is about to occur.
** ^(The fourth parameter to the preupdate callback is the name of the
** database within the database connection that is being modified.  This
** will be "main" for the main database or "temp" for TEMP tables or 
** the name given after the AS keyword in the [ATTACH] statement for attached
** databases.)^
** ^The fifth parameter to the preupdate callback is the name of the
** table that is being modified.


** ^The sixth parameter to the preupdate callback is the initial [rowid] of the
** row being changes for SQLITE_UPDATE and SQLITE_DELETE changes and is
** undefined for SQLITE_INSERT changes.
** ^The seventh parameter to the preupdate callback is the final [rowid] of
** the row being changed for SQLITE_UPDATE and SQLITE_INSERT changes and is
** undefined for SQLITE_DELETE changes.




**
** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
** provide additional information about a preupdate event. These routines
** may only be called from within a preupdate callback.  Invoking any of
** these routines from outside of a preupdate callback or with a
** [database connection] pointer that is different from the one supplied
................................................................................
**   <li> For each row (primary key) that exists in the to-table but not in 
**     the from-table, an INSERT record is added to the session object.
**
**   <li> For each row (primary key) that exists in the to-table but not in 
**     the from-table, a DELETE record is added to the session object.
**
**   <li> For each row (primary key) that exists in both tables, but features 
**     different in each, an UPDATE record is added to the session.

** </ul>
**
** To clarify, if this function is called and then a changeset constructed
** using [sqlite3session_changeset()], then after applying that changeset to 
** database zFrom the contents of the two compatible tables would be 
** identical.
**
................................................................................
** For each table that is not excluded by the filter callback, this function 
** tests that the target database contains a compatible table. A table is 
** considered compatible if all of the following are true:
**
** <ul>
**   <li> The table has the same name as the name recorded in the 
**        changeset, and
**   <li> The table has the same number of columns as recorded in the 
**        changeset, and
**   <li> The table has primary key columns in the same position as 
**        recorded in the changeset.
** </ul>
**
** If there is no compatible table, it is not an error, but none of the
** changes associated with the table are applied. A warning message is issued
................................................................................
**   original row values stored in the changeset. If it does, and the values 
**   stored in all non-primary key columns also match the values stored in 
**   the changeset the row is deleted from the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the non-primary key fields contains a value different from the original
**   row value stored in the changeset, the conflict-handler function is
**   invoked with [SQLITE_CHANGESET_DATA] as the second argument.




**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.
**
**   If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
**   (which can only happen if a foreign key constraint is violated), the
................................................................................
**   conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
**   passed as the second argument. This includes the case where the DELETE
**   operation is attempted because an earlier call to the conflict handler
**   function returned [SQLITE_CHANGESET_REPLACE].
**
** <dt>INSERT Changes<dd>
**   For each INSERT change, an attempt is made to insert the new row into
**   the database.


**
**   If the attempt to insert the row fails because the database already 
**   contains a row with the same primary key values, the conflict handler
**   function is invoked with the second argument set to 
**   [SQLITE_CHANGESET_CONFLICT].
**
**   If the attempt to insert the row fails because of some other constraint
................................................................................
**   an earlier call to the conflict handler function returned 
**   [SQLITE_CHANGESET_REPLACE].
**
** <dt>UPDATE Changes<dd>
**   For each UPDATE change, this function checks if the target database 
**   contains a row with the same primary key value (or values) as the 
**   original row values stored in the changeset. If it does, and the values 
**   stored in all non-primary key columns also match the values stored in 
**   the changeset the row is updated within the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the non-primary key fields contains a value different from an original
**   row value stored in the changeset, the conflict-handler function is
**   invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
**   UPDATE changes only contain values for non-primary key fields that are
**   to be modified, only those fields need to match the original values to
**   avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.
................................................................................
/************** Continuing where we left off in sqliteInt.h ******************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stddef.h>













/*
** If compiling for a processor that lacks floating point support,
** substitute integer for floating-point
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite_int64
# define float sqlite_int64
................................................................................
#endif

/*
** The default initial allocation for the pagecache when using separate
** pagecaches for each database connection.  A positive number is the
** number of pages.  A negative number N translations means that a buffer
** of -1024*N bytes is allocated and used for as many pages as it will hold.



*/
#ifndef SQLITE_DEFAULT_PCACHE_INITSZ
# define SQLITE_DEFAULT_PCACHE_INITSZ 100
#endif

/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
................................................................................
  int bias,
  int *pRes
);
SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*);
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags);

/* Allowed flags for the 2nd argument to sqlite3BtreeDelete() */
#define BTREE_SAVEPOSITION 0x02  /* Leave cursor pointing at NEXT or PREV */
#define BTREE_AUXDELETE    0x04  /* not the primary delete operation */


/* An instance of the BtreePayload object describes the content of a single
** entry in either an index or table btree.
**
** Index btrees (used for indexes and also WITHOUT ROWID tables) contain
** an arbitrary key and no data.  These btrees have pKey,nKey set to their
** key and pData,nData,nZero set to zero.
................................................................................
  struct Mem *aMem;       /* First of nMem value in the unpacked pKey */
  u16 nMem;               /* Number of aMem[] value.  Might be zero */
  int nData;              /* Size of pData.  0 if none. */
  int nZero;              /* Extra zero data appended after pData,nData */
};

SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
                       int bias, int seekResult);
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
................................................................................
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {
  u8 opcode;          /* What operation to perform */
  signed char p4type; /* One of the P4_xxx constants for p4 */
  u8 notUsed1;
  u8 p5;              /* Fifth parameter is an unsigned character */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  int p3;             /* The third parameter */
  union p4union {     /* fourth parameter */
    int i;                 /* Integer value if p4type==P4_INT32 */
    void *p;               /* Generic pointer */
    char *z;               /* Pointer to data for string (char array) types */
................................................................................
#endif
SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno);
SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8);
SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr);
SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe*, void *pP4, int p4type);
SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*);
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
................................................................................

#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE   int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*);
SQLITE_PRIVATE   int sqlite3PagerWalSupported(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerWalCallback(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
SQLITE_PRIVATE   int sqlite3PagerCloseWal(Pager *pPager, sqlite3*);

SQLITE_PRIVATE   int sqlite3PagerUseWal(Pager *pPager);

# ifdef SQLITE_ENABLE_SNAPSHOT
SQLITE_PRIVATE   int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotRecover(Pager *pPager);
# endif
#else
# define sqlite3PagerUseWal(x) 0
#endif

#ifdef SQLITE_ENABLE_ZIPVFS
SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
................................................................................
  u8 bBenignMalloc;             /* Do not require OOMs if true */
  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
  u8 mTrace;                    /* zero or more SQLITE_TRACE flags */

  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Value returned by sqlite3_changes() */
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
  struct sqlite3InitInfo {      /* Information used during initialization */
................................................................................
#define SQLITE_FUNC_COUNT    0x0100 /* Built-in count(*) aggregate */
#define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */
#define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */
#define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */
#define SQLITE_FUNC_MINMAX   0x1000 /* True for min() and max() aggregates */
#define SQLITE_FUNC_SLOCHNG  0x2000 /* "Slow Change". Value constant during a
                                    ** single query - might change over time */


/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName
................................................................................
                                      ** the OR optimization  */
#define WHERE_GROUPBY          0x0040 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0080 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0100 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0200 /* Support sqlite3WhereIsSorted() */
#define WHERE_SEEK_TABLE       0x0400 /* Do not defer seeks on main table */
#define WHERE_ORDERBY_LIMIT    0x0800 /* ORDERBY+LIMIT on the inner loop */
                        /*     0x1000    not currently used */
                        /*     0x2000    not currently used */
#define WHERE_USE_LIMIT        0x4000 /* Use the LIMIT in cost estimates */
                        /*     0x8000    not currently used */

/* Allowed return values from sqlite3WhereIsDistinct()
*/
#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
................................................................................
**    OPFLAG_FORDELETE    == BTREE_FORDELETE
**    OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION
**    OPFLAG_AUXDELETE    == BTREE_AUXDELETE
*/
#define OPFLAG_NCHANGE       0x01    /* OP_Insert: Set to update db->nChange */
                                     /* Also used in P2 (not P5) of OP_Delete */
#define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
#define OPFLAG_ISNOOP        0x40    /* OP_Delete does pre-update-hook only */
#endif
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
#define OPFLAG_FORDELETE     0x08    /* OP_Open should use BTREE_FORDELETE */
#define OPFLAG_P2ISREG       0x10    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
#define OPFLAG_SAVEPOSITION  0x02    /* OP_Delete: keep cursor position */
#define OPFLAG_AUXDELETE     0x04    /* OP_Delete: index in a DELETE op */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger.
 *
 * Pointers to instances of struct Trigger are stored in two ways.
................................................................................
SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8);
#define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
#define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
#define SQLITE_ECEL_REF      0x04  /* Use ExprList.u.x.iOrderByCol */
................................................................................
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*,int*);





SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
................................................................................
SQLITE_PRIVATE int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3*, Index*, int);
#endif

/*
** The interface to the LEMON-generated parser
*/

SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(u64));
SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));

SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
#ifdef YYTRACKMAXSTACKDEPTH
SQLITE_PRIVATE   int sqlite3ParserStackPeak(void*);
#endif

SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*);
#ifndef SQLITE_OMIT_LOAD_EXTENSION
................................................................................
SQLITE_PRIVATE   FKey *sqlite3FkReferences(Table *);
#else
  #define sqlite3FkActions(a,b,c,d,e,f)
  #define sqlite3FkCheck(a,b,c,d,e,f)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)         0
  #define sqlite3FkRequired(a,b,c,d)    0

#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE   void sqlite3FkDelete(sqlite3 *, Table*);
SQLITE_PRIVATE   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
#else
  #define sqlite3FkDelete(a,b)
  #define sqlite3FkLocateIndex(a,b,c,d,e)
................................................................................
** memory.  (The statement journal is also always held entirely in memory
** if journal_mode=MEMORY or if temp_store=MEMORY, regardless of this
** setting.)
*/
#ifndef SQLITE_STMTJRNL_SPILL 
# define SQLITE_STMTJRNL_SPILL (64*1024)
#endif














/*
** The following singleton contains the global configuration for
** the SQLite library.
*/
SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
   SQLITE_DEFAULT_MEMSTATUS,  /* bMemstat */
   1,                         /* bCoreMutex */
   SQLITE_THREADSAFE==1,      /* bFullMutex */
   SQLITE_USE_URI,            /* bOpenUri */
   SQLITE_ALLOW_COVERING_INDEX_SCAN,   /* bUseCis */
   0x7ffffffe,                /* mxStrlen */
   0,                         /* neverCorrupt */
   512,                       /* szLookaside */
   125,                       /* nLookaside */
   SQLITE_STMTJRNL_SPILL,     /* nStmtSpill */
   {0,0,0,0,0,0,0,0},         /* m */
   {0,0,0,0,0,0,0,0,0},       /* mutex */
   {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */
   (void*)0,                  /* pHeap */
   0,                         /* nHeap */
   0, 0,                      /* mnHeap, mxHeap */
................................................................................
  UnpackedRecord *pUnpacked;      /* Unpacked version of aRecord[] */
  UnpackedRecord *pNewUnpacked;   /* Unpacked version of new.* record */
  int iNewReg;                    /* Register for new.* values */
  i64 iKey1;                      /* First key value passed to hook */
  i64 iKey2;                      /* Second key value passed to hook */
  Mem *aNew;                      /* Array of new.* values */
  Table *pTab;                    /* Schema object being upated */          

};

/*
** Function prototypes
*/
SQLITE_PRIVATE void sqlite3VdbeError(Vdbe*, const char *, ...);
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
................................................................................
  sqlite3_mutex_enter(mem0.mutex);
}

/*
** Do a memory allocation with statistics and alarms.  Assume the
** lock is already held.
*/
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;

  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmThreshold>0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);

    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
    }
  }
  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmThreshold>0 ){
    sqlite3MallocAlarm(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
  }
  *pp = p;
  return nFull;
}

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it
** assumes the memory subsystem has already been initialized.
*/
SQLITE_PRIVATE void *sqlite3Malloc(u64 n){
................................................................................
  etByte prefix;           /* Offset into aPrefix[] of the prefix string */
} et_info;

/*
** Allowed values for et_info.flags
*/
#define FLAG_SIGNED  1     /* True if the value to convert is signed */
#define FLAG_INTERN  2     /* True if for internal use only */
#define FLAG_STRING  4     /* Allow infinity precision */


/*
** The following table is searched linearly, so it is good to put the
** most frequently used conversion types first.
*/
................................................................................
  {  'G',  0, 1, etGENERIC,    14, 0 },
#endif
  {  'i', 10, 1, etRADIX,      0,  0 },
  {  'n',  0, 0, etSIZE,       0,  0 },
  {  '%',  0, 0, etPERCENT,    0,  0 },
  {  'p', 16, 0, etPOINTER,    0,  1 },

/* All the rest have the FLAG_INTERN bit set and are thus for internal
** use only */
  {  'T',  0, 2, etTOKEN,      0,  0 },
  {  'S',  0, 2, etSRCLIST,    0,  0 },
  {  'r', 10, 3, etORDINAL,    0,  0 },
};

/*
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
** conversions will work.
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
................................................................................
  etByte flag_altform2;      /* True if "!" flag is present */
  etByte flag_zeropad;       /* True if field width constant starts with zero */
  etByte flag_long;          /* True if "l" flag is present */
  etByte flag_longlong;      /* True if the "ll" flag is present */
  etByte done;               /* Loop termination flag */
  etByte xtype = etINVALID;  /* Conversion paradigm */
  u8 bArgList;               /* True for SQLITE_PRINTF_SQLFUNC */
  u8 useIntern;              /* Ok to use internal conversions (ex: %T) */
  char prefix;               /* Prefix character.  "+" or "-" or " " or '\0'. */
  sqlite_uint64 longvalue;   /* Value for integer types */
  LONGDOUBLE_TYPE realvalue; /* Value for real types */
  const et_info *infop;      /* Pointer to the appropriate info structure */
  char *zOut;                /* Rendering buffer */
  int nOut;                  /* Size of the rendering buffer */
  char *zExtra = 0;          /* Malloced memory used by some conversion */
................................................................................
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
#endif
  PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
  char buf[etBUFSIZE];       /* Conversion buffer */

  bufpt = 0;
  if( pAccum->printfFlags ){
    if( (bArgList = (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){
      pArgList = va_arg(ap, PrintfArguments*);
    }
    useIntern = pAccum->printfFlags & SQLITE_PRINTF_INTERNAL;

  }else{
    bArgList = useIntern = 0;
  }
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){
      bufpt = (char *)fmt;
#if HAVE_STRCHRNUL
      fmt = strchrnul(fmt, '%');
#else
................................................................................
    }
    /* Fetch the info entry for the field */
    infop = &fmtinfo[0];
    xtype = etINVALID;
    for(idx=0; idx<ArraySize(fmtinfo); idx++){
      if( c==fmtinfo[idx].fmttype ){
        infop = &fmtinfo[idx];
        if( useIntern || (infop->flags & FLAG_INTERN)==0 ){
          xtype = infop->type;
        }else{
          return;
        }
        break;
      }
    }

    /*
    ** At this point, variables are initialized as follows:
    **
................................................................................
        length = j;
        /* The precision in %q and %Q means how many input characters to
        ** consume, not the length of the output...
        ** if( precision>=0 && precision<length ) length = precision; */
        break;
      }
      case etTOKEN: {


        Token *pToken = va_arg(ap, Token*);
        assert( bArgList==0 );
        if( pToken && pToken->n ){
          sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
        }
        length = width = 0;
        break;
      }
      case etSRCLIST: {




        SrcList *pSrc = va_arg(ap, SrcList*);
        int k = va_arg(ap, int);
        struct SrcList_item *pItem = &pSrc->a[k];
        assert( bArgList==0 );
        assert( k>=0 && k<pSrc->nSrc );
        if( pItem->zDatabase ){
          sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase);
          sqlite3StrAccumAppend(pAccum, ".", 1);
        }
        sqlite3StrAccumAppendAll(pAccum, pItem->zName);
................................................................................
    }/* End switch over the format type */
    /*
    ** The text of the conversion is pointed to by "bufpt" and is
    ** "length" characters long.  The field width is "width".  Do
    ** the output.
    */
    width -= length;

    if( width>0 && !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');
    sqlite3StrAccumAppend(pAccum, bufpt, length);
    if( width>0 && flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');




    if( zExtra ){
      sqlite3DbFree(pAccum->db, zExtra);
      zExtra = 0;
    }
  }/* End for loop over the format string */
} /* End of function */
................................................................................
*/
SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
#if SQLITE_BYTEORDER==4321
  u32 x;
  memcpy(&x,p,4);
  return x;
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(__GNUC__) && GCC_VERSION>=4003000
  u32 x;
  memcpy(&x,p,4);
  return __builtin_bswap32(x);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(_MSC_VER) && _MSC_VER>=1300
  u32 x;
  memcpy(&x,p,4);
................................................................................
  return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
#endif
}
SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
#if SQLITE_BYTEORDER==4321
  memcpy(p,&v,4);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(__GNUC__) && GCC_VERSION>=4003000
  u32 x = __builtin_bswap32(v);
  memcpy(p,&x,4);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(_MSC_VER) && _MSC_VER>=1300
  u32 x = _byteswap_ulong(v);
  memcpy(p,&x,4);
#else
................................................................................
/*
** Attempt to add, substract, or multiply the 64-bit signed value iB against
** the other 64-bit signed integer at *pA and store the result in *pA.
** Return 0 on success.  Or if the operation would have resulted in an
** overflow, leave *pA unchanged and return 1.
*/
SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){




  i64 iA = *pA;
  testcase( iA==0 ); testcase( iA==1 );
  testcase( iB==-1 ); testcase( iB==0 );
  if( iB>=0 ){
    testcase( iA>0 && LARGEST_INT64 - iA == iB );
    testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
    if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
................................................................................
  }else{
    testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
    testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
    if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
  }
  *pA += iB;
  return 0; 

}
SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){




  testcase( iB==SMALLEST_INT64+1 );
  if( iB==SMALLEST_INT64 ){
    testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
    if( (*pA)>=0 ) return 1;
    *pA -= iB;
    return 0;
  }else{
    return sqlite3AddInt64(pA, -iB);
  }

}
SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){




  i64 iA = *pA;
  if( iB>0 ){
    if( iA>LARGEST_INT64/iB ) return 1;
    if( iA<SMALLEST_INT64/iB ) return 1;
  }else if( iB<0 ){
    if( iA>0 ){
      if( iB<SMALLEST_INT64/iA ) return 1;
................................................................................
      if( iB==SMALLEST_INT64 ) return 1;
      if( iA==SMALLEST_INT64 ) return 1;
      if( -iA>LARGEST_INT64/-iB ) return 1;
    }
  }
  *pA = iA*iB;
  return 0;

}

/*
** Compute the absolute value of a 32-bit signed integer, of possible.  Or 
** if the integer has a value of -2147483648, return +2147483647
*/
SQLITE_PRIVATE int sqlite3AbsInt32(int x){
................................................................................
** instead of
**
**   if( pPager->jfd->pMethods ){ ...
*/
#define isOpen(pFd) ((pFd)->pMethods!=0)

/*
** Return true if this pager uses a write-ahead log instead of the usual
** rollback journal. Otherwise false.
*/
#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE int sqlite3PagerUseWal(Pager *pPager){


  return (pPager->pWal!=0);


}


# define pagerUseWal(x) sqlite3PagerUseWal(x)
#else
# define pagerUseWal(x) 0
# define pagerRollbackWal(x) 0
# define pagerWalFrames(v,w,x,y) 0
# define pagerOpenWalIfPresent(z) SQLITE_OK
# define pagerBeginReadTransaction(z) SQLITE_OK
#endif
................................................................................
** There is a corresponding leave-all procedures.
**
** Enter the mutexes in accending order by BtShared pointer address
** to avoid the possibility of deadlock when two threads with
** two or more btrees in common both try to lock all their btrees
** at the same instant.
*/
SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
  int i;

  Btree *p;
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;

    if( p ) sqlite3BtreeEnter(p);

  }
}


SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){



  int i;
  Btree *p;
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite3BtreeLeave(p);
  }



}

#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
................................................................................
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        pPage->xParseCell(pPage, pCell, &info);
        if( info.nLocal<info.nPayload
         && pCell+info.nSize-1<=pPage->aData+pPage->maskPage


         && iFrom==get4byte(pCell+info.nSize-4)
        ){
          put4byte(pCell+info.nSize-4, iTo);
          break;

        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
................................................................................
SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
  int rc = SQLITE_OK;
  if( p && p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
    assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
    sqlite3BtreeEnter(p);




    rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);

    if( rc==SQLITE_OK ){
      if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
        pBt->nPage = 0;
      }
      rc = newDatabase(pBt);
      pBt->nPage = get4byte(28 + pBt->pPage1->aData);

................................................................................
/*
** This function is used to read or overwrite payload information
** for the entry that the pCur cursor is pointing to. The eOp
** argument is interpreted as follows:
**
**   0: The operation is a read. Populate the overflow cache.
**   1: The operation is a write. Populate the overflow cache.
**   2: The operation is a read. Do not populate the overflow cache.
**
** A total of "amt" bytes are read or written beginning at "offset".
** Data is read to or from the buffer pBuf.
**
** The content being read or written might appear on the main page
** or be scattered out on multiple overflow pages.
**
** If the current cursor entry uses one or more overflow pages and the
** eOp argument is not 2, this function may allocate space for and lazily 
** populates the overflow page-list cache array (BtCursor.aOverflow). 
** Subsequent calls use this cache to make seeking to the supplied offset 
** more efficient.
**
** Once an overflow page-list cache has been allocated, it may be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
**
**   * An incremental vacuum,
**   * A commit in auto_vacuum="full" mode,
**   * Creating a table (may require moving an overflow page).
................................................................................
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  int iIdx = 0;
  MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
  BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  unsigned char * const pBufStart = pBuf;
  int bEnd;                                 /* True if reading to end of data */
#endif

  assert( pPage );

  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );
  assert( eOp!=2 || offset==0 );    /* Always start from beginning for eOp==2 */

  getCellInfo(pCur);
  aPayload = pCur->info.pPayload;
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  bEnd = offset+amt==pCur->info.nPayload;
#endif
  assert( offset+amt <= pCur->info.nPayload );

  assert( aPayload > pPage->aData );
  if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
    /* Trying to read or write past the end of the data is an error.  The
    ** conditional above is really:
    **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
................................................................................

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
    if( a+offset>pCur->info.nLocal ){
      a = pCur->info.nLocal - offset;
    }
    rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
    offset = 0;
    pBuf += a;
    amt -= a;
  }else{
    offset -= pCur->info.nLocal;
  }

................................................................................
  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

    /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
    ** Except, do not allocate aOverflow[] for eOp==2.
    **
    ** The aOverflow[] array is sized at one entry for each overflow page
    ** in the overflow chain. The page number of the first overflow page is
    ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
    ** means "not yet known" (the cache is lazily populated).
    */
    if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      if( nOvfl>pCur->nOvflAlloc ){
        Pgno *aNew = (Pgno*)sqlite3Realloc(
            pCur->aOverflow, nOvfl*2*sizeof(Pgno)
        );
        if( aNew==0 ){
          rc = SQLITE_NOMEM_BKPT;
        }else{
          pCur->nOvflAlloc = nOvfl*2;
          pCur->aOverflow = aNew;
        }
      }
      if( rc==SQLITE_OK ){
        memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
        pCur->curFlags |= BTCF_ValidOvfl;
      }
    }


    /* If the overflow page-list cache has been allocated and the
    ** entry for the first required overflow page is valid, skip
    ** directly to it.
    */
    if( (pCur->curFlags & BTCF_ValidOvfl)!=0
     && pCur->aOverflow[offset/ovflSize]
    ){
      iIdx = (offset/ovflSize);
      nextPage = pCur->aOverflow[iIdx];
      offset = (offset%ovflSize);
    }

    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){



      /* If required, populate the overflow page-list cache. */
      if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
        assert( pCur->aOverflow[iIdx]==0
                || pCur->aOverflow[iIdx]==nextPage
                || CORRUPT_DB );
        pCur->aOverflow[iIdx] = nextPage;
      }

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
        ** number for the next page in the overflow chain. The page
        ** data is not required. So first try to lookup the overflow
        ** page-list cache, if any, then fall back to the getOverflowPage()
        ** function.
        **
        ** Note that the aOverflow[] array must be allocated because eOp!=2
        ** here.  If eOp==2, then offset==0 and this branch is never taken.
        */
        assert( eOp!=2 );
        assert( pCur->curFlags & BTCF_ValidOvfl );
        assert( pCur->pBtree->db==pBt->db );
        if( pCur->aOverflow[iIdx+1] ){
          nextPage = pCur->aOverflow[iIdx+1];
        }else{
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        }
        offset -= ovflSize;
      }else{
        /* Need to read this page properly. It contains some of the
        ** range of data that is being read (eOp==0) or written (eOp!=0).
        */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
        sqlite3_file *fd;
#endif
        int a = amt;
        if( a + offset > ovflSize ){
          a = ovflSize - offset;
        }

#ifdef SQLITE_DIRECT_OVERFLOW_READ
        /* If all the following are true:
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and
        **   3) the database is file-backed, and
        **   4) there is no open write-transaction, and
        **   5) the database is not a WAL database,
        **   6) all data from the page is being read.

        **   7) at least 4 bytes have already been read into the output buffer 
        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( (eOp&0x01)==0                                      /* (1) */
         && offset==0                                          /* (2) */
         && (bEnd || a==ovflSize)                              /* (6) */
         && pBt->inTransaction==TRANS_READ                     /* (4) */
         && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
         && 0==sqlite3PagerUseWal(pBt->pPager)                 /* (5) */
         && &pBuf[-4]>=pBufStart                               /* (7) */
        ){
          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];
          assert( aWrite>=pBufStart );                         /* hence (7) */
          memcpy(aSave, aWrite, 4);
          rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
              ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
            sqlite3PagerUnref(pDbPage);
            offset = 0;
          }
        }
        amt -= a;

        pBuf += a;
      }


    }
  }

  if( rc==SQLITE_OK && amt>0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  return rc;
}

/*
** Read part of the payload for the row at which that cursor pCur is currently
** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
................................................................................
SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}






#ifndef SQLITE_OMIT_INCRBLOB
SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){






  int rc;
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
  assert( cursorOwnsBtShared(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){


    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );

    rc = accessPayload(pCur, offset, amt, pBuf, 0);


  }
  return rc;
}
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if index btrees (pPage->intKey==0) and is the data for
................................................................................
  if( pIdxKey==0
   && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }

    if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
      *pRes = -1;
      return SQLITE_OK;
















    }
  }

  if( pIdxKey ){
    xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
    pIdxKey->errCode = 0;
    assert( pIdxKey->default_rc==1 
................................................................................
          }
          pCellKey = sqlite3Malloc( nCell+18 );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM_BKPT;
            goto moveto_finish;
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);

          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);
        }
................................................................................
  ** usableSpace: Number of bytes of space available on each sibling.
  ** 
  */
  usableSpace = pBt->usableSize - 12 + leafCorrection;
  for(i=0; i<nOld; i++){
    MemPage *p = apOld[i];
    szNew[i] = usableSpace - p->nFree;
    if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
    for(j=0; j<p->nOverflow; j++){
      szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
    }
    cntNew[i] = cntOld[i];
  }
  k = nOld;
  for(i=0; i<k; i++){
................................................................................
** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
** key values and pX->aMem can be used instead of pX->pKey to avoid having
** to decode the key.
*/
SQLITE_PRIVATE int sqlite3BtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const BtreePayload *pX,        /* Content of the row to be inserted */
  int appendBias,                /* True if this is likely an append */
  int seekResult                 /* Result of prior MovetoUnpacked() call */
){
  int rc;
  int loc = seekResult;          /* -1: before desired location  +1: after */
  int szNew = 0;
  int idx;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;



  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorOwnsBtShared(pCur) );
................................................................................

  if( pCur->pKeyInfo==0 ){
    assert( pX->pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, pX->nKey, 0);






    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
      loc = 0;
    }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
               && pCur->info.nKey==pX->nKey-1 ){
      loc = -1;
    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, appendBias, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 ){
    if( pX->nMem ){
      UnpackedRecord r;
      r.pKeyInfo = pCur->pKeyInfo;
      r.aMem = pX->aMem;
      r.nField = pX->nMem;
      r.default_rc = 0;
      r.errCode = 0;
      r.r1 = 0;
      r.r2 = 0;
      r.eqSeen = 0;
      rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, appendBias, &loc);
    }else{
      rc = btreeMoveto(pCur, pX->pKey, pX->nKey, appendBias, &loc);
    }
    if( rc ) return rc;
  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->intKey || pX->nKey>=0 );
................................................................................

    /* Must make sure nOverflow is reset to zero even if the balance()
    ** fails. Internal data structure corruption will result otherwise. 
    ** Also, set the cursor state to invalid. This stops saveCursorPosition()
    ** from trying to save the current position of the cursor.  */
    pCur->apPage[pCur->iPage]->nOverflow = 0;
    pCur->eState = CURSOR_INVALID;














  }
  assert( pCur->apPage[pCur->iPage]->nOverflow==0 );

end_insert:
  return rc;
}

................................................................................
}
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
  sqlite3VdbeGetOp(p,addr)->p2 = val;
}
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
  sqlite3VdbeGetOp(p,addr)->p3 = val;
}
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
  assert( p->nOp>0 || p->db->mallocFailed );
  if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
................................................................................
** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 
** statement transaction is committed.
**
** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 
** Otherwise SQLITE_OK.
*/
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
  sqlite3 *const db = p->db;
  int rc = SQLITE_OK;

  /* If p->iStatement is greater than zero, then this Vdbe opened a 
  ** statement transaction that should be closed here. The only exception
  ** is that an IO error may have occurred, causing an emergency rollback.
  ** In this case (db->nStatement==0), and there is nothing to do.
  */
  if( db->nStatement && p->iStatement ){
    int i;
    const int iSavepoint = p->iStatement-1;

    assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
    assert( db->nStatement>0 );
    assert( p->iStatement==(db->nStatement+db->nSavepoint) );

    for(i=0; i<db->nDb; i++){ 
      int rc2 = SQLITE_OK;
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        if( eOp==SAVEPOINT_ROLLBACK ){
          rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
        }
        if( rc2==SQLITE_OK ){
          rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
        }
        if( rc==SQLITE_OK ){
          rc = rc2;
        }
      }
    }
    db->nStatement--;
    p->iStatement = 0;

    if( rc==SQLITE_OK ){
      if( eOp==SAVEPOINT_ROLLBACK ){
        rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
      }
      if( rc==SQLITE_OK ){
        rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
      }
    }

    /* If the statement transaction is being rolled back, also restore the 
    ** database handles deferred constraint counter to the value it had when 
    ** the statement transaction was opened.  */
    if( eOp==SAVEPOINT_ROLLBACK ){
      db->nDeferredCons = p->nStmtDefCons;
      db->nDeferredImmCons = p->nStmtDefImmCons;
    }
  }
  return rc;
}








/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
................................................................................
** If the second argument is not NULL, release any allocations associated 
** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
** structure itself, using sqlite3DbFree().
**
** This function is used to free UnpackedRecord structures allocated by
** the vdbeUnpackRecord() function found in vdbeapi.c.
*/
static void vdbeFreeUnpacked(sqlite3 *db, UnpackedRecord *p){
  if( p ){
    int i;
    for(i=0; i<p->nField; i++){
      Mem *pMem = &p->aMem[i];
      if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
    }
    sqlite3DbFree(db, p);
  }
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
................................................................................
  i64 iKey2;
  PreUpdate preupdate;
  const char *zTbl = pTab->zName;
  static const u8 fakeSortOrder = 0;

  assert( db->pPreUpdate==0 );
  memset(&preupdate, 0, sizeof(PreUpdate));




  if( op==SQLITE_UPDATE ){
    iKey2 = v->aMem[iReg].u.i;
  }else{
    iKey2 = iKey1;

  }

  assert( pCsr->nField==pTab->nCol 
       || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
  );

  preupdate.v = v;
................................................................................
  preupdate.iKey2 = iKey2;
  preupdate.pTab = pTab;

  db->pPreUpdate = &preupdate;
  db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
  db->pPreUpdate = 0;
  sqlite3DbFree(db, preupdate.aRecord);
  vdbeFreeUnpacked(db, preupdate.pUnpacked);
  vdbeFreeUnpacked(db, preupdate.pNewUnpacked);
  if( preupdate.aNew ){
    int i;
    for(i=0; i<pCsr->nField; i++){
      sqlite3VdbeMemRelease(&preupdate.aNew[i]);
    }
    sqlite3DbFree(db, preupdate.aNew);
  }
................................................................................

/*
** This function is called from within a pre-update callback to retrieve
** a field of the row currently being updated or deleted.
*/
SQLITE_API int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
  PreUpdate *p = db->pPreUpdate;

  int rc = SQLITE_OK;

  /* Test that this call is being made from within an SQLITE_DELETE or
  ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
  if( !p || p->op==SQLITE_INSERT ){
    rc = SQLITE_MISUSE_BKPT;
    goto preupdate_old_out;
  }



  if( iIdx>=p->pCsr->nField || iIdx<0 ){
    rc = SQLITE_RANGE;
    goto preupdate_old_out;
  }

  /* If the old.* record has not yet been loaded into memory, do so now. */
  if( p->pUnpacked==0 ){
................................................................................
    if( rc!=SQLITE_OK ){
      sqlite3DbFree(db, aRec);
      goto preupdate_old_out;
    }
    p->aRecord = aRec;
  }

  if( iIdx>=p->pUnpacked->nField ){
    *ppValue = (sqlite3_value *)columnNullValue();
  }else{
    Mem *pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
    *ppValue = &p->pUnpacked->aMem[iIdx];
    if( iIdx==p->pTab->iPKey ){
      sqlite3VdbeMemSetInt64(pMem, p->iKey1);


    }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
      if( pMem->flags & MEM_Int ){
        sqlite3VdbeMemRealify(pMem);
      }
    }
  }

 preupdate_old_out:
  sqlite3Error(db, rc);
  return sqlite3ApiExit(db, rc);
}
................................................................................
  int rc = SQLITE_OK;
  Mem *pMem;

  if( !p || p->op==SQLITE_DELETE ){
    rc = SQLITE_MISUSE_BKPT;
    goto preupdate_new_out;
  }



  if( iIdx>=p->pCsr->nField || iIdx<0 ){
    rc = SQLITE_RANGE;
    goto preupdate_new_out;
  }

  if( p->op==SQLITE_INSERT ){
    /* For an INSERT, memory cell p->iNewReg contains the serialized record
................................................................................
      pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
      if( !pUnpack ){
        rc = SQLITE_NOMEM;
        goto preupdate_new_out;
      }
      p->pNewUnpacked = pUnpack;
    }
    if( iIdx>=pUnpack->nField ){
      pMem = (sqlite3_value *)columnNullValue();
    }else{
      pMem = &pUnpack->aMem[iIdx];
      if( iIdx==p->pTab->iPKey ){
        sqlite3VdbeMemSetInt64(pMem, p->iKey2);
      }


    }
  }else{
    /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
    ** value. Make a copy of the cell contents and return a pointer to it.
    ** It is not safe to return a pointer to the memory cell itself as the
    ** caller may modify the value text encoding.
    */
................................................................................
  unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */
  Mem *pIn3 = 0;             /* 3rd input operand */
  Mem *pOut = 0;             /* Output operand */
  int *aPermute = 0;         /* Permutation of columns for OP_Compare */
  i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
#endif
  /*** INSERT STACK UNION HERE ***/

  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
  sqlite3VdbeEnter(p);
................................................................................
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    goto no_mem;
  }
  assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
  assert( p->bIsReader || p->readOnly!=0 );
  p->rc = SQLITE_OK;
  p->iCurrentTime = 0;
  assert( p->explain==0 );
  p->pResultSet = 0;
  db->busyHandler.nBusy = 0;
  if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
  sqlite3VdbeIOTraceSql(p);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
................................................................................
  if( pOp->p1==SQLITE_OK && p->pFrame ){
    /* Halt the sub-program. Return control to the parent frame. */
    pFrame = p->pFrame;
    p->pFrame = pFrame->pParent;
    p->nFrame--;
    sqlite3VdbeSetChanges(db, p->nChange);
    pcx = sqlite3VdbeFrameRestore(pFrame);
    lastRowid = db->lastRowid;
    if( pOp->p2==OE_Ignore ){
      /* Instruction pcx is the OP_Program that invoked the sub-program 
      ** currently being halted. If the p2 instruction of this OP_Halt
      ** instruction is set to OE_Ignore, then the sub-program is throwing
      ** an IGNORE exception. In this case jump to the address specified
      ** as the p2 of the calling OP_Program.  */
      pcx = p->aOp[pcx].p2-1;
................................................................................

  assert( pOp->p1>0 && pOp->p1<=p->nVar );
  assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  pOut = out2Prerelease(p, pOp);
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis: r[P2@P3]=r[P1@P3]
................................................................................
  for(i=0; i<pCtx->argc; i++){
    assert( memIsValid(pCtx->argv[i]) );
    REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
  }
#endif
  MemSetTypeFlag(pCtx->pOut, MEM_Null);
  pCtx->fErrorOrAux = 0;
  db->lastRowid = lastRowid;
  (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;  /* Remember rowid changes made by xSFunc */

  /* If the function returned an error, throw an exception */
  if( pCtx->fErrorOrAux ){
    if( pCtx->isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
      rc = pCtx->isError;
    }
................................................................................
  if( iCompare!=0 ) goto jump_to_p2;
  break;
}


/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
**
** The permutation is only valid until the next OP_Compare that has
** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 
** occur immediately prior to the OP_Compare.
**
** The first integer in the P4 integer array is the length of the array
** and does not become part of the permutation.
*/
case OP_Permutation: {
  assert( pOp->p4type==P4_INTARRAY );
  assert( pOp->p4.ai );
  aPermute = pOp->p4.ai + 1;

  break;
}

/* Opcode: Compare P1 P2 P3 P4 P5
** Synopsis: r[P1@P3] <-> r[P2@P3]
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
................................................................................
  int i;
  int p1;
  int p2;
  const KeyInfo *pKeyInfo;
  int idx;
  CollSeq *pColl;    /* Collating sequence to use on this term */
  int bRev;          /* True for DESCENDING sort order */


  if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;








  n = pOp->p3;
  pKeyInfo = pOp->p4.pKeyInfo;
  assert( n>0 );
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  p2 = pOp->p2;
#if SQLITE_DEBUG
................................................................................
    bRev = pKeyInfo->aSortOrder[i];
    iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
    if( iCompare ){
      if( bRev ) iCompare = -iCompare;
      break;
    }
  }
  aPermute = 0;
  break;
}

/* Opcode: Jump P1 P2 P3 * *
**
** Jump to the instruction at address P1, P2, or P3 depending on whether
** in the most recent OP_Compare instruction the P1 vector was less than
................................................................................
  if( zAffinity ){
    pRec = pData0;
    do{
      applyAffinity(pRec++, *(zAffinity++), encoding);
      assert( zAffinity[0]==0 || pRec<=pLast );
    }while( zAffinity[0] );
  }















  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  pRec = pLast;
  do{
    assert( memIsValid(pRec) );
................................................................................
  pData = &aMem[pOp->p2];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( memIsValid(pData) );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( pC->isTable );
  assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
  REGISTER_TRACE(pOp->p2, pData);

  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );
................................................................................
    x.nKey = pKey->u.i;
  }else{
    assert( pOp->opcode==OP_InsertInt );
    x.nKey = pOp->p3;
  }

  if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
    assert( pC->isTable );
    assert( pC->iDb>=0 );
    zDb = db->aDb[pC->iDb].zDbSName;
    pTab = pOp->p4.pTab;
    assert( HasRowid(pTab) );
    op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
  }else{
    pTab = 0; /* Not needed.  Silence a comiler warning. */
    zDb = 0;  /* Not needed.  Silence a compiler warning. */
  }

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
  /* Invoke the pre-update hook, if any */
  if( db->xPreUpdateCallback 
   && pOp->p4type==P4_TABLE
   && !(pOp->p5 & OPFLAG_ISUPDATE)
  ){
    sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
  }

#endif

  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = x.nKey;
  if( pData->flags & MEM_Null ){
    x.pData = 0;
    x.nData = 0;
  }else{
    assert( pData->flags & (MEM_Blob|MEM_Str) );
    x.pData = pData->z;
    x.nData = pData->n;
................................................................................
  if( pData->flags & MEM_Zero ){
    x.nZero = pData->u.nZero;
  }else{
    x.nZero = 0;
  }
  x.pKey = 0;
  rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
                          (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
  );
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc ) goto abort_due_to_error;
  if( db->xUpdateCallback && op ){
................................................................................
  }else{
    zDb = 0;   /* Not needed.  Silence a compiler warning. */
    pTab = 0;  /* Not needed.  Silence a compiler warning. */
  }

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
  /* Invoke the pre-update-hook if required. */
  if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){
    assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) );



    sqlite3VdbePreUpdateHook(p, pC,
        (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 
        zDb, pTab, pC->movetoTarget,
        pOp->p3
    );
  }
  if( opflags & OPFLAG_ISNOOP ) break;
................................................................................
  assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  if( rc ) goto abort_due_to_error;
  p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
  break;
}

/* Opcode: RowData P1 P2 * * *
** Synopsis: r[P2]=data
**
** Write into register P2 the complete row content for the row at 
** which cursor P1 is currently pointing.
** There is no interpretation of the data.  
** It is just copied onto the P2 register exactly as 
** it is found in the database file.
**
** If cursor P1 is an index, then the content is the key of the row.
** If cursor P2 is a table, then the content extracted is the data.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.













*/
case OP_RowData: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  u32 n;

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( isSorter(pC)==0 );
  assert( pC->nullRow==0 );
................................................................................
#endif

  n = sqlite3BtreePayloadSize(pCrsr);
  if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  testcase( n==0 );
  if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);
  rc = sqlite3BtreePayload(pCrsr, 0, n, pOut->z);
  if( rc ) goto abort_due_to_error;
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */

  UPDATE_MAX_BLOBSIZE(pOut);
  REGISTER_TRACE(pOp->p2, pOut);
  break;
}

/* Opcode: Rowid P1 P2 * * *
** Synopsis: r[P2]=rowid
................................................................................
    rc = sqlite3VdbeSorterWrite(pC, pIn2);
  }else{
    x.nKey = pIn2->n;
    x.pKey = pIn2->z;
    x.aMem = aMem + pOp->p3;
    x.nMem = (u16)pOp->p4.i;
    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
         (pOp->p5 & OPFLAG_APPEND)!=0, 
        ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
        );
    assert( pC->deferredMoveto==0 );
    pC->cacheStatus = CACHE_STALE;
  }
  if( rc) goto abort_due_to_error;
  break;
................................................................................
      pTabCur->deferredMoveto = 1;
      assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
      pTabCur->aAltMap = pOp->p4.ai;
      pTabCur->pAltCursor = pC;
    }else{
      pOut = out2Prerelease(p, pOp);
      pOut->u.i = rowid;
      pOut->flags = MEM_Int;
    }
  }else{
    assert( pOp->opcode==OP_IdxRowid );
    sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
  }
  break;
}
................................................................................
        || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
    assert( pProgram->nCsr==pFrame->nChildCsr );
    assert( (int)(pOp - aOp)==pFrame->pc );
  }

  p->nFrame++;
  pFrame->pParent = p->pFrame;
  pFrame->lastRowid = lastRowid;
  pFrame->nChange = p->nChange;
  pFrame->nDbChange = p->db->nChange;
  assert( pFrame->pAuxData==0 );
  pFrame->pAuxData = p->pAuxData;
  p->pAuxData = 0;
  p->nChange = 0;
  p->pFrame = pFrame;
................................................................................
    }
    db->vtabOnConflict = pOp->p5;
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    db->vtabOnConflict = vtabOnConflict;
    sqlite3VtabImportErrmsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = rowid;
    }
    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;
      }else{
        p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
      }
................................................................................
    sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
  db->lastRowid = lastRowid;
  testcase( nVmStep>0 );
  p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
  sqlite3VdbeLeave(p);
  assert( rc!=SQLITE_OK || nExtraDelete==0 
       || sqlite3_strlike("DELETE%",p->zSql,0)!=0 
  );
  return rc;
................................................................................
#ifndef SQLITE_OMIT_INCRBLOB

/*
** Valid sqlite3_blob* handles point to Incrblob structures.
*/
typedef struct Incrblob Incrblob;
struct Incrblob {
  int flags;              /* Copy of "flags" passed to sqlite3_blob_open() */
  int nByte;              /* Size of open blob, in bytes */
  int iOffset;            /* Byte offset of blob in cursor data */
  int iCol;               /* Table column this handle is open on */
  BtCursor *pCsr;         /* Cursor pointing at blob row */
  sqlite3_stmt *pStmt;    /* Statement holding cursor open */
  sqlite3 *db;            /* The associated database */
  char *zDb;              /* Database name */
  Table *pTab;            /* Table object */
};

................................................................................
** immediately return SQLITE_ABORT.
*/
static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){
  int rc;                         /* Error code */
  char *zErr = 0;                 /* Error message */
  Vdbe *v = (Vdbe *)p->pStmt;

  /* Set the value of the SQL statements only variable to integer iRow. 
  ** This is done directly instead of using sqlite3_bind_int64() to avoid 
  ** triggering asserts related to mutexes.
  */
  assert( v->aVar[0].flags&MEM_Int );

  v->aVar[0].u.i = iRow;









  rc = sqlite3_step(p->pStmt);

  if( rc==SQLITE_ROW ){
    VdbeCursor *pC = v->apCsr[0];
    u32 type = pC->aType[p->iCol];



    if( type<12 ){
      zErr = sqlite3MPrintf(p->db, "cannot open value of type %s",
          type==0?"null": type==7?"real": "integer"
      );
      rc = SQLITE_ERROR;
      sqlite3_finalize(p->pStmt);
      p->pStmt = 0;
................................................................................
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3* db,            /* The database connection */
  const char *zDb,        /* The attached database containing the blob */
  const char *zTable,     /* The table containing the blob */
  const char *zColumn,    /* The column containing the blob */
  sqlite_int64 iRow,      /* The row containing the glob */
  int flags,              /* True -> read/write access, false -> read-only */
  sqlite3_blob **ppBlob   /* Handle for accessing the blob returned here */
){
  int nAttempt = 0;
  int iCol;               /* Index of zColumn in row-record */
  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
................................................................................
#endif
  *ppBlob = 0;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zTable==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  flags = !!flags;                /* flags = (flags ? 1 : 0); */

  sqlite3_mutex_enter(db->mutex);

  pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
  if( !pBlob ) goto blob_open_out;
  pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
  if( !pParse ) goto blob_open_out;
................................................................................
      rc = SQLITE_ERROR;
      sqlite3BtreeLeaveAll(db);
      goto blob_open_out;
    }

    /* If the value is being opened for writing, check that the
    ** column is not indexed, and that it is not part of a foreign key. 
    ** It is against the rules to open a column to which either of these
    ** descriptions applies for writing.  */
    if( flags ){
      const char *zFault = 0;
      Index *pIdx;
#ifndef SQLITE_OMIT_FOREIGN_KEY
      if( db->flags&SQLITE_ForeignKeys ){
        /* Check that the column is not part of an FK child key definition. It
        ** is not necessary to check if it is part of a parent key, as parent
        ** key columns must be indexed. The check below will pick up this 
................................................................................
      ** which closes the b-tree cursor and (possibly) commits the 
      ** transaction.
      */
      static const int iLn = VDBE_OFFSET_LINENO(2);
      static const VdbeOpList openBlob[] = {
        {OP_TableLock,      0, 0, 0},  /* 0: Acquire a read or write lock */
        {OP_OpenRead,       0, 0, 0},  /* 1: Open a cursor */
        {OP_Variable,       1, 1, 0},  /* 2: Move ?1 into reg[1] */
        {OP_NotExists,      0, 7, 1},  /* 3: Seek the cursor */
        {OP_Column,         0, 0, 1},  /* 4  */
        {OP_ResultRow,      1, 0, 0},  /* 5  */
        {OP_Goto,           0, 2, 0},  /* 6  */
        {OP_Halt,           0, 0, 0},  /* 7  */
      };
      Vdbe *v = (Vdbe *)pBlob->pStmt;
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      VdbeOp *aOp;

      sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, flags, 
                           pTab->pSchema->schema_cookie,
                           pTab->pSchema->iGeneration);
      sqlite3VdbeChangeP5(v, 1);     
      aOp = sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn);

      /* Make sure a mutex is held on the table to be accessed */
      sqlite3VdbeUsesBtree(v, iDb); 
................................................................................
        assert( aOp!=0 );
        /* Configure the OP_TableLock instruction */
#ifdef SQLITE_OMIT_SHARED_CACHE
        aOp[0].opcode = OP_Noop;
#else
        aOp[0].p1 = iDb;
        aOp[0].p2 = pTab->tnum;
        aOp[0].p3 = flags;
        sqlite3VdbeChangeP4(v, 1, pTab->zName, P4_TRANSIENT);
      }
      if( db->mallocFailed==0 ){
#endif

        /* Remove either the OP_OpenWrite or OpenRead. Set the P2 
        ** parameter of the other to pTab->tnum.  */
        if( flags ) aOp[1].opcode = OP_OpenWrite;
        aOp[1].p2 = pTab->tnum;
        aOp[1].p3 = iDb;   

        /* Configure the number of columns. Configure the cursor to
        ** think that the table has one more column than it really
        ** does. An OP_Column to retrieve this imaginary column will
        ** always return an SQL NULL. This is useful because it means
        ** we can invoke OP_Column to fill in the vdbe cursors type 
        ** and offset cache without causing any IO.
        */
        aOp[1].p4type = P4_INT32;
        aOp[1].p4.i = pTab->nCol+1;
        aOp[4].p2 = pTab->nCol;

        pParse->nVar = 1;
        pParse->nMem = 1;
        pParse->nTab = 1;
        sqlite3VdbeMakeReady(v, pParse);
      }
    }
   
    pBlob->flags = flags;
    pBlob->iCol = iCol;
    pBlob->db = db;
    sqlite3BtreeLeaveAll(db);
    if( db->mallocFailed ){
      goto blob_open_out;
    }
    sqlite3_bind_int64(pBlob->pStmt, 1, iRow);
    rc = blobSeekToRow(pBlob, iRow, &zErr);
  } while( (++nAttempt)<SQLITE_MAX_SCHEMA_RETRY && rc==SQLITE_SCHEMA );

blob_open_out:
  if( rc==SQLITE_OK && db->mallocFailed==0 ){
    *ppBlob = (sqlite3_blob *)pBlob;
  }else{
................................................................................
*************************************************************************
**
** This file contains routines used for walking the parser tree and
** resolve all identifiers by associating them with a particular
** table and column.
*/
/* #include "sqliteInt.h" */
/* #include <stdlib.h> */
/* #include <string.h> */

/*
** Walk the expression tree pExpr and increase the aggregate function
** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node.
** This needs to occur when copying a TK_AGG_FUNCTION node from an
** outer query into an inner subquery.
**
................................................................................
    x = (ynVar)(++pParse->nVar);
  }else{
    int doAdd = 0;
    if( z[0]=='?' ){
      /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
      ** use it as the variable number */
      i64 i;





      int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
      x = (ynVar)i;

      testcase( i==0 );
      testcase( i==1 );
      testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
      testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
      if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
        sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
            db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
        return;
      }

      if( x>pParse->nVar ){
        pParse->nVar = (int)x;
        doAdd = 1;
      }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
        doAdd = 1;
      }
    }else{
................................................................................
    struct IdList_item *pNewItem = &pNew->a[i];
    struct IdList_item *pOldItem = &p->a[i];
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pNewItem->idx = pOldItem->idx;
  }
  return pNew;
}
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){



  Select *pNew, *pPrior;

  assert( db!=0 );
  if( p==0 ) return 0;

  pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
  if( pNew==0 ) return 0;
  pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
  pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
  pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
  pNew->op = p->op;
  pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
  if( pPrior ) pPrior->pNext = pNew;
  pNew->pNext = 0;
  pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
  pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = p->nSelectRow;
  pNew->pWith = withDup(db, p->pWith);
  sqlite3SelectSetName(pNew, p->zSelName);





  return pNew;
}
#else
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  assert( p==0 );
  return 0;
}
#endif
................................................................................
** pColumns and pExpr form a vector assignment which is part of the SET
** clause of an UPDATE statement.  Like this:
**
**        (a,b,c) = (expr1,expr2,expr3)
** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
**
** For each term of the vector assignment, append new entries to the
** expression list pList.  In the case of a subquery on the LHS, append
** TK_SELECT_COLUMN expressions.
*/
SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(
  Parse *pParse,         /* Parsing context */
  ExprList *pList,       /* List to which to append. Might be NULL */
  IdList *pColumns,      /* List of names of LHS of the assignment */
  Expr *pExpr            /* Vector expression to be appended. Might be NULL */
................................................................................
      const char *zId;       /* The function name */
      u32 constMask = 0;     /* Mask of function arguments that are constant */
      int i;                 /* Loop counter */
      sqlite3 *db = pParse->db;  /* The database connection */
      u8 enc = ENC(db);      /* The text encoding used by this database */
      CollSeq *pColl = 0;    /* A collating sequence */






      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      if( ExprHasProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
      }else{
        pFarg = pExpr->x.pList;
      }
      nFarg = pFarg ? pFarg->nExpr : 0;
................................................................................
      /* The UNLIKELY() function is a no-op.  The result is the value
      ** of the first argument.
      */
      if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
        assert( nFarg>=1 );
        return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
      }

















      for(i=0; i<nFarg; i++){
        if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
          testcase( i==31 );
          constMask |= MASKBIT32(i);
        }
        if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
................................................................................
  sqlite3ReleaseTempReg(pParse, regFree1);
  sqlite3ReleaseTempReg(pParse, regFree2);
  return inReg;
}

/*
** Factor out the code of the given expression to initialization time.






*/
SQLITE_PRIVATE void sqlite3ExprCodeAtInit(
  Parse *pParse,    /* Parsing context */
  Expr *pExpr,      /* The expression to code when the VDBE initializes */
  int regDest,      /* Store the value in this register */
  u8 reusable       /* True if this expression is reusable */
){
  ExprList *p;
  assert( ConstFactorOk(pParse) );
  p = pParse->pConstExpr;









  pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
  p = sqlite3ExprListAppend(pParse, p, pExpr);
  if( p ){
     struct ExprList_item *pItem = &p->a[p->nExpr-1];


     pItem->u.iConstExprReg = regDest;
     pItem->reusable = reusable;
  }
  pParse->pConstExpr = p;

}

/*
** Generate code to evaluate an expression and store the results
** into a register.  Return the register number where the results
** are stored.
**
................................................................................
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
  int r2;
  pExpr = sqlite3ExprSkipCollate(pExpr);
  if( ConstFactorOk(pParse)
   && pExpr->op!=TK_REGISTER
   && sqlite3ExprIsConstantNotJoin(pExpr)
  ){
    ExprList *p = pParse->pConstExpr;
    int i;
    *pReg  = 0;
    if( p ){
      struct ExprList_item *pItem;
      for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
        if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
          return pItem->u.iConstExprReg;
        }
      }
    }
    r2 = ++pParse->nMem;
    sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
  }else{
    int r1 = sqlite3GetTempReg(pParse);
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
    if( r2==r1 ){
      *pReg = r1;
    }else{
      sqlite3ReleaseTempReg(pParse, r1);
................................................................................
** Generate code that will evaluate expression pExpr and store the
** results in register target.  The results are guaranteed to appear
** in register target.  If the expression is constant, then this routine
** might choose to code the expression at initialization time.
*/
SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
  if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
    sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
  }else{
    sqlite3ExprCode(pParse, pExpr, target);
  }
}

/*
** Generate code that evaluates the given expression and puts the result
................................................................................
      if( flags & SQLITE_ECEL_OMITREF ){
        i--;
        n--;
      }else{
        sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
      }
    }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
      sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
    }else{
      int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
      if( inReg!=target+i ){
        VdbeOp *pOp;
        if( copyOp==OP_Copy
         && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
         && pOp->p1+pOp->p3+1==inReg
................................................................................
/*
** Implementation of the stat_get(P,J) SQL function.  This routine is
** used to query statistical information that has been gathered into
** the Stat4Accum object by prior calls to stat_push().  The P parameter
** has type BLOB but it is really just a pointer to the Stat4Accum object.
** The content to returned is determined by the parameter J
** which is one of the STAT_GET_xxxx values defined above.






**
** If neither STAT3 nor STAT4 are enabled, then J is always
** STAT_GET_STAT1 and is hence omitted and this routine becomes
** a one-parameter function, stat_get(P), that always returns the
** stat1 table entry information.
*/
static void statGet(
................................................................................
         || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 
        ){
          sumEq += aSample[i].anEq[iCol];
          nSum100 += 100;
        }
      }

      if( nDist100>nSum100 ){
        avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;
    }
  }
}
................................................................................
    return;
  }
  assert( pVfs );
  flags |= SQLITE_OPEN_MAIN_DB;
  rc = sqlite3BtreeOpen(pVfs, zPath, db, &aNew->pBt, 0, flags);
  sqlite3_free( zPath );
  db->nDb++;

  if( rc==SQLITE_CONSTRAINT ){
    rc = SQLITE_ERROR;
    zErrDyn = sqlite3MPrintf(db, "database is already attached");
  }else if( rc==SQLITE_OK ){
    Pager *pPager;
    aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
    if( !aNew->pSchema ){
................................................................................
      if( eOnePass==ONEPASS_SINGLE && sqlite3IsToplevel(pParse) ){
        pParse->isMultiWrite = 0;
      }
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      int iIdxNoSeek = -1;
      if( bComplex==0 && aiCurOnePass[1]!=iDataCur ){
        iIdxNoSeek = aiCurOnePass[1];
      }
      sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
          iKey, nKey, count, OE_Default, eOnePass, iIdxNoSeek);
    }
  
    /* End of the loop over all rowids/primary-keys. */
    if( eOnePass!=ONEPASS_OFF ){
      sqlite3VdbeResolveLabel(v, addrBypass);
      sqlite3WhereEnd(pWInfo);
    }else if( pPk ){
................................................................................
**   ONEPASS_MULTI.  If eMode is not ONEPASS_OFF, then the cursor
**   iDataCur already points to the row to delete. If eMode is ONEPASS_OFF
**   then this function must seek iDataCur to the entry identified by iPk
**   and nPk before reading from it.
**
**   If eMode is ONEPASS_MULTI, then this call is being made as part
**   of a ONEPASS delete that affects multiple rows. In this case, if 
**   iIdxNoSeek is a valid cursor number (>=0), then its position should

**   be preserved following the delete operation. Or, if iIdxNoSeek is not
**   a valid cursor number, the position of iDataCur should be preserved
**   instead.
**
** iIdxNoSeek:
**   If iIdxNoSeek is a valid cursor number (>=0), then it identifies an
**   index cursor (from within array of cursors starting at iIdxCur) that
**   already points to the index entry to be deleted.


*/
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
  Parse *pParse,     /* Parsing context */
  Table *pTab,       /* Table containing the row to be deleted */
  Trigger *pTrigger, /* List of triggers to (potentially) fire */
  int iDataCur,      /* Cursor from which column data is extracted */
  int iIdxCur,       /* First index cursor */
................................................................................
    addrStart = sqlite3VdbeCurrentAddr(v);
    sqlite3CodeRowTrigger(pParse, pTrigger, 
        TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel
    );

    /* If any BEFORE triggers were coded, then seek the cursor to the 
    ** row to be deleted again. It may be that the BEFORE triggers moved
    ** the cursor or of already deleted the row that the cursor was
    ** pointing to.



    */
    if( addrStart<sqlite3VdbeCurrentAddr(v) ){
      sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
      VdbeCoverageIf(v, opSeek==OP_NotExists);
      VdbeCoverageIf(v, opSeek==OP_NotFound);


    }

    /* Do FK processing. This call checks that any FK constraints that
    ** refer to this table (i.e. constraints attached to other tables) 
    ** are not violated by deleting this row.  */
    sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
  }
................................................................................
  ** the update-hook is not invoked for rows removed by REPLACE, but the 
  ** pre-update-hook is.
  */ 
  if( pTab->pSelect==0 ){
    u8 p5 = 0;
    sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek);
    sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));

    sqlite3VdbeAppendP4(v, (char*)pTab, P4_TABLE);

    if( eMode!=ONEPASS_OFF ){
      sqlite3VdbeChangeP5(v, OPFLAG_AUXDELETE);
    }
    if( iIdxNoSeek>=0 ){
      sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek);
    }
    if( eMode==ONEPASS_MULTI ) p5 |= OPFLAG_SAVEPOSITION;
    sqlite3VdbeChangeP5(v, p5);
  }

  /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
................................................................................
    ** But we are getting ready to store this value back into an index, where
    ** it should be converted by to INTEGER again.  So omit the OP_RealAffinity
    ** opcode if it is present */
    sqlite3VdbeDeletePriorOpcode(v, OP_RealAffinity);
  }
  if( regOut ){
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut);




  }
  sqlite3ReleaseTempRange(pParse, regBase, nCol);
  return regBase;
}

/*
** If a prior call to sqlite3GenerateIndexKey() generated a jump-over label
................................................................................
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
    DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
    DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
    FUNCTION2(unlikely,          1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
    FUNCTION2(likelihood,        2, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
    FUNCTION2(likely,            1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),



    FUNCTION(ltrim,              1, 1, 0, trimFunc         ),
    FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
    FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
    FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
    FUNCTION(trim,               1, 3, 0, trimFunc         ),
    FUNCTION(trim,               2, 3, 0, trimFunc         ),
    FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
................................................................................
        assert( onError==OE_Replace );
        sqlite3MultiWrite(pParse);
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
            regR, nPkField, 0, OE_Replace,
            (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), -1);
        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrUniqueOk);
    if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
  }
................................................................................
    sqlite3VdbeGoto(v, ipkTop+1);
    sqlite3VdbeJumpHere(v, ipkBottom);
  }
  
  *pbMayReplace = seenReplace;
  VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
}




















/*
** This routine generates code to finish the INSERT or UPDATE operation
** that was started by a prior call to sqlite3GenerateConstraintChecks.
** A consecutive range of registers starting at regNewData contains the
** rowid and the content to be inserted.
**
................................................................................
SQLITE_PRIVATE void sqlite3CompleteInsertion(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int iDataCur,       /* Cursor of the canonical data source */
  int iIdxCur,        /* First index cursor */
  int regNewData,     /* Range of content */
  int *aRegIdx,       /* Register used by each index.  0 for unused indices */
  int isUpdate,       /* True for UPDATE, False for INSERT */
  int appendBias,     /* True if this is likely to be an append */
  int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
  Vdbe *v;            /* Prepared statements under construction */
  Index *pIdx;        /* An index being inserted or updated */
  u8 pik_flags;       /* flag values passed to the btree insert */
  int regData;        /* Content registers (after the rowid) */
  int regRec;         /* Register holding assembled record for the table */
  int i;              /* Loop counter */
  u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */






  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    if( aRegIdx[i]==0 ) continue;
    bAffinityDone = 1;
    if( pIdx->pPartIdxWhere ){
      sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
      VdbeCoverage(v);
    }
    sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
                         aRegIdx[i]+1,
                         pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
    pik_flags = 0;
    if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
      assert( pParse->nested==0 );
      pik_flags |= OPFLAG_NCHANGE;







    }





    sqlite3VdbeChangeP5(v, pik_flags);
  }
  if( !HasRowid(pTab) ) return;
  regData = regNewData + 1;
  regRec = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);

  if( !bAffinityDone ){
    sqlite3TableAffinity(v, pTab, 0);
    sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
  }
  if( pParse->nested ){
    pik_flags = 0;
  }else{
    pik_flags = OPFLAG_NCHANGE;
    pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
  }
  if( appendBias ){
    pik_flags |= OPFLAG_APPEND;
  }
  if( useSeekResult ){
    pik_flags |= OPFLAG_USESEEKRESULT;
  }
................................................................................
      autoIncStep(pParse, regAutoinc, regRowid);
    }else if( pDest->pIndex==0 ){
      addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
    }else{
      addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
      assert( (pDest->tabFlags & TF_Autoincrement)==0 );
    }
    sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
    if( db->flags & SQLITE_Vacuum ){
      sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
      insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
                           OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
    }else{
      insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
    }
................................................................................
    sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
    VdbeComment((v, "%s", pSrcIdx->zName));
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
    sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
    sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
    VdbeComment((v, "%s", pDestIdx->zName));
    addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
    if( db->flags & SQLITE_Vacuum ){
      /* This INSERT command is part of a VACUUM operation, which guarantees
      ** that the destination table is empty. If all indexed columns use
      ** collation sequence BINARY, then it can also be assumed that the
      ** index will be populated by inserting keys in strictly sorted 
      ** order. In this case, instead of seeking within the b-tree as part
      ** of every OP_IdxInsert opcode, an OP_Last is added before the
................................................................................
#endif

#endif /* SQLITE3EXT_H */

/************** End of sqlite3ext.h ******************************************/
/************** Continuing where we left off in loadext.c ********************/
/* #include "sqliteInt.h" */
/* #include <string.h> */

#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Some API routines are omitted when various features are
** excluded from a build of SQLite.  Substitute a NULL pointer
** for any missing APIs.
*/
................................................................................
  return azModeName[eMode];
}

/*
** Locate a pragma in the aPragmaName[] array.
*/
static const PragmaName *pragmaLocate(const char *zName){
  int upr, lwr, mid, rc;
  lwr = 0;
  upr = ArraySize(aPragmaName)-1;
  while( lwr<=upr ){
    mid = (lwr+upr)/2;
    rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
    if( rc==0 ) break;
    if( rc<0 ){
................................................................................
  int r1;

  v = pParse->pVdbe;
  r1 = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
  sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);

  sqlite3ReleaseTempReg(pParse, r1);
}

/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
................................................................................
      return SQLITE_ERROR;
    }
    assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));

    pCte->zCteErr = "circular reference: %s";
    pSavedWith = pParse->pWith;
    pParse->pWith = pWith;







    sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);

    pParse->pWith = pWith;

    for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
    pEList = pLeft->pEList;
    if( pCte->pCols ){
      if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
        sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
................................................................................
**
** This function is used as the xSelectCallback2() callback by
** sqlite3SelectExpand() when walking a SELECT tree to resolve table
** names and other FROM clause elements. 
*/
static void selectPopWith(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;

  With *pWith = findRightmost(p)->pWith;
  if( pWith!=0 ){
    assert( pParse->pWith==pWith );
    pParse->pWith = pWith->pOuter;

  }
}
#else
#define selectPopWith 0
#endif

/*
................................................................................
    return WRC_Abort;
  }
  if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }
  pTabList = p->pSrc;
  pEList = p->pEList;
  if( pWalker->xSelectCallback2==selectPopWith ){
    sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
  }

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);

................................................................................
  w.xExprCallback = sqlite3ExprWalkNoop;
  w.pParse = pParse;
  if( pParse->hasCompound ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;
  if( (pSelect->selFlags & SF_MultiValue)==0 ){
    w.xSelectCallback2 = selectPopWith;
  }
  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
................................................................................
        }
  
        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row
        ** of output.
        */
        resetAccumulator(pParse, &sAggInfo);
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        assert( pMinMax==0 || pMinMax->nExpr==1 );
        if( sqlite3WhereIsOrdered(pWInfo)>0 ){
................................................................................
** interface routines.  These are just wrappers around the main
** interface routine of sqlite3_exec().
**
** These routines are in a separate files so that they will not be linked
** if they are not used.
*/
/* #include "sqliteInt.h" */
/* #include <stdlib.h> */
/* #include <string.h> */

#ifndef SQLITE_OMIT_GET_TABLE

/*
** This structure is used to pass data from sqlite3_get_table() through
** to the callback function is uses to build the result.
*/
................................................................................
    VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
    assert( i<pTab->nCol );
    sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
                         pCol->affinity, &pValue);
    if( pValue ){
      sqlite3VdbeAppendP4(v, pValue, P4_MEM);
    }

#ifndef SQLITE_OMIT_FLOATING_POINT
    if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
      sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
    }
#endif
  }
}

/*
** Process an UPDATE statement.
**
**   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
**          \_______/ \________/     \______/       \________________/
................................................................................
  Index *pIdx;           /* For looping over indices */
  Index *pPk;            /* The PRIMARY KEY index for WITHOUT ROWID tables */
  int nIdx;              /* Number of indices that need updating */
  int iBaseCur;          /* Base cursor number */
  int iDataCur;          /* Cursor for the canonical data btree */
  int iIdxCur;           /* Cursor for the first index */
  sqlite3 *db;           /* The database structure */
  int *aRegIdx = 0;      /* One register assigned to each index to be updated */
  int *aXRef = 0;        /* aXRef[i] is the index in pChanges->a[] of the
                         ** an expression for the i-th column of the table.
                         ** aXRef[i]==-1 if the i-th column is not changed. */
  u8 *aToOpen;           /* 1 for tables and indices to be opened */
  u8 chngPk;             /* PRIMARY KEY changed in a WITHOUT ROWID table */
  u8 chngRowid;          /* Rowid changed in a normal table */
  u8 chngKey;            /* Either chngPk or chngRowid */
  Expr *pRowidExpr = 0;  /* Expression defining the new record number */
  AuthContext sContext;  /* The authorization context */
  NameContext sNC;       /* The name-context to resolve expressions in */
  int iDb;               /* Database containing the table being updated */
  int okOnePass;         /* True for one-pass algorithm without the FIFO */
  int hasFK;             /* True if foreign key processing is required */
  int labelBreak;        /* Jump here to break out of UPDATE loop */
  int labelContinue;     /* Jump here to continue next step of UPDATE loop */


#ifndef SQLITE_OMIT_TRIGGER
  int isView;            /* True when updating a view (INSTEAD OF trigger) */
  Trigger *pTrigger;     /* List of triggers on pTab, if required */
  int tmask;             /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
#endif
  int newmask;           /* Mask of NEW.* columns accessed by BEFORE triggers */
  int iEph = 0;          /* Ephemeral table holding all primary key values */
  int nKey = 0;          /* Number of elements in regKey for WITHOUT ROWID */
  int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */





  /* Register Allocations */
  int regRowCount = 0;   /* A count of rows changed */
  int regOldRowid = 0;   /* The old rowid */
  int regNewRowid = 0;   /* The new rowid */
  int regNew = 0;        /* Content of the NEW.* table in triggers */
  int regOld = 0;        /* Content of OLD.* table in triggers */
................................................................................
    }else{
      reg = 0;
      for(i=0; i<pIdx->nKeyCol; i++){
        i16 iIdxCol = pIdx->aiColumn[i];
        if( iIdxCol<0 || aXRef[iIdxCol]>=0 ){
          reg = ++pParse->nMem;
          pParse->nMem += pIdx->nColumn;





          break;
        }
      }
    }
    if( reg==0 ) aToOpen[j+1] = 0;
    aRegIdx[j] = reg;
  }






  /* Begin generating code. */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

................................................................................
  if( IsVirtual(pTab) ){
    updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
                       pWhere, onError);
    goto update_cleanup;
  }
#endif

  /* Begin the database scan
  */

  if( HasRowid(pTab) ){
    sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
    pWInfo = sqlite3WhereBegin(
        pParse, pTabList, pWhere, 0, 0,
            WHERE_ONEPASS_DESIRED | WHERE_SEEK_TABLE, iIdxCur
    );
    if( pWInfo==0 ) goto update_cleanup;
    okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
  
    /* Remember the rowid of every item to be updated.
    */
    sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid);
    if( !okOnePass ){
      sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
    }
  
    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);


  }else{
    int iPk;         /* First of nPk memory cells holding PRIMARY KEY value */
    i16 nPk;         /* Number of components of the PRIMARY KEY */
    int addrOpen;    /* Address of the OpenEphemeral instruction */

    assert( pPk!=0 );
    nPk = pPk->nKeyCol;
    iPk = pParse->nMem+1;
    pParse->nMem += nPk;
    regKey = ++pParse->nMem;
    iEph = pParse->nTab++;

    sqlite3VdbeAddOp2(v, OP_Null, 0, iPk);
    addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk);
    sqlite3VdbeSetP4KeyInfo(pParse, pPk);













    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, 
                               WHERE_ONEPASS_DESIRED, iIdxCur);
    if( pWInfo==0 ) goto update_cleanup;











    okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);






















    for(i=0; i<nPk; i++){
      assert( pPk->aiColumn[i]>=0 );
      sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, pPk->aiColumn[i],
                                      iPk+i);
    }
    if( okOnePass ){
      sqlite3VdbeChangeToNoop(v, addrOpen);
      nKey = nPk;
      regKey = iPk;
    }else{
      sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey,
                        sqlite3IndexAffinityStr(db, pPk), nPk);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk);
    }
    sqlite3WhereEnd(pWInfo);
  }


  /* Initialize the count of updated rows
  */
  if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  labelBreak = sqlite3VdbeMakeLabel(v);
  if( !isView ){
    /* 
    ** Open every index that needs updating.  Note that if any
    ** index could potentially invoke a REPLACE conflict resolution 
    ** action, then we need to open all indices because we might need
    ** to be deleting some records.
    */
    if( onError==OE_Replace ){
      memset(aToOpen, 1, nIdx+1);
    }else{
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        if( pIdx->onError==OE_Replace ){
          memset(aToOpen, 1, nIdx+1);
          break;

        }
      }
    }
    if( okOnePass ){


      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
      if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
    }




    sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen,
                               0, 0);

  }

  /* Top of the update loop */
  if( okOnePass ){
    if( aToOpen[iDataCur-iBaseCur] && !isView ){
      assert( pPk );
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey);
      VdbeCoverageNeverTaken(v);
    }

    labelContinue = labelBreak;



    sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
    VdbeCoverageIf(v, pPk==0);
    VdbeCoverageIf(v, pPk!=0);
  }else if( pPk ){
    labelContinue = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
    addrTop = sqlite3VdbeAddOp2(v, OP_RowData, iEph, regKey);
................................................................................
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i);
      }
    }
  }

  if( !isView ){
    int addr1 = 0;        /* Address of jump instruction */
    int bReplace = 0;     /* True if REPLACE conflict resolution might happen */

    /* Do constraint checks. */
    assert( regOldRowid>0 );
    sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
        regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace,
        aXRef);

................................................................................
    ** pre-update hook. If the caller invokes preupdate_new(), the returned
    ** value is copied from memory cell (regNewRowid+1+iCol), where iCol
    ** is the column index supplied by the user.
    */
    assert( regNew==regNewRowid+1 );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeAddOp3(v, OP_Delete, iDataCur,
        OPFLAG_ISUPDATE | ((hasFK || chngKey || pPk!=0) ? 0 : OPFLAG_ISNOOP),
        regNewRowid
    );




    if( !pParse->nested ){
      sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
    }
#else
    if( hasFK || chngKey || pPk!=0 ){
      sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
    }
#endif
    if( bReplace || chngKey ){
      sqlite3VdbeJumpHere(v, addr1);
    }

    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngKey);
    }
  
    /* Insert the new index entries and the new record. */
    sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
                             regNewRowid, aRegIdx, 1, 0, 0);




    /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
    ** handle rows (possibly in other tables) that refer via a foreign key
    ** to the row just updated. */ 
    if( hasFK ){
      sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey);
    }
................................................................................

  sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, 
      TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue);

  /* Repeat the above with the next record to be updated, until
  ** all record selected by the WHERE clause have been updated.
  */
  if( okOnePass ){
    /* Nothing to do at end-of-loop for a single-pass */



  }else if( pPk ){
    sqlite3VdbeResolveLabel(v, labelContinue);
    sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v);
  }else{
    sqlite3VdbeGoto(v, labelContinue);
  }
  sqlite3VdbeResolveLabel(v, labelBreak);
................................................................................
      testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
    }

    /* Seek the table cursor, if required */
    if( omitTable ){
      /* pIdx is a covering index.  No need to access the main table. */
    }else if( HasRowid(pIdx->pTable) ){
      if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){



        iRowidReg = ++pParse->nMem;
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
        sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
        sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
        VdbeCoverage(v);
      }else{
        codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
................................................................................
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* uppercase equivalent to lowercase */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */
  unsigned char eOp2;              /* op2 value for LIKE/REGEXP/GLOB */


  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
................................................................................
  }
  prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr);
  if( ExprHasProperty(pExpr, EP_FromJoin) ){
    Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
    prereqAll |= x;
    extraRight = x-1;  /* ON clause terms may not be used with an index
                       ** on left table of a LEFT JOIN.  Ticket #3015 */




  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    int iCur, iColumn;
................................................................................
  ** new terms completely replace the original vector comparison, which is
  ** no longer used.
  **
  ** This is only required if at least one side of the comparison operation
  ** is not a sub-select.  */
  if( pWC->op==TK_AND 
  && (pExpr->op==TK_EQ || pExpr->op==TK_IS)
  && sqlite3ExprIsVector(pExpr->pLeft)

  && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 
    || (pExpr->pRight->flags & EP_xIsSelect)==0
  )){
    int nLeft = sqlite3ExprVectorSize(pExpr->pLeft);
    int i;
    assert( nLeft==sqlite3ExprVectorSize(pExpr->pRight) );
    for(i=0; i<nLeft; i++){
      int idxNew;
      Expr *pNew;
      Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
      Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);

      pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
................................................................................
            assert( x>=0 );
          }
          x = sqlite3ColumnOfIndex(pIdx, x);
          if( x>=0 ){
            pOp->p2 = x;
            pOp->p1 = pLevel->iIdxCur;
          }
          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 );

        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }
      }
    }
  }
................................................................................

/*
** Indicate that sqlite3ParserFree() will never be called with a null
** pointer.
*/
#define YYPARSEFREENEVERNULL 1














/*
** Alternative datatype for the argument to the malloc() routine passed
** into sqlite3ParserAlloc().  The default is size_t.
*/
#define YYMALLOCARGTYPE  u64

/*
................................................................................
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif


























/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
................................................................................
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to sqlite3Parser and sqlite3ParserFree.
*/
SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(YYMALLOCARGTYPE)){
  yyParser *pParser;
  pParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
  if( pParser ){
#ifdef YYTRACKMAXSTACKDEPTH
    pParser->yyhwm = 0;
#endif
#if YYSTACKDEPTH<=0
    pParser->yytos = NULL;
    pParser->yystack = NULL;
    pParser->yystksz = 0;
    if( yyGrowStack(pParser) ){
      pParser->yystack = &pParser->yystk0;
      pParser->yystksz = 1;
    }
#endif
#ifndef YYNOERRORRECOVERY
    pParser->yyerrcnt = -1;
#endif
    pParser->yytos = pParser->yystack;
    pParser->yystack[0].stateno = 0;
    pParser->yystack[0].major = 0;

  }
  return pParser;
}

/* The following function deletes the "minor type" or semantic value
** associated with a symbol.  The symbol can be either a terminal
** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
** a pointer to the value to be deleted.  The code used to do the 
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
................................................................................
      yyTracePrompt,
      yyTokenName[yytos->major]);
  }
#endif
  yy_destructor(pParser, yytos->major, &yytos->minor);
}













/* 
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.
**
** If the YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.
*/
SQLITE_PRIVATE void sqlite3ParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){
  yyParser *pParser = (yyParser*)p;
#ifndef YYPARSEFREENEVERNULL
  if( pParser==0 ) return;
#endif
  while( pParser->yytos>pParser->yystack ) yy_pop_parser_stack(pParser);
#if YYSTACKDEPTH<=0
  if( pParser->yystack!=&pParser->yystk0 ) free(pParser->yystack);
#endif

  (*freeProc)((void*)pParser);
}


/*
** Return the peak depth of the stack for a parser.
*/
#ifdef YYTRACKMAXSTACKDEPTH
SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
  yyParser *pParser = (yyParser*)p;
................................................................................
  int nErr = 0;                   /* Number of errors encountered */
  int i;                          /* Loop counter */
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */




  assert( zSql!=0 );
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */




  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    sqlite3OomFault(db);
    return SQLITE_NOMEM_BKPT;
  }

  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->pVList==0 );
  while( 1 ){
    assert( i>=0 );
    if( zSql[i]!=0 ){
................................................................................
#ifdef YYTRACKMAXSTACKDEPTH
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */



  sqlite3ParserFree(pEngine, sqlite3_free);

  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM_BKPT;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc));
  }
  assert( pzErrMsg!=0 );
................................................................................
  p->db = db;
  p->nColumn = nCol;
  p->nPendingData = 0;
  p->azColumn = (char **)&p[1];
  p->pTokenizer = pTokenizer;
  p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
  p->bHasDocsize = (isFts4 && bNoDocsize==0);
  p->bHasStat = isFts4;
  p->bFts4 = isFts4;
  p->bDescIdx = bDescIdx;
  p->nAutoincrmerge = 0xff;   /* 0xff means setting unknown */
  p->zContentTbl = zContent;
  p->zLanguageid = zLanguageid;
  zContent = 0;
  zLanguageid = 0;
  TESTONLY( p->inTransaction = -1 );
  TESTONLY( p->mxSavepoint = -1 );
................................................................................
    char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName);
    if( zSql ){
      sqlite3_stmt *pStmt = 0;
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
      if( rc==SQLITE_OK ){
        int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW);
        rc = sqlite3_finalize(pStmt);
        if( rc==SQLITE_OK ) p->bHasStat = bHasStat;
      }
      sqlite3_free(zSql);
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  return rc;
................................................................................
** An rtree virtual-table object.
*/
struct Rtree {
  sqlite3_vtab base;          /* Base class.  Must be first */
  sqlite3 *db;                /* Host database connection */
  int iNodeSize;              /* Size in bytes of each node in the node table */
  u8 nDim;                    /* Number of dimensions */

  u8 eCoordType;              /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
  u8 nBytesPerCell;           /* Bytes consumed per cell */

  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 
  int nBusy;                  /* Current number of users of this structure */
  i64 nRowEst;                /* Estimated number of rows in this table */


  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
  */
  RtreeNode *pDeleted;
  int iReinsertHeight;        /* Height of sub-trees Reinsert() has run on */




  /* Statements to read/write/delete a record from xxx_node */
  sqlite3_stmt *pReadNode;
  sqlite3_stmt *pWriteNode;
  sqlite3_stmt *pDeleteNode;

  /* Statements to read/write/delete a record from xxx_rowid */
  sqlite3_stmt *pReadRowid;
  sqlite3_stmt *pWriteRowid;
  sqlite3_stmt *pDeleteRowid;
................................................................................
#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN
# define MIN(x,y) ((x) > (y) ? (y) : (x))
#endif



























/*

































** Functions to deserialize a 16 bit integer, 32 bit real number and
** 64 bit integer. The deserialized value is returned.
*/
static int readInt16(u8 *p){
  return (p[0]<<8) + p[1];
}
static void readCoord(u8 *p, RtreeCoord *pCoord){











  pCoord->u = (
    (((u32)p[0]) << 24) + 
    (((u32)p[1]) << 16) + 
    (((u32)p[2]) <<  8) + 
    (((u32)p[3]) <<  0)
  );

}
static i64 readInt64(u8 *p){













  return (
    (((i64)p[0]) << 56) + 
    (((i64)p[1]) << 48) + 
    (((i64)p[2]) << 40) + 
    (((i64)p[3]) << 32) + 
    (((i64)p[4]) << 24) + 
    (((i64)p[5]) << 16) + 
    (((i64)p[6]) <<  8) + 
    (((i64)p[7]) <<  0)
  );

}

/*
** Functions to serialize a 16 bit integer, 32 bit real number and
** 64 bit integer. The value returned is the number of bytes written
** to the argument buffer (always 2, 4 and 8 respectively).
*/
................................................................................
static int writeInt16(u8 *p, int i){
  p[0] = (i>> 8)&0xFF;
  p[1] = (i>> 0)&0xFF;
  return 2;
}
static int writeCoord(u8 *p, RtreeCoord *pCoord){
  u32 i;

  assert( sizeof(RtreeCoord)==4 );
  assert( sizeof(u32)==4 );










  i = pCoord->u;
  p[0] = (i>>24)&0xFF;
  p[1] = (i>>16)&0xFF;
  p[2] = (i>> 8)&0xFF;
  p[3] = (i>> 0)&0xFF;

  return 4;
}
static int writeInt64(u8 *p, i64 i){









  p[0] = (i>>56)&0xFF;
  p[1] = (i>>48)&0xFF;
  p[2] = (i>>40)&0xFF;
  p[3] = (i>>32)&0xFF;
  p[4] = (i>>24)&0xFF;
  p[5] = (i>>16)&0xFF;
  p[6] = (i>> 8)&0xFF;
  p[7] = (i>> 0)&0xFF;

  return 8;
}

/*
** Increment the reference count of node p.
*/
static void nodeReference(RtreeNode *p){
................................................................................
    pNode->nRef = 1;
    pNode->pParent = pParent;
    pNode->isDirty = 1;
    nodeReference(pParent);
  }
  return pNode;
}












/*
** Obtain a reference to an r-tree node.
*/
static int nodeAcquire(
  Rtree *pRtree,             /* R-tree structure */
  i64 iNode,                 /* Node number to load */
  RtreeNode *pParent,        /* Either the parent node or NULL */
  RtreeNode **ppNode         /* OUT: Acquired node */
){
  int rc;
  int rc2 = SQLITE_OK;
  RtreeNode *pNode;

  /* Check if the requested node is already in the hash table. If so,
  ** increase its reference count and return it.
  */
  if( (pNode = nodeHashLookup(pRtree, iNode)) ){
    assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
    if( pParent && !pNode->pParent ){
................................................................................
      pNode->pParent = pParent;
    }
    pNode->nRef++;
    *ppNode = pNode;
    return SQLITE_OK;
  }

  sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
  rc = sqlite3_step(pRtree->pReadNode);





  if( rc==SQLITE_ROW ){
    const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);















    if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
      pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
      if( !pNode ){
        rc2 = SQLITE_NOMEM;
      }else{
        pNode->pParent = pParent;
        pNode->zData = (u8 *)&pNode[1];
        pNode->nRef = 1;
        pNode->iNode = iNode;
        pNode->isDirty = 0;
        pNode->pNext = 0;

        memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
        nodeReference(pParent);
      }
    }
  }
  rc = sqlite3_reset(pRtree->pReadNode);
  if( rc==SQLITE_OK ) rc = rc2;

  /* If the root node was just loaded, set pRtree->iDepth to the height
  ** of the r-tree structure. A height of zero means all data is stored on
  ** the root node. A height of one means the children of the root node
  ** are the leaves, and so on. If the depth as specified on the root node
  ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
  */
................................................................................
  RtreeNode *pNode,          /* The node into which the cell is to be written */
  RtreeCell *pCell,          /* The cell to write */
  int iCell                  /* Index into pNode into which pCell is written */
){
  int ii;
  u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
  p += writeInt64(p, pCell->iRowid);
  for(ii=0; ii<(pRtree->nDim*2); ii++){
    p += writeCoord(p, &pCell->aCoord[ii]);
  }
  pNode->isDirty = 1;
}

/*
** Remove the cell with index iCell from node pNode.
................................................................................
  Rtree *pRtree,               /* The overall R-Tree */
  RtreeNode *pNode,            /* The node containing the cell to be read */
  int iCell,                   /* Index of the cell within the node */
  RtreeCell *pCell             /* OUT: Write the cell contents here */
){
  u8 *pData;
  RtreeCoord *pCoord;
  int ii;
  pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
  pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
  pCoord = pCell->aCoord;
  for(ii=0; ii<pRtree->nDim*2; ii++){
    readCoord(&pData[ii*4], &pCoord[ii]);
  }




}


/* Forward declaration for the function that does the work of
** the virtual table module xCreate() and xConnect() methods.
*/
static int rtreeInit(
................................................................................
/*
** Decrement the r-tree reference count. When the reference count reaches
** zero the structure is deleted.
*/
static void rtreeRelease(Rtree *pRtree){
  pRtree->nBusy--;
  if( pRtree->nBusy==0 ){
    sqlite3_finalize(pRtree->pReadNode);


    sqlite3_finalize(pRtree->pWriteNode);
    sqlite3_finalize(pRtree->pDeleteNode);
    sqlite3_finalize(pRtree->pReadRowid);
    sqlite3_finalize(pRtree->pWriteRowid);
    sqlite3_finalize(pRtree->pDeleteRowid);
    sqlite3_finalize(pRtree->pReadParent);
    sqlite3_finalize(pRtree->pWriteParent);
................................................................................
    pRtree->zDb, pRtree->zName, 
    pRtree->zDb, pRtree->zName,
    pRtree->zDb, pRtree->zName
  );
  if( !zCreate ){
    rc = SQLITE_NOMEM;
  }else{

    rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
    sqlite3_free(zCreate);
  }
  if( rc==SQLITE_OK ){
    rtreeRelease(pRtree);
  }

................................................................................
}

/* 
** Rtree virtual table module xOpen method.
*/
static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  int rc = SQLITE_NOMEM;

  RtreeCursor *pCsr;

  pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
  if( pCsr ){
    memset(pCsr, 0, sizeof(RtreeCursor));
    pCsr->base.pVtab = pVTab;
    rc = SQLITE_OK;

  }
  *ppCursor = (sqlite3_vtab_cursor *)pCsr;

  return rc;
}


................................................................................
/* 
** Rtree virtual table module xClose method.
*/
static int rtreeClose(sqlite3_vtab_cursor *cur){
  Rtree *pRtree = (Rtree *)(cur->pVtab);
  int ii;
  RtreeCursor *pCsr = (RtreeCursor *)cur;

  freeCursorConstraints(pCsr);
  sqlite3_free(pCsr->aPoint);
  for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
  sqlite3_free(pCsr);


  return SQLITE_OK;
}

/*
** Rtree virtual table module xEof method.
**
** Return non-zero if the cursor does not currently point to a valid 
................................................................................
** Convert raw bits from the on-disk RTree record into a coordinate value.
** The on-disk format is big-endian and needs to be converted for little-
** endian platforms.  The on-disk record stores integer coordinates if
** eInt is true and it stores 32-bit floating point records if eInt is
** false.  a[] is the four bytes of the on-disk record to be decoded.
** Store the results in "r".
**
** There are three versions of this macro, one each for little-endian and
** big-endian processors and a third generic implementation.  The endian-
** specific implementations are much faster and are preferred if the
** processor endianness is known at compile-time.  The SQLITE_BYTEORDER
** macro is part of sqliteInt.h and hence the endian-specific
** implementation will only be used if this module is compiled as part
** of the amalgamation.
*/
#if defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==1234







#define RTREE_DECODE_COORD(eInt, a, r) {                        \
    RtreeCoord c;    /* Coordinate decoded */                   \
    memcpy(&c.u,a,4);                                           \
    c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)|                   \
          ((c.u&0xff)<<24)|((c.u&0xff00)<<8);                   \
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
}
#elif defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==4321
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
    RtreeCoord c;    /* Coordinate decoded */                   \
    memcpy(&c.u,a,4);                                           \
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
}
#else
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
................................................................................
  RtreeConstraint *pConstraint,  /* The constraint to test */
  int eInt,                      /* True if RTree holding integer coordinates */
  u8 *pCellData,                 /* Raw cell content */
  RtreeSearchPoint *pSearch,     /* Container of this cell */
  sqlite3_rtree_dbl *prScore,    /* OUT: score for the cell */
  int *peWithin                  /* OUT: visibility of the cell */
){
  int i;                                                /* Loop counter */
  sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
  int nCoord = pInfo->nCoord;                           /* No. of coordinates */
  int rc;                                             /* Callback return code */

  sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2];   /* Decoded coordinates */

  assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
  assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );

  if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
    pInfo->iRowid = readInt64(pCellData);
  }
  pCellData += 8;
  for(i=0; i<nCoord; i++, pCellData += 4){
    RTREE_DECODE_COORD(eInt, pCellData, aCoord[i]);











  }
















  if( pConstraint->op==RTREE_MATCH ){

    rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
                              nCoord, aCoord, &i);
    if( i==0 ) *peWithin = NOT_WITHIN;
    *prScore = RTREE_ZERO;
  }else{
    pInfo->aCoord = aCoord;
    pInfo->iLevel = pSearch->iLevel - 1;
    pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
    pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
    rc = pConstraint->u.xQueryFunc(pInfo);
................................................................................
  /* p->iCoord might point to either a lower or upper bound coordinate
  ** in a coordinate pair.  But make pCellData point to the lower bound.
  */
  pCellData += 8 + 4*(p->iCoord&0xfe);

  assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
      || p->op==RTREE_GT || p->op==RTREE_EQ );

  switch( p->op ){
    case RTREE_LE:
    case RTREE_LT:
    case RTREE_EQ:
      RTREE_DECODE_COORD(eInt, pCellData, val);
      /* val now holds the lower bound of the coordinate pair */
      if( p->u.rValue>=val ) return;
................................................................................
  int *peWithin              /* Adjust downward, as appropriate */
){
  RtreeDValue xN;      /* Coordinate value converted to a double */

  assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
      || p->op==RTREE_GT || p->op==RTREE_EQ );
  pCellData += 8 + p->iCoord*4;

  RTREE_DECODE_COORD(eInt, pCellData, xN);
  switch( p->op ){
    case RTREE_LE: if( xN <= p->u.rValue ) return;  break;
    case RTREE_LT: if( xN <  p->u.rValue ) return;  break;
    case RTREE_GE: if( xN >= p->u.rValue ) return;  break;
    case RTREE_GT: if( xN >  p->u.rValue ) return;  break;
    default:       if( xN == p->u.rValue ) return;  break;
................................................................................
  if( pA->rScore>pB->rScore ) return +1;
  if( pA->iLevel<pB->iLevel ) return -1;
  if( pA->iLevel>pB->iLevel ) return +1;
  return 0;
}

/*
** Interchange to search points in a cursor.
*/
static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
  RtreeSearchPoint t = p->aPoint[i];
  assert( i<j );
  p->aPoint[i] = p->aPoint[j];
  p->aPoint[j] = t;
  i++; j++;
................................................................................
      if( p->iCell>=nCell ){
        RTREE_QUEUE_TRACE(pCur, "POP-S:");
        rtreeSearchPointPop(pCur);
      }
      if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
      p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
      if( p==0 ) return SQLITE_NOMEM;
      p->eWithin = eWithin;
      p->id = x.id;
      p->iCell = x.iCell;
      RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
      break;
    }
    if( p->iCell>=nCell ){
      RTREE_QUEUE_TRACE(pCur, "POP-Se:");
................................................................................
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);

  if( rc ) return rc;
  if( p==0 ) return SQLITE_OK;
  if( i==0 ){
    sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
  }else{
    if( rc ) return rc;
    nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else
#endif
    {
................................................................................
    if( rc==SQLITE_OK && pLeaf!=0 ){
      p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
      assert( p!=0 );  /* Always returns pCsr->sPoint */
      pCsr->aNode[0] = pLeaf;
      p->id = iNode;
      p->eWithin = PARTLY_WITHIN;
      rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
      p->iCell = iCell;
      RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
    }else{
      pCsr->atEOF = 1;
    }
  }else{
    /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 
    ** with the configured constraints. 
................................................................................
            ** can be cast into an RtreeMatchArg object. One created using
            ** an sqlite3_rtree_geometry_callback() SQL user function.
            */
            rc = deserializeGeometry(argv[ii], p);
            if( rc!=SQLITE_OK ){
              break;
            }
            p->pInfo->nCoord = pRtree->nDim*2;
            p->pInfo->anQueue = pCsr->anQueue;
            p->pInfo->mxLevel = pRtree->iDepth + 1;
          }else{
#ifdef SQLITE_RTREE_INT_ONLY
            p->u.rValue = sqlite3_value_int64(argv[ii]);
#else
            p->u.rValue = sqlite3_value_double(argv[ii]);
................................................................................
#endif
          }
        }
      }
    }
    if( rc==SQLITE_OK ){
      RtreeSearchPoint *pNew;
      pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, pRtree->iDepth+1);
      if( pNew==0 ) return SQLITE_NOMEM;
      pNew->id = 1;
      pNew->iCell = 0;
      pNew->eWithin = PARTLY_WITHIN;
      assert( pCsr->bPoint==1 );
      pCsr->aNode[0] = pRoot;
      pRoot = 0;
................................................................................
  }

  nodeRelease(pRtree, pRoot);
  rtreeRelease(pRtree);
  return rc;
}

/*
** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
** extension is currently being used by a version of SQLite too old to
** support estimatedRows. In that case this function is a no-op.
*/
static void setEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
#if SQLITE_VERSION_NUMBER>=3008002
  if( sqlite3_libversion_number()>=3008002 ){
    pIdxInfo->estimatedRows = nRow;
  }
#endif
}

/*
** Rtree virtual table module xBestIndex method. There are three
** table scan strategies to choose from (in order from most to 
** least desirable):
**
**   idxNum     idxStr        Strategy
**   ------------------------------------------------
................................................................................
      /* This strategy involves a two rowid lookups on an B-Tree structures
      ** and then a linear search of an R-Tree node. This should be 
      ** considered almost as quick as a direct rowid lookup (for which 
      ** sqlite uses an internal cost of 0.0). It is expected to return
      ** a single row.
      */ 
      pIdxInfo->estimatedCost = 30.0;
      setEstimatedRows(pIdxInfo, 1);
      return SQLITE_OK;
    }

    if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
      u8 op;
      switch( p->op ){
        case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
................................................................................
        case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
        default:
          assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
          op = RTREE_MATCH; 
          break;
      }
      zIdxStr[iIdx++] = op;
      zIdxStr[iIdx++] = p->iColumn - 1 + '0';
      pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
      pIdxInfo->aConstraintUsage[ii].omit = 1;
    }
  }

  pIdxInfo->idxNum = 2;
  pIdxInfo->needToFreeIdxStr = 1;
  if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
    return SQLITE_NOMEM;
  }

  nRow = pRtree->nRowEst >> (iIdx/2);
  pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
  setEstimatedRows(pIdxInfo, nRow);

  return rc;
}

/*
** Return the N-dimensional volumn of the cell stored in *p.
*/
static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
  RtreeDValue area = (RtreeDValue)1;
  int ii;


  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
















  }
  return area;
}

/*
** Return the margin length of cell p. The margin length is the sum
** of the objects size in each dimension.
*/
static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
  RtreeDValue margin = (RtreeDValue)0;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
  }


  return margin;
}

/*
** Store the union of cells p1 and p2 in p1.
*/
static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
  int ii;
  if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
    for(ii=0; ii<(pRtree->nDim*2); ii+=2){
      p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
      p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
    }


  }else{
    for(ii=0; ii<(pRtree->nDim*2); ii+=2){

      p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
      p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
    }


  }
}

/*
** Return true if the area covered by p2 is a subset of the area covered
** by p1. False otherwise.
*/
static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
  int ii;
  int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    RtreeCoord *a1 = &p1->aCoord[ii];
    RtreeCoord *a2 = &p2->aCoord[ii];
    if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 
     || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 
    ){
      return 0;
    }
................................................................................
  int nCell
){
  int ii;
  RtreeDValue overlap = RTREE_ZERO;
  for(ii=0; ii<nCell; ii++){
    int jj;
    RtreeDValue o = (RtreeDValue)1;
    for(jj=0; jj<(pRtree->nDim*2); jj+=2){
      RtreeDValue x1, x2;
      x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
      x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
      if( x2<x1 ){
        o = (RtreeDValue)0;
        break;
      }else{
................................................................................
    **
    ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
    ** with "column" that are interpreted as table constraints.
    ** Example:  CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
    ** This problem was discovered after years of use, so we silently ignore
    ** these kinds of misdeclared tables to avoid breaking any legacy.
    */
    assert( nData<=(pRtree->nDim*2 + 3) );

#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<nData-4; ii+=2){
        cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]);
        cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
................................................................................
    }
  }

constraint:
  rtreeRelease(pRtree);
  return rc;
}






















/*
** The xRename method for rtree module virtual tables.
*/
static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_NOMEM;
................................................................................
  );
  if( zSql ){
    rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
    sqlite3_free(zSql);
  }
  return rc;
}


/*
** This function populates the pRtree->nRowEst variable with an estimate
** of the number of rows in the virtual table. If possible, this is based
** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
*/
static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
................................................................................
  rtreeClose,                 /* xClose - close a cursor */
  rtreeFilter,                /* xFilter - configure scan constraints */
  rtreeNext,                  /* xNext - advance a cursor */
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  0,                          /* xBegin - begin transaction */
  0,                          /* xSync - sync transaction */
  0,                          /* xCommit - commit transaction */
  0,                          /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  0,                          /* xSavepoint */
  0,                          /* xRelease */
  0                           /* xRollbackTo */
};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 
  const char *zDb, 
  const char *zPrefix, 
  int isCreate
){
  int rc = SQLITE_OK;

  #define N_STATEMENT 9
  static const char *azSql[N_STATEMENT] = {
    /* Read and write the xxx_node table */
    "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
    "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",

    /* Read and write the xxx_rowid table */
    "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
    "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
................................................................................
    rc = sqlite3_exec(db, zCreate, 0, 0, 0);
    sqlite3_free(zCreate);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }

  appStmt[0] = &pRtree->pReadNode;
  appStmt[1] = &pRtree->pWriteNode;
  appStmt[2] = &pRtree->pDeleteNode;
  appStmt[3] = &pRtree->pReadRowid;
  appStmt[4] = &pRtree->pWriteRowid;
  appStmt[5] = &pRtree->pDeleteRowid;
  appStmt[6] = &pRtree->pReadParent;
  appStmt[7] = &pRtree->pWriteParent;
  appStmt[8] = &pRtree->pDeleteParent;

  rc = rtreeQueryStat1(db, pRtree);
  for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
    char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
    if( zSql ){
      rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); 
    }else{
................................................................................
    return SQLITE_NOMEM;
  }
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
  pRtree->nBusy = 1;
  pRtree->base.pModule = &rtreeModule;
  pRtree->zDb = (char *)&pRtree[1];
  pRtree->zName = &pRtree->zDb[nDb+1];
  pRtree->nDim = (argc-4)/2;

  pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
  pRtree->eCoordType = eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate, pzErr);

  /* Create/Connect to the underlying relational database schema. If
................................................................................
  RtreeNode node;
  Rtree tree;
  int ii;

  UNUSED_PARAMETER(nArg);
  memset(&node, 0, sizeof(RtreeNode));
  memset(&tree, 0, sizeof(Rtree));
  tree.nDim = sqlite3_value_int(apArg[0]);

  tree.nBytesPerCell = 8 + 8 * tree.nDim;
  node.zData = (u8 *)sqlite3_value_blob(apArg[1]);

  for(ii=0; ii<NCELL(&node); ii++){
    char zCell[512];
    int nCell = 0;
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = (int)strlen(zCell);
    for(jj=0; jj<tree.nDim*2; jj++){
#ifndef SQLITE_RTREE_INT_ONLY
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %g",
                       (double)cell.aCoord[jj].f);
#else
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
                       cell.aCoord[jj].i);
#endif
................................................................................
  }
}

/*
** Register the ICU extension functions with database db.
*/
SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){
  struct IcuScalar {
    const char *zName;                        /* Function name */
    int nArg;                                 /* Number of arguments */
    int enc;                                  /* Optimal text encoding */
    void *pContext;                           /* sqlite3_user_data() context */
    void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
  } scalars[] = {

    {"regexp", 2, SQLITE_ANY|SQLITE_DETERMINISTIC,          0, icuRegexpFunc},

    {"lower",  1, SQLITE_UTF16|SQLITE_DETERMINISTIC,        0, icuCaseFunc16},
    {"lower",  2, SQLITE_UTF16|SQLITE_DETERMINISTIC,        0, icuCaseFunc16},
    {"upper",  1, SQLITE_UTF16|SQLITE_DETERMINISTIC, (void*)1, icuCaseFunc16},
    {"upper",  2, SQLITE_UTF16|SQLITE_DETERMINISTIC, (void*)1, icuCaseFunc16},

    {"lower",  1, SQLITE_UTF8|SQLITE_DETERMINISTIC,         0, icuCaseFunc16},
    {"lower",  2, SQLITE_UTF8|SQLITE_DETERMINISTIC,         0, icuCaseFunc16},
    {"upper",  1, SQLITE_UTF8|SQLITE_DETERMINISTIC,  (void*)1, icuCaseFunc16},
    {"upper",  2, SQLITE_UTF8|SQLITE_DETERMINISTIC,  (void*)1, icuCaseFunc16},

    {"like",   2, SQLITE_UTF8|SQLITE_DETERMINISTIC,         0, icuLikeFunc},
    {"like",   3, SQLITE_UTF8|SQLITE_DETERMINISTIC,         0, icuLikeFunc},

    {"icu_load_collation",  2, SQLITE_UTF8, (void*)db, icuLoadCollation},
  };

  int rc = SQLITE_OK;
  int i;


  for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){
    struct IcuScalar *p = &scalars[i];
    rc = sqlite3_create_function(
        db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0


    );
  }

  return rc;
}

#if !SQLITE_CORE
................................................................................
}


/*
** Open the database handle and attach the RBU database as "rbu". If an
** error occurs, leave an error code and message in the RBU handle.
*/
static void rbuOpenDatabase(sqlite3rbu *p){
  assert( p->rc || (p->dbMain==0 && p->dbRbu==0) );
  assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 );

  /* Open the RBU database */
  p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1);

  if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
................................................................................
    rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
    if( rc!=SQLITE_NOTFOUND ) p->rc = rc;
    if( p->eStage>=RBU_STAGE_MOVE ){
      bOpen = 1;
    }else{
      RbuState *pState = rbuLoadState(p);
      if( pState ){
        bOpen = (pState->eStage>RBU_STAGE_MOVE);
        rbuFreeState(pState);
      }
    }
    if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1);
  }

  p->eStage = 0;
  if( p->rc==SQLITE_OK && p->dbMain==0 ){
    if( !rbuIsVacuum(p) ){
      p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
    }else if( p->pRbuFd->pWalFd ){









      p->rc = SQLITE_ERROR;
      p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database");
    }else{
      char *zTarget;
      char *zExtra = 0;
      if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){
        zExtra = &p->zRbu[5];
................................................................................
  if( p->rc==SQLITE_OK ){
    int rc2;
    p->eStage = RBU_STAGE_CAPTURE;
    rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0);
    if( rc2!=SQLITE_INTERNAL ) p->rc = rc2;
  }

  if( p->rc==SQLITE_OK ){
    p->eStage = RBU_STAGE_CKPT;
    p->nStep = (pState ? pState->nRow : 0);
    p->aBuf = rbuMalloc(p, p->pgsz);
    p->iWalCksum = rbuShmChecksum(p);
  }


  if( p->rc==SQLITE_OK && pState && pState->iWalCksum!=p->iWalCksum ){
    p->rc = SQLITE_DONE;
    p->eStage = RBU_STAGE_DONE;

  }
}

/*
** Called when iAmt bytes are read from offset iOff of the wal file while
** the rbu object is in capture mode. Record the frame number of the frame
** being read in the aFrame[] array.
................................................................................
        }
      }
#else
      p->rc = rename(zOal, zWal) ? SQLITE_IOERR : SQLITE_OK;
#endif

      if( p->rc==SQLITE_OK ){
        rbuOpenDatabase(p);
        rbuSetupCheckpoint(p, 0);
      }
    }
  }

  sqlite3_free(zWal);
  sqlite3_free(zOal);
................................................................................
    /* Create the custom VFS. */
    memset(p, 0, sizeof(sqlite3rbu));
    rbuCreateVfs(p);

    /* Open the target, RBU and state databases */
    if( p->rc==SQLITE_OK ){
      char *pCsr = (char*)&p[1];

      if( zTarget ){
        p->zTarget = pCsr;
        memcpy(p->zTarget, zTarget, nTarget+1);
        pCsr += nTarget+1;
      }
      p->zRbu = pCsr;
      memcpy(p->zRbu, zRbu, nRbu+1);
      pCsr += nRbu+1;
      if( zState ){
        p->zState = rbuMPrintf(p, "%s", zState);
      }










      rbuOpenDatabase(p);

    }

    if( p->rc==SQLITE_OK ){
      pState = rbuLoadState(p);
      assert( pState || p->rc!=SQLITE_OK );
      if( p->rc==SQLITE_OK ){

................................................................................
  sqlite3_changeset_iter *pIter,  /* Changeset iterator */
  int iVal,                       /* Index of conflict record value to fetch */
  sqlite3_value **ppValue         /* OUT: Value from conflicting row */
){
  if( !pIter->pConflict ){
    return SQLITE_MISUSE;
  }
  if( iVal<0 || iVal>=sqlite3_column_count(pIter->pConflict) ){
    return SQLITE_RANGE;
  }
  *ppValue = sqlite3_column_value(pIter->pConflict, iVal);
  return SQLITE_OK;
}

/*
................................................................................
){
  int rc = SQLITE_OK;
  int i;
  SessionBuffer buf = {0, 0, 0};

  sessionAppendStr(&buf, "INSERT INTO main.", &rc);
  sessionAppendIdent(&buf, zTab, &rc);
  sessionAppendStr(&buf, " VALUES(?", &rc);






  for(i=1; i<p->nCol; i++){
    sessionAppendStr(&buf, ", ?", &rc);
  }
  sessionAppendStr(&buf, ")", &rc);

  if( rc==SQLITE_OK ){
    rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0);
................................................................................
        if( zTab==0 ){
          rc = SQLITE_NOMEM;
          break;
        }
        nTab = (int)strlen(zTab);
        sApply.azCol = (const char **)zTab;
      }else{



        sqlite3changeset_pk(pIter, &abPK, 0);
        rc = sessionTableInfo(
            db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK
        );
        if( rc!=SQLITE_OK ) break;



  
        if( sApply.nCol==0 ){
          schemaMismatch = 1;
          sqlite3_log(SQLITE_SCHEMA, 
              "sqlite3changeset_apply(): no such table: %s", zTab
          );
        }
        else if( sApply.nCol!=nCol ){
          schemaMismatch = 1;
          sqlite3_log(SQLITE_SCHEMA, 
              "sqlite3changeset_apply(): table %s has %d columns, expected %d", 

              zTab, sApply.nCol, nCol
          );
        }
        else if( memcmp(sApply.abPK, abPK, nCol)!=0 ){
          schemaMismatch = 1;
          sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): "
              "primary key mismatch for table %s", zTab
          );
        }
        else if( 

            (rc = sessionSelectRow(db, zTab, &sApply))
         || (rc = sessionUpdateRow(db, zTab, &sApply))
         || (rc = sessionDeleteRow(db, zTab, &sApply))
         || (rc = sessionInsertRow(db, zTab, &sApply))
        ){
          break;

        }
        nTab = sqlite3Strlen30(zTab);
      }
    }

    /* If there is a schema mismatch on the current table, proceed to the
    ** next change. A log message has already been issued. */
................................................................................
** For the time being, all JSON is stored as pure text.  (We might add
** a JSONB type in the future which stores a binary encoding of JSON in
** a BLOB, but there is no support for JSONB in the current implementation.
** This implementation parses JSON text at 250 MB/s, so it is hard to see
** how JSONB might improve on that.)
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_JSON1)
#if !defined(_SQLITEINT_H_)
/* #include "sqlite3ext.h" */
#endif
SQLITE_EXTENSION_INIT1
/* #include <assert.h> */
/* #include <string.h> */
/* #include <stdlib.h> */
/* #include <stdarg.h> */
................................................................................
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef fts5YYMALLOCARGTYPE
# define fts5YYMALLOCARGTYPE size_t
#endif


























/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
................................................................................
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to sqlite3Fts5Parser and sqlite3Fts5ParserFree.
*/
static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(fts5YYMALLOCARGTYPE)){
  fts5yyParser *pParser;
  pParser = (fts5yyParser*)(*mallocProc)( (fts5YYMALLOCARGTYPE)sizeof(fts5yyParser) );
  if( pParser ){
#ifdef fts5YYTRACKMAXSTACKDEPTH
    pParser->fts5yyhwm = 0;
#endif
#if fts5YYSTACKDEPTH<=0
    pParser->fts5yytos = NULL;
    pParser->fts5yystack = NULL;
    pParser->fts5yystksz = 0;
    if( fts5yyGrowStack(pParser) ){
      pParser->fts5yystack = &pParser->fts5yystk0;
      pParser->fts5yystksz = 1;
    }
#endif
#ifndef fts5YYNOERRORRECOVERY
    pParser->fts5yyerrcnt = -1;
#endif
    pParser->fts5yytos = pParser->fts5yystack;
    pParser->fts5yystack[0].stateno = 0;
    pParser->fts5yystack[0].major = 0;

  }
  return pParser;
}

/* The following function deletes the "minor type" or semantic value
** associated with a symbol.  The symbol can be either a terminal
** or nonterminal. "fts5yymajor" is the symbol code, and "fts5yypminor" is
** a pointer to the value to be deleted.  The code used to do the 
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
................................................................................
      fts5yyTracePrompt,
      fts5yyTokenName[fts5yytos->major]);
  }
#endif
  fts5yy_destructor(pParser, fts5yytos->major, &fts5yytos->minor);
}













/* 
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.
**
** If the fts5YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.
*/
static void sqlite3Fts5ParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){
  fts5yyParser *pParser = (fts5yyParser*)p;
#ifndef fts5YYPARSEFREENEVERNULL
  if( pParser==0 ) return;
#endif
  while( pParser->fts5yytos>pParser->fts5yystack ) fts5yy_pop_parser_stack(pParser);
#if fts5YYSTACKDEPTH<=0
  if( pParser->fts5yystack!=&pParser->fts5yystk0 ) free(pParser->fts5yystack);
#endif

  (*freeProc)((void*)pParser);
}


/*
** Return the peak depth of the stack for a parser.
*/
#ifdef fts5YYTRACKMAXSTACKDEPTH
static int sqlite3Fts5ParserStackPeak(void *p){
  fts5yyParser *pParser = (fts5yyParser*)p;
................................................................................
  char *z = 0;

  memset(&sCtx, 0, sizeof(TokenCtx));
  sCtx.pPhrase = pAppend;

  rc = fts5ParseStringFromToken(pToken, &z);
  if( rc==SQLITE_OK ){
    int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_QUERY : 0);
    int n;
    sqlite3Fts5Dequote(z);
    n = (int)strlen(z);
    rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
  }
  sqlite3_free(z);
  if( rc || (rc = sCtx.rc) ){
................................................................................
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2017-01-06 16:32:41 a65a62893ca8319e89e48b8a38cf8a59c69a8209", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,


|







 







>
>
>
>
>
>
>
>







 







|
|
|







 







>
>
>
|
>







 







|







 







>
>
>







 







|







 







>
>
>
>
>
>







 







>
>
>
>







 







|



|







 







|








|
|
|













>
>
|
<
<
|
|
|
>
>
>
>







 







|
>







 







|







 







|
>
>
>
>







 







|
>
>







 







|
|


|
|
|







 







>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>


|







 







|


>







 







|







 







<
|







 







|







 







>
|
>






|







 







>







 







>







 







|







 







|



<

<







|







 







|







 







>
>
>
>
>







 







>
|
|
>







 







>







 







>
>
>
>
>
>
>
>
>
>
>
>
>













|
<







 







>







 







|
<

>

<



>







|



|








<







 







<







 







|
<
|
|
|







 







<







 







<
|
|
<
<
>

|







 







<
|
<
<
<







 







>
>
|








>
>
>
>
|
|
|







 







>
|
|
|
>
>
>







 







|







 







|







 







>
>
>
>







 







>


>
>
>
>









>


>
>
>
>







 







>







 







|
|

|
|
>
>
|
>
>

>
>
|







 







|

>




>
|
>
|
|
>
>
|
>
>
>







>
>
>







 







|
|
>
>
|
<
|
|
>







 







>
>
>
>
|
>







 







<







|
|
|



|







 







|
<



>



<



<
<
<







 







|







 







<






|






|





<
|
|
<
<
<
>
|
|
|
|
<
|
<
|
|
|
|
|
<

>
>

<
|
|
|
|
<







<
<
<

<













|











<
|
|
<
>
|





|

<
|
|
|
|



|










|




|





>


>
>




|







 







>
>
>
>
>
>

<
>
>
>
>
>
>





|
|
>
>
|
<
<
>
|
>
>

<







 







>
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
>







 







<







 







|











>
>







 







>
>
>
>
>









|


|










|

|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|


<
<
<
<
<
<
<
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
<



>
>
>
>
>
>
>







 







|


|







 







>
>
>
>
|
|
|
|
>







 







|
|







 







>








>
>
>







 







<
<
<
|
<
|
|
>
>
|
|
|
<







 







>
>
>







 







<
<
<
|
|
|
<
>
>







 







<
<







 







<







 







<







 







|







 







<

<







 







|
|











|
>







 







>

|
>
>
>
>
>
>
>
>







 







<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







<



|


|











>



|







 







|







 







|
|
>
>
>







 







|













>
>
>
>
>
>
>
>
>
>
>
>
>






|
<







 







<
<
<
<
<
|

<
>







 







|







 







<







 







|







 







|







 







<







 







<


|







 







|
|
<

<
>
|

>
>
>
>
>
>
>
>
|
>


<
>
>
>







 







|







 







|







 







|
|
<







 







|
|
|
|
<
|





|







 







|







|












|

|






<






<







 







<
<







 







>
>
>
>
>
|
<
>









>







 







|
>
>
>
|
>

<
>
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
|







 







|







 







>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>

|


|
<




>
>
>
>
>
>
>
>
>




>
>

<


>







 







<
<

<
<
<
<
<
<
<
<
<
|







 







|







 







|







 







>
>
>
>
>
>







 







|







 







>







 







<
<
<
<

|







 







|
>
|
|
<


|
|
|
>
>







 







|

>
>
>





>
>







 







>
|
>



|







 







>
>
>
>







 







>
>
>







 







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|










>
>
>
>
>











<
<
<
<
|



>
>
>
>
>
>
>
|
>
>
>
>
>






>








|







 







|







 







|







 







<







 







|







 







>







 







>
>
>
>
>
>
>
|
>







 







>
|
|
|
|
>







 







|
|







 







<
|
<







 







|







 







<
<







 







>

|
|
|

<







 







|











|



>










>
>
>
>







 







>
>
>
>
>







>
>
>
>
>







 







|
<
>
|
<
<
<
<
<
<
<
<
<
<
|
<
<
|
|
<
<
<
>
>

<
<
<
<






>



>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
|
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
<

|








<


>
|
<
<
<
<




<
<
<
<
<
<
<
<
<
<
<
<
<
>
|
<
<
<
>
>



>
>
>
>


>



|
|




>
|
>
>
>







 







<







 







|


>
>
>
>




|












|
|
>
>
>







 







|

>
>
>







 







|
>
>
>







 







>







 







>
>
>
>







 







|
>

|
|
<

<







 







|
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
>
|
<
<







 







>
>
>
>
>
>
>
>
>
>
>
>












<

|

<
<
<
<
>
|

>







 







>
>
>











>
>
>
>





>







 







>
>
>

>







 







|
|
|







 







|







 







>


>



|

>









>
>
>

<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







>
>
>
>
>
>
>
>
>
>
>






>


>
>
>
>
>
>
>
>
>
>
>
>
>










>







 







>


>
>
>
>
>
>
>
>
>
>





>



>
>
>
>
>
>
>
>
>








>







 







>
>
>
>
>
>
>
>
>
>
>










<
|
|







 







|
|
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
<
<
<







 







|







 







|



|
|
<
>
>
>
>







 







|
>
>







 







>







 







>







>







 







>




>
>







 







|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>







|







 







<



>









|
|
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>

|
|







 







>







 







>







 







|







 







|







 







<







 







|







 







|







 







|







 







<
<
<
<
<
<
<
<
<
<
<
<
<







 







|







 







|













|









|
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









|
|
|

<
>
>







|

|


<
>
>

<
>


<
>
>










|







 







|







 







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>







 







|
|
|
|




|











|

|
<







 







<
|
|
|
|
|
|
|
|







 







|
>
|
|







 







|
>












|







 







|

|
|
|


>
|
<
|
|
|
|
<
|
|
|
|
<
|
|
<
<

<



>

|

|
>
>







 







|







 







|











>
>
>
>
>
>
>
>
>







 







|






>
|
|
|
>







 







|







 







>











>
>
>
>
>
>
>
>
>
>
|
>







 







|







 







|
>
>
>
>
>
>







 







>
>
>





>
>
>







|


|
>



|





|
>
|
|
|
|
|
|
>







 







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
>
|
<
<







 







>
>
>
>
>
>
>
>
>
>
>
>












<

|

<
<
<
<
>
|

>







 







|







 







|







1
2
3
4
5
6
7
8
9
10
...
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
...
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
...
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
...
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
...
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
....
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
....
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
....
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
....
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
....
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478


8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
....
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
....
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
....
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
....
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
....
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
.....
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
.....
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
.....
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
.....
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
.....
12562
12563
12564
12565
12566
12567
12568

12569
12570
12571
12572
12573
12574
12575
12576
.....
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
.....
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
.....
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
.....
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
.....
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
.....
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802

15803

15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
.....
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
.....
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
.....
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
.....
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
.....
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285

17286
17287
17288
17289
17290
17291
17292
.....
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
.....
24355
24356
24357
24358
24359
24360
24361
24362

24363
24364
24365

24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389

24390
24391
24392
24393
24394
24395
24396
.....
25022
25023
25024
25025
25026
25027
25028

25029
25030
25031
25032
25033
25034
25035
.....
25055
25056
25057
25058
25059
25060
25061
25062

25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
.....
25152
25153
25154
25155
25156
25157
25158

25159
25160
25161
25162
25163
25164
25165
.....
25170
25171
25172
25173
25174
25175
25176

25177
25178


25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
.....
25286
25287
25288
25289
25290
25291
25292

25293



25294
25295
25296
25297
25298
25299
25300
.....
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
.....
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
.....
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
.....
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
.....
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
.....
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
.....
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
.....
47572
47573
47574
47575
47576
47577
47578
47579
47580
47581
47582
47583
47584
47585
47586
47587
47588
47589
47590
47591
47592
47593
47594
47595
47596
47597
47598
47599
.....
58717
58718
58719
58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740
58741
58742
58743
58744
58745
58746
58747
58748
58749
58750
58751
58752
58753
58754
58755
58756
58757
58758
.....
62201
62202
62203
62204
62205
62206
62207
62208
62209
62210
62211
62212

62213
62214
62215
62216
62217
62218
62219
62220
62221
62222
.....
62883
62884
62885
62886
62887
62888
62889
62890
62891
62892
62893
62894
62895
62896
62897
62898
62899
62900
62901
62902
.....
63274
63275
63276
63277
63278
63279
63280

63281
63282
63283
63284
63285
63286
63287
63288
63289
63290
63291
63292
63293
63294
63295
63296
63297
63298
63299
63300
63301
.....
63309
63310
63311
63312
63313
63314
63315
63316

63317
63318
63319
63320
63321
63322
63323

63324
63325
63326



63327
63328
63329
63330
63331
63332
63333
.....
63338
63339
63340
63341
63342
63343
63344
63345
63346
63347
63348
63349
63350
63351
63352
.....
63354
63355
63356
63357
63358
63359
63360

63361
63362
63363
63364
63365
63366
63367
63368
63369
63370
63371
63372
63373
63374
63375
63376
63377
63378
63379

63380
63381



63382
63383
63384
63385
63386

63387

63388
63389
63390
63391
63392

63393
63394
63395
63396

63397
63398
63399
63400

63401
63402
63403
63404
63405
63406
63407



63408

63409
63410
63411
63412
63413
63414
63415
63416
63417
63418
63419
63420
63421
63422
63423
63424
63425
63426
63427
63428
63429
63430
63431
63432
63433

63434
63435

63436
63437
63438
63439
63440
63441
63442
63443
63444

63445
63446
63447
63448
63449
63450
63451
63452
63453
63454
63455
63456
63457
63458
63459
63460
63461
63462
63463
63464
63465
63466
63467
63468
63469
63470
63471
63472
63473
63474
63475
63476
63477
63478
63479
63480
63481
63482
63483
63484
63485
63486
63487
63488
63489
63490
.....
63505
63506
63507
63508
63509
63510
63511
63512
63513
63514
63515
63516
63517
63518

63519
63520
63521
63522
63523
63524
63525
63526
63527
63528
63529
63530
63531
63532
63533
63534


63535
63536
63537
63538
63539

63540
63541
63542
63543
63544
63545
63546
.....
63938
63939
63940
63941
63942
63943
63944
63945
63946
63947
63948
63949
63950
63951
63952
63953
63954
63955
63956
63957
63958
63959
63960
63961
63962
63963
63964
63965
63966
63967
63968
63969
63970
63971
.....
64093
64094
64095
64096
64097
64098
64099
64100
64101
64102
64103
64104
64105
64106
64107
64108
.....
66137
66138
66139
66140
66141
66142
66143

66144
66145
66146
66147
66148
66149
66150
.....
66815
66816
66817
66818
66819
66820
66821
66822
66823
66824
66825
66826
66827
66828
66829
66830
66831
66832
66833
66834
66835
66836
66837
66838
66839
66840
66841
66842
.....
66870
66871
66872
66873
66874
66875
66876
66877
66878
66879
66880
66881
66882
66883
66884
66885
66886
66887
66888
66889
66890
66891
66892
66893
66894
66895
66896
66897
66898
66899
66900
66901
66902
66903
66904
66905
66906
66907
66908
66909
66910
66911
66912
66913
66914
.....
66988
66989
66990
66991
66992
66993
66994
66995
66996
66997
66998
66999
67000
67001
67002
67003
67004
67005
67006
67007
67008
67009
67010
67011
67012
67013
67014
67015
.....
71912
71913
71914
71915
71916
71917
71918
71919
71920
71921
71922
71923
71924
71925
71926
.....
73626
73627
73628
73629
73630
73631
73632
73633
73634
73635







73636
73637
73638
73639
73640
73641
73642
73643
73644
73645
73646
73647
73648
73649
73650
73651
73652
73653
73654
73655
73656
73657
73658
73659
73660
73661
73662
73663
73664
73665
73666
73667
73668
73669
73670
73671
73672
73673
73674
73675

73676
73677
73678
73679
73680
73681
73682
73683
73684
73685
73686
73687
73688
73689
73690
73691
73692
.....
75713
75714
75715
75716
75717
75718
75719
75720
75721
75722
75723
75724
75725
75726
75727
75728
75729
75730
.....
75749
75750
75751
75752
75753
75754
75755
75756
75757
75758
75759
75760
75761
75762
75763
75764
75765
75766
75767
75768
75769
75770
75771
.....
75780
75781
75782
75783
75784
75785
75786
75787
75788
75789
75790
75791
75792
75793
75794
75795
.....
77456
77457
77458
77459
77460
77461
77462
77463
77464
77465
77466
77467
77468
77469
77470
77471
77472
77473
77474
77475
77476
77477
77478
77479
77480
77481
.....
77493
77494
77495
77496
77497
77498
77499



77500

77501
77502
77503
77504
77505
77506
77507

77508
77509
77510
77511
77512
77513
77514
.....
77553
77554
77555
77556
77557
77558
77559
77560
77561
77562
77563
77564
77565
77566
77567
77568
77569
.....
77576
77577
77578
77579
77580
77581
77582



77583
77584
77585

77586
77587
77588
77589
77590
77591
77592
77593
77594
.....
78557
78558
78559
78560
78561
78562
78563


78564
78565
78566
78567
78568
78569
78570
.....
78571
78572
78573
78574
78575
78576
78577

78578
78579
78580
78581
78582
78583
78584
.....
78931
78932
78933
78934
78935
78936
78937

78938
78939
78940
78941
78942
78943
78944
.....
79165
79166
79167
79168
79169
79170
79171
79172
79173
79174
79175
79176
79177
79178
79179
.....
79652
79653
79654
79655
79656
79657
79658

79659

79660
79661
79662
79663
79664
79665
79666
.....
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
.....
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
.....
80198
80199
80200
80201
80202
80203
80204

80205
80206
80207
80208
80209
80210
80211
.....
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
.....
82357
82358
82359
82360
82361
82362
82363
82364
82365
82366
82367
82368
82369
82370
82371
.....
82373
82374
82375
82376
82377
82378
82379

82380
82381
82382
82383
82384
82385
82386
82387
82388
82389
82390
82391
82392
82393
82394
82395
82396
82397
82398
82399
82400
82401
82402
82403
82404
82405
82406
82407
82408
82409
.....
82412
82413
82414
82415
82416
82417
82418
82419
82420
82421
82422
82423
82424
82425
82426
.....
82504
82505
82506
82507
82508
82509
82510
82511
82512
82513
82514
82515
82516
82517
82518
82519
82520
82521
82522
.....
82626
82627
82628
82629
82630
82631
82632
82633
82634
82635
82636
82637
82638
82639
82640
82641
82642
82643
82644
82645
82646
82647
82648
82649
82650
82651
82652
82653
82654
82655
82656
82657
82658
82659
82660
82661
82662
82663
82664
82665
82666

82667
82668
82669
82670
82671
82672
82673
.....
82690
82691
82692
82693
82694
82695
82696





82697
82698

82699
82700
82701
82702
82703
82704
82705
82706
.....
83080
83081
83082
83083
83084
83085
83086
83087
83088
83089
83090
83091
83092
83093
83094
.....
83202
83203
83204
83205
83206
83207
83208

83209
83210
83211
83212
83213
83214
83215
.....
83843
83844
83845
83846
83847
83848
83849
83850
83851
83852
83853
83854
83855
83856
83857
.....
84784
84785
84786
84787
84788
84789
84790
84791
84792
84793
84794
84795
84796
84797
84798
.....
85020
85021
85022
85023
85024
85025
85026

85027
85028
85029
85030
85031
85032
85033
.....
85083
85084
85085
85086
85087
85088
85089

85090
85091
85092
85093
85094
85095
85096
85097
85098
85099
.....
85116
85117
85118
85119
85120
85121
85122
85123
85124

85125

85126
85127
85128
85129
85130
85131
85132
85133
85134
85135
85136
85137
85138
85139
85140

85141
85142
85143
85144
85145
85146
85147
85148
85149
85150
.....
85181
85182
85183
85184
85185
85186
85187
85188
85189
85190
85191
85192
85193
85194
85195
.....
85203
85204
85205
85206
85207
85208
85209
85210
85211
85212
85213
85214
85215
85216
85217
.....
85263
85264
85265
85266
85267
85268
85269
85270
85271

85272
85273
85274
85275
85276
85277
85278
.....
85325
85326
85327
85328
85329
85330
85331
85332
85333
85334
85335

85336
85337
85338
85339
85340
85341
85342
85343
85344
85345
85346
85347
85348
85349
.....
85352
85353
85354
85355
85356
85357
85358
85359
85360
85361
85362
85363
85364
85365
85366
85367
85368
85369
85370
85371
85372
85373
85374
85375
85376
85377
85378
85379
85380
85381
85382
85383
85384
85385
85386
85387
85388

85389
85390
85391
85392
85393
85394

85395
85396
85397
85398
85399
85400
85401
.....
88924
88925
88926
88927
88928
88929
88930


88931
88932
88933
88934
88935
88936
88937
.....
91418
91419
91420
91421
91422
91423
91424
91425
91426
91427
91428
91429
91430

91431
91432
91433
91434
91435
91436
91437
91438
91439
91440
91441
91442
91443
91444
91445
91446
91447
91448
.....
91869
91870
91871
91872
91873
91874
91875
91876
91877
91878
91879
91880
91881
91882

91883
91884
91885
91886
91887
91888
91889
91890
91891
91892

91893
91894
91895
91896
91897
91898
91899
91900
91901
91902
91903
91904
91905
91906
91907
91908
91909
91910
91911
91912
91913
91914
91915
91916
91917
.....
91968
91969
91970
91971
91972
91973
91974
91975
91976
91977
91978
91979
91980
91981
91982
.....
94077
94078
94079
94080
94081
94082
94083
94084
94085
94086
94087
94088
94089
94090
94091
94092
94093
94094
94095
.....
94129
94130
94131
94132
94133
94134
94135
94136
94137
94138
94139
94140
94141
94142
94143
94144
94145
94146
94147
94148
94149
94150
94151
94152
94153
94154
94155
94156
94157
94158
.....
94462
94463
94464
94465
94466
94467
94468
94469
94470
94471
94472
94473
94474
94475
94476
94477
94478
94479

94480
94481
94482
94483
94484
94485
94486
94487
94488
94489
94490
94491
94492
94493
94494
94495
94496
94497
94498
94499

94500
94501
94502
94503
94504
94505
94506
94507
94508
94509
.....
94518
94519
94520
94521
94522
94523
94524


94525









94526
94527
94528
94529
94530
94531
94532
94533
.....
94573
94574
94575
94576
94577
94578
94579
94580
94581
94582
94583
94584
94585
94586
94587
.....
94645
94646
94647
94648
94649
94650
94651
94652
94653
94654
94655
94656
94657
94658
94659
.....
97189
97190
97191
97192
97193
97194
97195
97196
97197
97198
97199
97200
97201
97202
97203
97204
97205
97206
97207
97208
.....
98014
98015
98016
98017
98018
98019
98020
98021
98022
98023
98024
98025
98026
98027
98028
.....
98428
98429
98430
98431
98432
98433
98434
98435
98436
98437
98438
98439
98440
98441
98442
......
104593
104594
104595
104596
104597
104598
104599




104600
104601
104602
104603
104604
104605
104606
104607
104608
......
104674
104675
104676
104677
104678
104679
104680
104681
104682
104683
104684

104685
104686
104687
104688
104689
104690
104691
104692
104693
104694
104695
104696
104697
104698
......
104755
104756
104757
104758
104759
104760
104761
104762
104763
104764
104765
104766
104767
104768
104769
104770
104771
104772
104773
104774
104775
104776
104777
104778
104779
104780
......
104789
104790
104791
104792
104793
104794
104795
104796
104797
104798
104799
104800
104801
104802
104803
104804
104805
104806
104807
104808
104809
......
104949
104950
104951
104952
104953
104954
104955
104956
104957
104958
104959
104960
104961
104962
104963
104964
104965
104966
......
106749
106750
106751
106752
106753
106754
106755
106756
106757
106758
106759
106760
106761
106762
106763
106764
106765
......
109907
109908
109909
109910
109911
109912
109913
109914
109915
109916
109917
109918
109919
109920
109921
......
109923
109924
109925
109926
109927
109928
109929
109930
109931
109932
109933
109934
109935
109936
109937
109938
109939
109940
109941
109942
109943
109944
109945
109946
109947
109948
109949
109950
109951
109952
109953
109954
109955
......
109959
109960
109961
109962
109963
109964
109965
109966
109967
109968
109969
109970
109971
109972
109973
109974
109975
109976
109977
109978
109979
109980
109981
109982
109983
109984
109985
109986
109987
109988
109989
109990
109991
109992




109993
109994
109995
109996
109997
109998
109999
110000
110001
110002
110003
110004
110005
110006
110007
110008
110009
110010
110011
110012
110013
110014
110015
110016
110017
110018
110019
110020
110021
110022
110023
110024
110025
110026
110027
110028
110029
110030
110031
110032
......
110427
110428
110429
110430
110431
110432
110433
110434
110435
110436
110437
110438
110439
110440
110441
......
110459
110460
110461
110462
110463
110464
110465
110466
110467
110468
110469
110470
110471
110472
110473
......
111244
111245
111246
111247
111248
111249
111250

111251
111252
111253
111254
111255
111256
111257
......
112907
112908
112909
112910
112911
112912
112913
112914
112915
112916
112917
112918
112919
112920
112921
......
116421
116422
116423
116424
116425
116426
116427
116428
116429
116430
116431
116432
116433
116434
116435
......
119950
119951
119952
119953
119954
119955
119956
119957
119958
119959
119960
119961
119962
119963
119964
119965
119966
119967
119968
119969
119970
119971
119972
......
120002
120003
120004
120005
120006
120007
120008
120009
120010
120011
120012
120013
120014
120015
120016
120017
120018
120019
120020
120021
......
120057
120058
120059
120060
120061
120062
120063
120064
120065
120066
120067
120068
120069
120070
120071
120072
......
120345
120346
120347
120348
120349
120350
120351

120352

120353
120354
120355
120356
120357
120358
120359
......
121424
121425
121426
121427
121428
121429
121430
121431
121432
121433
121434
121435
121436
121437
121438
......
121513
121514
121515
121516
121517
121518
121519


121520
121521
121522
121523
121524
121525
121526
......
122870
122871
122872
122873
122874
122875
122876
122877
122878
122879
122880
122881
122882

122883
122884
122885
122886
122887
122888
122889
......
122904
122905
122906
122907
122908
122909
122910
122911
122912
122913
122914
122915
122916
122917
122918
122919
122920
122921
122922
122923
122924
122925
122926
122927
122928
122929
122930
122931
122932
122933
122934
122935
122936
122937
122938
122939
122940
122941
122942
122943
122944
122945
122946
122947
122948
......
123094
123095
123096
123097
123098
123099
123100
123101
123102
123103
123104
123105
123106
123107
123108
123109
123110
123111
123112
123113
123114
123115
123116
123117
123118
123119
123120
123121
123122
123123
123124
......
123163
123164
123165
123166
123167
123168
123169
123170

123171
123172










123173


123174
123175



123176
123177
123178




123179
123180
123181
123182
123183
123184
123185
123186
123187
123188
123189
123190
123191
123192
123193
123194
123195
123196
123197
123198
123199
123200
123201
123202

123203
123204
123205
123206
123207
123208
123209
123210
123211
123212
123213
123214
123215
123216
123217
123218
123219
123220
123221
123222
123223
123224
123225
123226
123227
123228
123229
123230
123231
123232
123233
123234
123235
123236
123237
123238
123239
123240

123241
123242
123243
123244
123245
123246
123247
123248
123249
123250

123251
123252
123253
123254




123255
123256
123257
123258













123259
123260



123261
123262
123263
123264
123265
123266
123267
123268
123269
123270
123271
123272
123273
123274
123275
123276
123277
123278
123279
123280
123281
123282
123283
123284
123285
123286
123287
123288
123289
123290
123291
123292
123293
......
123404
123405
123406
123407
123408
123409
123410

123411
123412
123413
123414
123415
123416
123417
......
123439
123440
123441
123442
123443
123444
123445
123446
123447
123448
123449
123450
123451
123452
123453
123454
123455
123456
123457
123458
123459
123460
123461
123462
123463
123464
123465
123466
123467
123468
123469
123470
123471
123472
123473
123474
123475
123476
123477
123478
123479
123480
123481
......
123489
123490
123491
123492
123493
123494
123495
123496
123497
123498
123499
123500
123501
123502
123503
123504
123505
123506
123507
......
127413
127414
127415
127416
127417
127418
127419
127420
127421
127422
127423
127424
127425
127426
127427
127428
127429
127430
......
128780
128781
128782
128783
128784
128785
128786
128787
128788
128789
128790
128791
128792
128793
128794
......
128810
128811
128812
128813
128814
128815
128816
128817
128818
128819
128820
128821
128822
128823
128824
128825
128826
128827
......
129056
129057
129058
129059
129060
129061
129062
129063
129064
129065
129066
129067

129068

129069
129070
129071
129072
129073
129074
129075
......
134264
134265
134266
134267
134268
134269
134270
134271
134272
134273
134274
134275
134276
134277
134278
134279
......
134329
134330
134331
134332
134333
134334
134335
134336
134337
134338
134339
134340
134341
134342
134343
134344
134345
134346
134347
134348
134349
134350
134351
134352
134353
134354
134355
......
135790
135791
135792
135793
135794
135795
135796
135797
135798
135799
135800
135801
135802
135803
135804
135805
135806
135807
135808
135809
135810
135811
135812
135813
135814
135815
135816
135817
135818
135819
135820
135821
135822
135823
135824
135825
135826
135827
135828
......
135830
135831
135832
135833
135834
135835
135836
135837

135838








135839







135840
135841


135842
135843
135844
135845
135846
135847
135848
......
135960
135961
135962
135963
135964
135965
135966
135967
135968
135969
135970
135971
135972
135973
135974
135975
135976
135977
135978
135979
135980
135981
135982
135983
135984
135985
135986
135987
135988
135989
135990

135991
135992
135993




135994
135995
135996
135997
135998
135999
136000
136001
136002
136003
136004
......
138844
138845
138846
138847
138848
138849
138850
138851
138852
138853
138854
138855
138856
138857
138858
138859
138860
138861
138862
138863
138864
138865
138866
138867
138868
138869
138870
138871
138872
138873
138874
138875
138876
138877
138878
138879
138880
138881
......
138919
138920
138921
138922
138923
138924
138925
138926
138927
138928
138929
138930
138931
138932
138933
138934
138935
138936
138937
......
146048
146049
146050
146051
146052
146053
146054
146055
146056
146057
146058
146059
146060
146061
146062
146063
146064
......
148107
148108
148109
148110
148111
148112
148113
148114
148115
148116
148117
148118
148119
148120
148121
......
163011
163012
163013
163014
163015
163016
163017
163018
163019
163020
163021
163022
163023
163024
163025
163026
163027
163028
163029
163030
163031
163032
163033
163034
163035
163036
163037
163038
163039
163040

163041
163042
163043
163044
163045
163046
163047
......
163262
163263
163264
163265
163266
163267
163268
163269
163270
163271
163272
163273
163274
163275
163276
163277
163278
163279
163280
163281
163282
163283
163284
163285
163286
163287
163288
163289
163290
163291
163292
163293
163294
163295
163296
163297
163298
163299
163300
163301
163302
163303
163304
163305
163306
163307
163308
163309
163310
163311
163312
163313
163314
163315
163316
163317
163318
163319
163320
163321
163322
163323
163324
163325
163326
163327
163328
163329
163330
163331
163332
163333
163334
163335
163336
163337
163338
163339
163340
163341
163342
163343
163344
163345
163346
163347
163348
163349
163350
163351
163352
163353
163354
163355
163356
163357
163358
163359
163360
163361
163362
163363
163364
163365
163366
163367
163368
163369
163370
163371
163372
163373
163374
163375
163376
163377
163378
163379
163380
163381
163382
163383
163384
163385
163386
......
163387
163388
163389
163390
163391
163392
163393
163394
163395
163396
163397
163398
163399
163400
163401
163402
163403
163404
163405
163406
163407
163408
163409
163410
163411
163412
163413
163414
163415
163416
163417
163418
163419
163420
163421
163422
163423
163424
163425
163426
163427
163428
163429
163430
163431
163432
163433
163434
163435
163436
163437
163438
163439
163440
......
163508
163509
163510
163511
163512
163513
163514
163515
163516
163517
163518
163519
163520
163521
163522
163523
163524
163525
163526
163527
163528
163529
163530
163531
163532
163533
163534
163535

163536
163537
163538
163539
163540
163541
163542
163543
163544
......
163546
163547
163548
163549
163550
163551
163552
163553
163554
163555
163556
163557
163558
163559
163560

163561
163562
163563
163564
163565
163566
163567
163568
163569
163570
163571
163572
163573
163574
163575
163576
163577
163578
163579
163580
163581
163582
163583
163584
163585
163586
163587
163588
163589
163590
163591



163592
163593
163594
163595
163596
163597
163598
......
163636
163637
163638
163639
163640
163641
163642
163643
163644
163645
163646
163647
163648
163649
163650
......
163770
163771
163772
163773
163774
163775
163776
163777
163778
163779
163780
163781
163782

163783
163784
163785
163786
163787
163788
163789
163790
163791
163792
163793
......
163830
163831
163832
163833
163834
163835
163836
163837
163838
163839
163840
163841
163842
163843
163844
163845
163846
......
163870
163871
163872
163873
163874
163875
163876
163877
163878
163879
163880
163881
163882
163883
163884
......
163886
163887
163888
163889
163890
163891
163892
163893
163894
163895
163896
163897
163898
163899
163900
163901
163902
163903
163904
163905
163906
163907
163908
......
163927
163928
163929
163930
163931
163932
163933
163934
163935
163936
163937
163938
163939
163940
163941
163942
163943
163944
163945
163946
163947
......
163956
163957
163958
163959
163960
163961
163962
163963
163964
163965
163966
163967
163968
163969
163970
163971
163972
163973
163974
163975
163976
163977
163978
163979
163980
163981
163982
163983
163984
163985
163986
163987
163988
163989
163990
163991
163992
163993
......
164006
164007
164008
164009
164010
164011
164012

164013
164014
164015
164016
164017
164018
164019
164020
164021
164022
164023
164024
164025
164026
164027
164028
164029
164030
164031
164032
164033
164034
164035
164036
164037
164038
164039
164040
164041
164042
164043
164044
164045
164046
164047
164048
164049
164050
164051
164052
164053
164054
164055
164056
164057
164058
164059
164060
164061
164062
164063
164064
164065
164066
164067
......
164089
164090
164091
164092
164093
164094
164095
164096
164097
164098
164099
164100
164101
164102
164103
......
164130
164131
164132
164133
164134
164135
164136
164137
164138
164139
164140
164141
164142
164143
164144
......
164199
164200
164201
164202
164203
164204
164205
164206
164207
164208
164209
164210
164211
164212
164213
......
164447
164448
164449
164450
164451
164452
164453
164454
164455
164456
164457
164458
164459
164460
164461
......
164506
164507
164508
164509
164510
164511
164512

164513
164514
164515
164516
164517
164518
164519
......
164634
164635
164636
164637
164638
164639
164640
164641
164642
164643
164644
164645
164646
164647
164648
......
164667
164668
164669
164670
164671
164672
164673
164674
164675
164676
164677
164678
164679
164680
164681
......
164682
164683
164684
164685
164686
164687
164688
164689
164690
164691
164692
164693
164694
164695
164696
......
164700
164701
164702
164703
164704
164705
164706













164707
164708
164709
164710
164711
164712
164713
......
164779
164780
164781
164782
164783
164784
164785
164786
164787
164788
164789
164790
164791
164792
164793
......
164797
164798
164799
164800
164801
164802
164803
164804
164805
164806
164807
164808
164809
164810
164811
164812
164813
164814
164815
164816
164817
164818
164819
164820
164821
164822
164823
164824
164825
164826
164827
164828
164829
164830
164831

164832
164833
164834
164835
164836
164837
164838
164839
164840
164841
164842
164843
164844
164845
164846
164847
164848
164849
164850
164851
164852
164853
164854
164855
164856
164857
164858
164859
164860

164861
164862
164863
164864
164865
164866
164867
164868
164869
164870
164871
164872
164873
164874

164875
164876
164877

164878
164879
164880

164881
164882
164883
164884
164885
164886
164887
164888
164889
164890
164891
164892
164893
164894
164895
164896
164897
164898
164899
164900
......
164921
164922
164923
164924
164925
164926
164927
164928
164929
164930
164931
164932
164933
164934
164935
......
165977
165978
165979
165980
165981
165982
165983
165984
165985
165986
165987
165988
165989
165990
165991
......
166066
166067
166068
166069
166070
166071
166072
166073
166074
166075
166076
166077
166078
166079
166080
166081
166082
166083
166084
166085
166086
166087
166088
166089
166090
166091
166092
166093
166094
166095
166096
166097
166098
166099
166100
......
166108
166109
166110
166111
166112
166113
166114
166115
166116
166117
166118
166119
166120
166121
166122
......
166169
166170
166171
166172
166173
166174
166175
166176
166177
166178
166179
166180
166181
166182
166183
166184
166185
166186
166187
166188
166189
166190
166191
166192
166193
166194
166195
166196
166197
166198

166199
166200
166201
166202
166203
166204
166205
......
166229
166230
166231
166232
166233
166234
166235

166236
166237
166238
166239
166240
166241
166242
166243
166244
166245
166246
166247
166248
166249
166250
......
166374
166375
166376
166377
166378
166379
166380
166381
166382
166383
166384
166385
166386
166387
166388
166389
166390
166391
......
166450
166451
166452
166453
166454
166455
166456
166457
166458
166459
166460
166461
166462
166463
166464
166465
166466
166467
166468
166469
166470
166471
166472
166473
166474
166475
166476
166477
166478
......
167172
167173
167174
167175
167176
167177
167178
167179
167180
167181
167182
167183
167184
167185
167186
167187

167188
167189
167190
167191

167192
167193
167194
167195

167196
167197


167198

167199
167200
167201
167202
167203
167204
167205
167206
167207
167208
167209
167210
167211
167212
167213
167214
167215
......
170409
170410
170411
170412
170413
170414
170415
170416
170417
170418
170419
170420
170421
170422
170423
......
170484
170485
170486
170487
170488
170489
170490
170491
170492
170493
170494
170495
170496
170497
170498
170499
170500
170501
170502
170503
170504
170505
170506
170507
170508
170509
170510
170511
170512
170513
170514
170515
170516
170517
170518
......
170685
170686
170687
170688
170689
170690
170691
170692
170693
170694
170695
170696
170697
170698
170699
170700
170701
170702
170703
170704
170705
170706
170707
170708
170709
170710
......
170869
170870
170871
170872
170873
170874
170875
170876
170877
170878
170879
170880
170881
170882
170883
......
171580
171581
171582
171583
171584
171585
171586
171587
171588
171589
171590
171591
171592
171593
171594
171595
171596
171597
171598
171599
171600
171601
171602
171603
171604
171605
171606
171607
171608
171609
171610
171611
171612
171613
171614
171615
171616
171617
......
176566
176567
176568
176569
176570
176571
176572
176573
176574
176575
176576
176577
176578
176579
176580
......
177033
177034
177035
177036
177037
177038
177039
177040
177041
177042
177043
177044
177045
177046
177047
177048
177049
177050
177051
177052
177053
......
177585
177586
177587
177588
177589
177590
177591
177592
177593
177594
177595
177596
177597
177598
177599
177600
177601
177602
177603
177604
177605
177606
177607
177608
177609
177610
177611
177612
177613
177614
177615
177616
177617
177618
177619
177620
177621
177622
177623
177624
177625
177626
177627
177628
177629
177630
177631
177632
177633
177634
177635
177636
177637
177638
177639
......
178217
178218
178219
178220
178221
178222
178223
178224
178225
178226
178227
178228
178229
178230
178231
......
182268
182269
182270
182271
182272
182273
182274
182275
182276
182277
182278
182279
182280
182281
182282
182283
182284
182285
182286
182287
182288
182289
182290
182291
182292
182293
182294
182295
182296
182297
182298
182299
182300
182301
182302
182303
182304
182305
182306
......
182308
182309
182310
182311
182312
182313
182314
182315

182316








182317







182318
182319


182320
182321
182322
182323
182324
182325
182326
......
182394
182395
182396
182397
182398
182399
182400
182401
182402
182403
182404
182405
182406
182407
182408
182409
182410
182411
182412
182413
182414
182415
182416
182417
182418
182419
182420
182421
182422
182423
182424

182425
182426
182427




182428
182429
182430
182431
182432
182433
182434
182435
182436
182437
182438
......
186763
186764
186765
186766
186767
186768
186769
186770
186771
186772
186773
186774
186775
186776
186777
......
197504
197505
197506
197507
197508
197509
197510
197511
197512
197513
197514
197515
197516
197517
197518
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.17.0.  By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
................................................................................

/* What version of GCC is being used.  0 means GCC is not being used */
#ifdef __GNUC__
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif

/* What version of CLANG is being used.  0 means CLANG is not being used */
#if defined(__clang__) && !defined(_WIN32)
# define CLANG_VERSION \
            (__clang_major__*1000000+__clang_minor__*1000+__clang_patchlevel__)
#else
# define CLANG_VERSION 0
#endif

/* Needed for various definitions... */
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
................................................................................
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.17.0"
#define SQLITE_VERSION_NUMBER 3017000
#define SQLITE_SOURCE_ID      "2017-02-07 13:51:48 a136609c98ed3cc673c5a3c2578d49db3f2518d1"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
................................................................................
** ^The sqlite3_int64 and sqlite_int64 types can store integer values
** between -9223372036854775808 and +9223372036854775807 inclusive.  ^The
** sqlite3_uint64 and sqlite_uint64 types can store integer values 
** between 0 and +18446744073709551615 inclusive.
*/
#ifdef SQLITE_INT64_TYPE
  typedef SQLITE_INT64_TYPE sqlite_int64;
# ifdef SQLITE_UINT64_TYPE
    typedef SQLITE_UINT64_TYPE sqlite_uint64;
# else  
    typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
# endif
#elif defined(_MSC_VER) || defined(__BORLANDC__)
  typedef __int64 sqlite_int64;
  typedef unsigned __int64 sqlite_uint64;
#else
  typedef long long int sqlite_int64;
  typedef unsigned long long int sqlite_uint64;
#endif
................................................................................
** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
** information is written to disk in the same order as calls
** to xWrite().  The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
** after reboot following a crash or power loss, the only bytes in a
** file that were written at the application level might have changed
** and that adjacent bytes, even bytes within the same sector are
** guaranteed to be unchanged.  The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
** flag indicates that a file cannot be deleted when open.  The
** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
** read-only media and cannot be changed even by processes with
** elevated privileges.
*/
#define SQLITE_IOCAP_ATOMIC                 0x00000001
#define SQLITE_IOCAP_ATOMIC512              0x00000002
#define SQLITE_IOCAP_ATOMIC1K               0x00000004
................................................................................
** <li> [SQLITE_IOCAP_ATOMIC4K]
** <li> [SQLITE_IOCAP_ATOMIC8K]
** <li> [SQLITE_IOCAP_ATOMIC16K]
** <li> [SQLITE_IOCAP_ATOMIC32K]
** <li> [SQLITE_IOCAP_ATOMIC64K]
** <li> [SQLITE_IOCAP_SAFE_APPEND]
** <li> [SQLITE_IOCAP_SEQUENTIAL]
** <li> [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN]
** <li> [SQLITE_IOCAP_POWERSAFE_OVERWRITE]
** <li> [SQLITE_IOCAP_IMMUTABLE]
** </ul>
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and
** are aligned to an address which is an integer multiple of
** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
................................................................................
** ^In the case of an update, this is the [rowid] after the update takes place.
**
** ^(The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).)^
** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
**
** ^In the current implementation, the update hook
** is not invoked when conflicting rows are deleted because of an
** [ON CONFLICT | ON CONFLICT REPLACE] clause.  ^Nor is the update hook
** invoked when rows are deleted using the [truncate optimization].
** The exceptions defined in this paragraph might change in a future
** release of SQLite.
**
** The update hook implementation must not do anything that will modify
** the database connection that invoked the update hook.  Any actions
................................................................................
**         being opened for read/write access)^.
** </ul>
**
** ^Unless it returns SQLITE_MISUSE, this function sets the 
** [database connection] error code and message accessible via 
** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. 
**
** A BLOB referenced by sqlite3_blob_open() may be read using the
** [sqlite3_blob_read()] interface and modified by using
** [sqlite3_blob_write()].  The [BLOB handle] can be moved to a
** different row of the same table using the [sqlite3_blob_reopen()]
** interface.  However, the column, table, or database of a [BLOB handle]
** cannot be changed after the [BLOB handle] is opened.
**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
................................................................................
**
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
**
** See also: [sqlite3_blob_close()],
** [sqlite3_blob_reopen()], [sqlite3_blob_read()],
** [sqlite3_blob_bytes()], [sqlite3_blob_write()].
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
................................................................................
  sqlite3_blob **ppBlob
);

/*
** CAPI3REF: Move a BLOB Handle to a New Row
** METHOD: sqlite3_blob
**
** ^This function is used to move an existing [BLOB handle] so that it points
** to a different row of the same database table. ^The new row is identified
** by the rowid value passed as the second argument. Only the row can be
** changed. ^The database, table and column on which the blob handle is open
** remain the same. Moving an existing [BLOB handle] to a new row is
** faster than closing the existing handle and opening a new one.
**
** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
** it must exist and there must be either a blob or text value stored in
** the nominated column.)^ ^If the new row is not present in the table, or if
** it does not contain a blob or text value, or if another error occurs, an
** SQLite error code is returned and the blob handle is considered aborted.
................................................................................
** CAPI3REF: The pre-update hook.
**
** ^These interfaces are only available if SQLite is compiled using the
** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
**
** ^The [sqlite3_preupdate_hook()] interface registers a callback function
** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
** on a database table.
** ^At most one preupdate hook may be registered at a time on a single
** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
** the previous setting.
** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
** with a NULL pointer as the second parameter.
** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
** the first parameter to callbacks.
**
** ^The preupdate hook only fires for changes to real database tables; the
** preupdate hook is not invoked for changes to [virtual tables] or to
** system tables like sqlite_master or sqlite_stat1.
**
** ^The second parameter to the preupdate callback is a pointer to
** the [database connection] that registered the preupdate hook.
** ^The third parameter to the preupdate callback is one of the constants
** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
** kind of update operation that is about to occur.
** ^(The fourth parameter to the preupdate callback is the name of the
** database within the database connection that is being modified.  This
** will be "main" for the main database or "temp" for TEMP tables or 
** the name given after the AS keyword in the [ATTACH] statement for attached
** databases.)^
** ^The fifth parameter to the preupdate callback is the name of the
** table that is being modified.
**
** For an UPDATE or DELETE operation on a [rowid table], the sixth
** parameter passed to the preupdate callback is the initial [rowid] of the 


** row being modified or deleted. For an INSERT operation on a rowid table,
** or any operation on a WITHOUT ROWID table, the value of the sixth 
** parameter is undefined. For an INSERT or UPDATE on a rowid table the
** seventh parameter is the final rowid value of the row being inserted
** or updated. The value of the seventh parameter passed to the callback
** function is not defined for operations on WITHOUT ROWID tables, or for
** INSERT operations on rowid tables.
**
** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
** provide additional information about a preupdate event. These routines
** may only be called from within a preupdate callback.  Invoking any of
** these routines from outside of a preupdate callback or with a
** [database connection] pointer that is different from the one supplied
................................................................................
**   <li> For each row (primary key) that exists in the to-table but not in 
**     the from-table, an INSERT record is added to the session object.
**
**   <li> For each row (primary key) that exists in the to-table but not in 
**     the from-table, a DELETE record is added to the session object.
**
**   <li> For each row (primary key) that exists in both tables, but features 
**     different non-PK values in each, an UPDATE record is added to the
**     session.  
** </ul>
**
** To clarify, if this function is called and then a changeset constructed
** using [sqlite3session_changeset()], then after applying that changeset to 
** database zFrom the contents of the two compatible tables would be 
** identical.
**
................................................................................
** For each table that is not excluded by the filter callback, this function 
** tests that the target database contains a compatible table. A table is 
** considered compatible if all of the following are true:
**
** <ul>
**   <li> The table has the same name as the name recorded in the 
**        changeset, and
**   <li> The table has at least as many columns as recorded in the 
**        changeset, and
**   <li> The table has primary key columns in the same position as 
**        recorded in the changeset.
** </ul>
**
** If there is no compatible table, it is not an error, but none of the
** changes associated with the table are applied. A warning message is issued
................................................................................
**   original row values stored in the changeset. If it does, and the values 
**   stored in all non-primary key columns also match the values stored in 
**   the changeset the row is deleted from the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the non-primary key fields contains a value different from the original
**   row value stored in the changeset, the conflict-handler function is
**   invoked with [SQLITE_CHANGESET_DATA] as the second argument. If the
**   database table has more columns than are recorded in the changeset,
**   only the values of those non-primary key fields are compared against
**   the current database contents - any trailing database table columns
**   are ignored.
**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.
**
**   If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
**   (which can only happen if a foreign key constraint is violated), the
................................................................................
**   conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
**   passed as the second argument. This includes the case where the DELETE
**   operation is attempted because an earlier call to the conflict handler
**   function returned [SQLITE_CHANGESET_REPLACE].
**
** <dt>INSERT Changes<dd>
**   For each INSERT change, an attempt is made to insert the new row into
**   the database. If the changeset row contains fewer fields than the
**   database table, the trailing fields are populated with their default
**   values.
**
**   If the attempt to insert the row fails because the database already 
**   contains a row with the same primary key values, the conflict handler
**   function is invoked with the second argument set to 
**   [SQLITE_CHANGESET_CONFLICT].
**
**   If the attempt to insert the row fails because of some other constraint
................................................................................
**   an earlier call to the conflict handler function returned 
**   [SQLITE_CHANGESET_REPLACE].
**
** <dt>UPDATE Changes<dd>
**   For each UPDATE change, this function checks if the target database 
**   contains a row with the same primary key value (or values) as the 
**   original row values stored in the changeset. If it does, and the values 
**   stored in all modified non-primary key columns also match the values
**   stored in the changeset the row is updated within the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the modified non-primary key fields contains a value different from an
**   original row value stored in the changeset, the conflict-handler function
**   is invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
**   UPDATE changes only contain values for non-primary key fields that are
**   to be modified, only those fields need to match the original values to
**   avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.
................................................................................
/************** Continuing where we left off in sqliteInt.h ******************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stddef.h>

/*
** Use a macro to replace memcpy() if compiled with SQLITE_INLINE_MEMCPY.
** This allows better measurements of where memcpy() is used when running
** cachegrind.  But this macro version of memcpy() is very slow so it
** should not be used in production.  This is a performance measurement
** hack only.
*/
#ifdef SQLITE_INLINE_MEMCPY
# define memcpy(D,S,N) {char*xxd=(char*)(D);const char*xxs=(const char*)(S);\
                        int xxn=(N);while(xxn-->0)*(xxd++)=*(xxs++);}
#endif

/*
** If compiling for a processor that lacks floating point support,
** substitute integer for floating-point
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite_int64
# define float sqlite_int64
................................................................................
#endif

/*
** The default initial allocation for the pagecache when using separate
** pagecaches for each database connection.  A positive number is the
** number of pages.  A negative number N translations means that a buffer
** of -1024*N bytes is allocated and used for as many pages as it will hold.
**
** The default value of "20" was choosen to minimize the run-time of the
** speedtest1 test program with options: --shrink-memory --reprepare
*/
#ifndef SQLITE_DEFAULT_PCACHE_INITSZ
# define SQLITE_DEFAULT_PCACHE_INITSZ 20
#endif

/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
................................................................................
  int bias,
  int *pRes
);
SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*);
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags);

/* Allowed flags for sqlite3BtreeDelete() and sqlite3BtreeInsert() */
#define BTREE_SAVEPOSITION 0x02  /* Leave cursor pointing at NEXT or PREV */
#define BTREE_AUXDELETE    0x04  /* not the primary delete operation */
#define BTREE_APPEND       0x08  /* Insert is likely an append */

/* An instance of the BtreePayload object describes the content of a single
** entry in either an index or table btree.
**
** Index btrees (used for indexes and also WITHOUT ROWID tables) contain
** an arbitrary key and no data.  These btrees have pKey,nKey set to their
** key and pData,nData,nZero set to zero.
................................................................................
  struct Mem *aMem;       /* First of nMem value in the unpacked pKey */
  u16 nMem;               /* Number of aMem[] value.  Might be zero */
  int nData;              /* Size of pData.  0 if none. */
  int nZero;              /* Extra zero data appended after pData,nData */
};

SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload,
                       int flags, int seekResult);
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
................................................................................
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {
  u8 opcode;          /* What operation to perform */
  signed char p4type; /* One of the P4_xxx constants for p4 */

  u16 p5;             /* Fifth parameter is an unsigned 16-bit integer */
  int p1;             /* First operand */
  int p2;             /* Second parameter (often the jump destination) */
  int p3;             /* The third parameter */
  union p4union {     /* fourth parameter */
    int i;                 /* Integer value if p4type==P4_INT32 */
    void *p;               /* Generic pointer */
    char *z;               /* Pointer to data for string (char array) types */
................................................................................
#endif
SQLITE_PRIVATE VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno);
SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
SQLITE_PRIVATE void sqlite3VdbeChangeOpcode(Vdbe*, u32 addr, u8);
SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1);
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2);
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3);
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u16 P5);
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr);
SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op);
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe*, void *pP4, int p4type);
SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*);
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
................................................................................

#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE   int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*);
SQLITE_PRIVATE   int sqlite3PagerWalSupported(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerWalCallback(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
SQLITE_PRIVATE   int sqlite3PagerCloseWal(Pager *pPager, sqlite3*);
# ifdef SQLITE_DIRECT_OVERFLOW_READ
SQLITE_PRIVATE   int sqlite3PagerUseWal(Pager *pPager, Pgno);
# endif
# ifdef SQLITE_ENABLE_SNAPSHOT
SQLITE_PRIVATE   int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotRecover(Pager *pPager);
# endif
#else
# define sqlite3PagerUseWal(x,y) 0
#endif

#ifdef SQLITE_ENABLE_ZIPVFS
SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
................................................................................
  u8 bBenignMalloc;             /* Do not require OOMs if true */
  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
  u8 mTrace;                    /* zero or more SQLITE_TRACE flags */
  u8 skipBtreeMutex;            /* True if no shared-cache backends */
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Value returned by sqlite3_changes() */
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
  struct sqlite3InitInfo {      /* Information used during initialization */
................................................................................
#define SQLITE_FUNC_COUNT    0x0100 /* Built-in count(*) aggregate */
#define SQLITE_FUNC_COALESCE 0x0200 /* Built-in coalesce() or ifnull() */
#define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */
#define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */
#define SQLITE_FUNC_MINMAX   0x1000 /* True for min() and max() aggregates */
#define SQLITE_FUNC_SLOCHNG  0x2000 /* "Slow Change". Value constant during a
                                    ** single query - might change over time */
#define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */

/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName
................................................................................
                                      ** the OR optimization  */
#define WHERE_GROUPBY          0x0040 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0080 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0100 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0200 /* Support sqlite3WhereIsSorted() */
#define WHERE_SEEK_TABLE       0x0400 /* Do not defer seeks on main table */
#define WHERE_ORDERBY_LIMIT    0x0800 /* ORDERBY+LIMIT on the inner loop */
#define WHERE_SEEK_UNIQ_TABLE  0x1000 /* Do not defer seeks if unique */
                        /*     0x2000    not currently used */
#define WHERE_USE_LIMIT        0x4000 /* Use the LIMIT in cost estimates */
                        /*     0x8000    not currently used */

/* Allowed return values from sqlite3WhereIsDistinct()
*/
#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
................................................................................
**    OPFLAG_FORDELETE    == BTREE_FORDELETE
**    OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION
**    OPFLAG_AUXDELETE    == BTREE_AUXDELETE
*/
#define OPFLAG_NCHANGE       0x01    /* OP_Insert: Set to update db->nChange */
                                     /* Also used in P2 (not P5) of OP_Delete */
#define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
#define OPFLAG_LASTROWID     0x20    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */

#define OPFLAG_ISNOOP        0x40    /* OP_Delete does pre-update-hook only */

#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
#define OPFLAG_FORDELETE     0x08    /* OP_Open should use BTREE_FORDELETE */
#define OPFLAG_P2ISREG       0x10    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */
#define OPFLAG_SAVEPOSITION  0x02    /* OP_Delete/Insert: save cursor pos */
#define OPFLAG_AUXDELETE     0x04    /* OP_Delete: index in a DELETE op */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger.
 *
 * Pointers to instances of struct Trigger are stored in two ways.
................................................................................
SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeAtInit(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8);
#define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
#define SQLITE_ECEL_FACTOR   0x02  /* Factor out constant terms */
#define SQLITE_ECEL_REF      0x04  /* Use ExprList.u.x.iOrderByCol */
................................................................................
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*,int*);
#ifdef SQLITE_ENABLE_NULL_TRIM
SQLITE_PRIVATE   void sqlite3SetMakeRecordP5(Vdbe*,Table*);
#else
# define sqlite3SetMakeRecordP5(A,B)
#endif
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
................................................................................
SQLITE_PRIVATE int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
SQLITE_PRIVATE char sqlite3IndexColumnAffinity(sqlite3*, Index*, int);
#endif

/*
** The interface to the LEMON-generated parser
*/
#ifndef SQLITE_AMALGAMATION
SQLITE_PRIVATE   void *sqlite3ParserAlloc(void*(*)(u64));
SQLITE_PRIVATE   void sqlite3ParserFree(void*, void(*)(void*));
#endif
SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
#ifdef YYTRACKMAXSTACKDEPTH
SQLITE_PRIVATE   int sqlite3ParserStackPeak(void*);
#endif

SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*);
#ifndef SQLITE_OMIT_LOAD_EXTENSION
................................................................................
SQLITE_PRIVATE   FKey *sqlite3FkReferences(Table *);
#else
  #define sqlite3FkActions(a,b,c,d,e,f)
  #define sqlite3FkCheck(a,b,c,d,e,f)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)         0
  #define sqlite3FkRequired(a,b,c,d)    0
  #define sqlite3FkReferences(a)        0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE   void sqlite3FkDelete(sqlite3 *, Table*);
SQLITE_PRIVATE   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
#else
  #define sqlite3FkDelete(a,b)
  #define sqlite3FkLocateIndex(a,b,c,d,e)
................................................................................
** memory.  (The statement journal is also always held entirely in memory
** if journal_mode=MEMORY or if temp_store=MEMORY, regardless of this
** setting.)
*/
#ifndef SQLITE_STMTJRNL_SPILL 
# define SQLITE_STMTJRNL_SPILL (64*1024)
#endif

/*
** The default lookaside-configuration, the format "SZ,N".  SZ is the
** number of bytes in each lookaside slot (should be a multiple of 8)
** and N is the number of slots.  The lookaside-configuration can be
** changed as start-time using sqlite3_config(SQLITE_CONFIG_LOOKASIDE)
** or at run-time for an individual database connection using
** sqlite3_db_config(db, SQLITE_DBCONFIG_LOOKASIDE);
*/
#ifndef SQLITE_DEFAULT_LOOKASIDE
# define SQLITE_DEFAULT_LOOKASIDE 1200,100
#endif


/*
** The following singleton contains the global configuration for
** the SQLite library.
*/
SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
   SQLITE_DEFAULT_MEMSTATUS,  /* bMemstat */
   1,                         /* bCoreMutex */
   SQLITE_THREADSAFE==1,      /* bFullMutex */
   SQLITE_USE_URI,            /* bOpenUri */
   SQLITE_ALLOW_COVERING_INDEX_SCAN,   /* bUseCis */
   0x7ffffffe,                /* mxStrlen */
   0,                         /* neverCorrupt */
   SQLITE_DEFAULT_LOOKASIDE,  /* szLookaside, nLookaside */

   SQLITE_STMTJRNL_SPILL,     /* nStmtSpill */
   {0,0,0,0,0,0,0,0},         /* m */
   {0,0,0,0,0,0,0,0,0},       /* mutex */
   {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */
   (void*)0,                  /* pHeap */
   0,                         /* nHeap */
   0, 0,                      /* mnHeap, mxHeap */
................................................................................
  UnpackedRecord *pUnpacked;      /* Unpacked version of aRecord[] */
  UnpackedRecord *pNewUnpacked;   /* Unpacked version of new.* record */
  int iNewReg;                    /* Register for new.* values */
  i64 iKey1;                      /* First key value passed to hook */
  i64 iKey2;                      /* Second key value passed to hook */
  Mem *aNew;                      /* Array of new.* values */
  Table *pTab;                    /* Schema object being upated */          
  Index *pPk;                     /* PK index if pTab is WITHOUT ROWID */
};

/*
** Function prototypes
*/
SQLITE_PRIVATE void sqlite3VdbeError(Vdbe*, const char *, ...);
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
................................................................................
  sqlite3_mutex_enter(mem0.mutex);
}

/*
** Do a memory allocation with statistics and alarms.  Assume the
** lock is already held.
*/
static void mallocWithAlarm(int n, void **pp){

  void *p;
  int nFull = 0;
  assert( sqlite3_mutex_held(mem0.mutex) );

  sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmThreshold>0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    nFull = sqlite3GlobalConfig.m.xRoundup(n);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
    }
  }
  p = sqlite3GlobalConfig.m.xMalloc(n);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmThreshold>0 ){
    sqlite3MallocAlarm(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(n);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
  }
  *pp = p;

}

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it
** assumes the memory subsystem has already been initialized.
*/
SQLITE_PRIVATE void *sqlite3Malloc(u64 n){
................................................................................
  etByte prefix;           /* Offset into aPrefix[] of the prefix string */
} et_info;

/*
** Allowed values for et_info.flags
*/
#define FLAG_SIGNED  1     /* True if the value to convert is signed */

#define FLAG_STRING  4     /* Allow infinity precision */


/*
** The following table is searched linearly, so it is good to put the
** most frequently used conversion types first.
*/
................................................................................
  {  'G',  0, 1, etGENERIC,    14, 0 },
#endif
  {  'i', 10, 1, etRADIX,      0,  0 },
  {  'n',  0, 0, etSIZE,       0,  0 },
  {  '%',  0, 0, etPERCENT,    0,  0 },
  {  'p', 16, 0, etPOINTER,    0,  1 },

  /* All the rest are undocumented and are for internal use only */

  {  'T',  0, 0, etTOKEN,      0,  0 },
  {  'S',  0, 0, etSRCLIST,    0,  0 },
  {  'r', 10, 1, etORDINAL,    0,  0 },
};

/*
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
** conversions will work.
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
................................................................................
  etByte flag_altform2;      /* True if "!" flag is present */
  etByte flag_zeropad;       /* True if field width constant starts with zero */
  etByte flag_long;          /* True if "l" flag is present */
  etByte flag_longlong;      /* True if the "ll" flag is present */
  etByte done;               /* Loop termination flag */
  etByte xtype = etINVALID;  /* Conversion paradigm */
  u8 bArgList;               /* True for SQLITE_PRINTF_SQLFUNC */

  char prefix;               /* Prefix character.  "+" or "-" or " " or '\0'. */
  sqlite_uint64 longvalue;   /* Value for integer types */
  LONGDOUBLE_TYPE realvalue; /* Value for real types */
  const et_info *infop;      /* Pointer to the appropriate info structure */
  char *zOut;                /* Rendering buffer */
  int nOut;                  /* Size of the rendering buffer */
  char *zExtra = 0;          /* Malloced memory used by some conversion */
................................................................................
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
#endif
  PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
  char buf[etBUFSIZE];       /* Conversion buffer */

  bufpt = 0;

  if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){
    pArgList = va_arg(ap, PrintfArguments*);


    bArgList = 1;
  }else{
    bArgList = 0;
  }
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){
      bufpt = (char *)fmt;
#if HAVE_STRCHRNUL
      fmt = strchrnul(fmt, '%');
#else
................................................................................
    }
    /* Fetch the info entry for the field */
    infop = &fmtinfo[0];
    xtype = etINVALID;
    for(idx=0; idx<ArraySize(fmtinfo); idx++){
      if( c==fmtinfo[idx].fmttype ){
        infop = &fmtinfo[idx];

        xtype = infop->type;



        break;
      }
    }

    /*
    ** At this point, variables are initialized as follows:
    **
................................................................................
        length = j;
        /* The precision in %q and %Q means how many input characters to
        ** consume, not the length of the output...
        ** if( precision>=0 && precision<length ) length = precision; */
        break;
      }
      case etTOKEN: {
        Token *pToken;
        if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
        pToken = va_arg(ap, Token*);
        assert( bArgList==0 );
        if( pToken && pToken->n ){
          sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
        }
        length = width = 0;
        break;
      }
      case etSRCLIST: {
        SrcList *pSrc;
        int k;
        struct SrcList_item *pItem;
        if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
        pSrc = va_arg(ap, SrcList*);
        k = va_arg(ap, int);
        pItem = &pSrc->a[k];
        assert( bArgList==0 );
        assert( k>=0 && k<pSrc->nSrc );
        if( pItem->zDatabase ){
          sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase);
          sqlite3StrAccumAppend(pAccum, ".", 1);
        }
        sqlite3StrAccumAppendAll(pAccum, pItem->zName);
................................................................................
    }/* End switch over the format type */
    /*
    ** The text of the conversion is pointed to by "bufpt" and is
    ** "length" characters long.  The field width is "width".  Do
    ** the output.
    */
    width -= length;
    if( width>0 ){
      if( !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');
      sqlite3StrAccumAppend(pAccum, bufpt, length);
      if( flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');
    }else{
      sqlite3StrAccumAppend(pAccum, bufpt, length);
    }

    if( zExtra ){
      sqlite3DbFree(pAccum->db, zExtra);
      zExtra = 0;
    }
  }/* End for loop over the format string */
} /* End of function */
................................................................................
*/
SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
#if SQLITE_BYTEORDER==4321
  u32 x;
  memcpy(&x,p,4);
  return x;
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  u32 x;
  memcpy(&x,p,4);
  return __builtin_bswap32(x);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(_MSC_VER) && _MSC_VER>=1300
  u32 x;
  memcpy(&x,p,4);
................................................................................
  return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
#endif
}
SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
#if SQLITE_BYTEORDER==4321
  memcpy(p,&v,4);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  u32 x = __builtin_bswap32(v);
  memcpy(p,&x,4);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(_MSC_VER) && _MSC_VER>=1300
  u32 x = _byteswap_ulong(v);
  memcpy(p,&x,4);
#else
................................................................................
/*
** Attempt to add, substract, or multiply the 64-bit signed value iB against
** the other 64-bit signed integer at *pA and store the result in *pA.
** Return 0 on success.  Or if the operation would have resulted in an
** overflow, leave *pA unchanged and return 1.
*/
SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){
#if !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=5004000 || CLANG_VERSION>=4000000)
  return __builtin_add_overflow(*pA, iB, pA);
#else
  i64 iA = *pA;
  testcase( iA==0 ); testcase( iA==1 );
  testcase( iB==-1 ); testcase( iB==0 );
  if( iB>=0 ){
    testcase( iA>0 && LARGEST_INT64 - iA == iB );
    testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
    if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
................................................................................
  }else{
    testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
    testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
    if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
  }
  *pA += iB;
  return 0; 
#endif
}
SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){
#if !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=5004000 || CLANG_VERSION>=4000000)
  return __builtin_sub_overflow(*pA, iB, pA);
#else
  testcase( iB==SMALLEST_INT64+1 );
  if( iB==SMALLEST_INT64 ){
    testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
    if( (*pA)>=0 ) return 1;
    *pA -= iB;
    return 0;
  }else{
    return sqlite3AddInt64(pA, -iB);
  }
#endif
}
SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){
#if !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=5004000 || CLANG_VERSION>=4000000)
  return __builtin_mul_overflow(*pA, iB, pA);
#else
  i64 iA = *pA;
  if( iB>0 ){
    if( iA>LARGEST_INT64/iB ) return 1;
    if( iA<SMALLEST_INT64/iB ) return 1;
  }else if( iB<0 ){
    if( iA>0 ){
      if( iB<SMALLEST_INT64/iA ) return 1;
................................................................................
      if( iB==SMALLEST_INT64 ) return 1;
      if( iA==SMALLEST_INT64 ) return 1;
      if( -iA>LARGEST_INT64/-iB ) return 1;
    }
  }
  *pA = iA*iB;
  return 0;
#endif
}

/*
** Compute the absolute value of a 32-bit signed integer, of possible.  Or 
** if the integer has a value of -2147483648, return +2147483647
*/
SQLITE_PRIVATE int sqlite3AbsInt32(int x){
................................................................................
** instead of
**
**   if( pPager->jfd->pMethods ){ ...
*/
#define isOpen(pFd) ((pFd)->pMethods!=0)

/*
** Return true if this pager uses a write-ahead log to read page pgno.
** Return false if the pager reads pgno directly from the database.
*/
#if !defined(SQLITE_OMIT_WAL) && defined(SQLITE_DIRECT_OVERFLOW_READ)
SQLITE_PRIVATE int sqlite3PagerUseWal(Pager *pPager, Pgno pgno){
  u32 iRead = 0;
  int rc;
  if( pPager->pWal==0 ) return 0;
  rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead);
  return rc || iRead;
}
#endif
#ifndef SQLITE_OMIT_WAL
# define pagerUseWal(x) ((x)->pWal!=0)
#else
# define pagerUseWal(x) 0
# define pagerRollbackWal(x) 0
# define pagerWalFrames(v,w,x,y) 0
# define pagerOpenWalIfPresent(z) SQLITE_OK
# define pagerBeginReadTransaction(z) SQLITE_OK
#endif
................................................................................
** There is a corresponding leave-all procedures.
**
** Enter the mutexes in accending order by BtShared pointer address
** to avoid the possibility of deadlock when two threads with
** two or more btrees in common both try to lock all their btrees
** at the same instant.
*/
static void SQLITE_NOINLINE btreeEnterAll(sqlite3 *db){
  int i;
  int skipOk = 1;
  Btree *p;
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p && p->sharable ){
      sqlite3BtreeEnter(p);
      skipOk = 0;
    }
  }
  db->skipBtreeMutex = skipOk;
}
SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
  if( db->skipBtreeMutex==0 ) btreeEnterAll(db);
}
static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){
  int i;
  Btree *p;
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite3BtreeLeave(p);
  }
}
SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
  if( db->skipBtreeMutex==0 ) btreeLeaveAll(db);
}

#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
................................................................................
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        pPage->xParseCell(pPage, pCell, &info);
        if( info.nLocal<info.nPayload ){
          if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
            return SQLITE_CORRUPT_BKPT;
          }
          if( iFrom==get4byte(pCell+info.nSize-4) ){

            put4byte(pCell+info.nSize-4, iTo);
            break;
          }
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
................................................................................
SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
  int rc = SQLITE_OK;
  if( p && p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
    assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
    sqlite3BtreeEnter(p);
    if( op==SAVEPOINT_ROLLBACK ){
      rc = saveAllCursors(pBt, 0, 0);
    }
    if( rc==SQLITE_OK ){
      rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
    }
    if( rc==SQLITE_OK ){
      if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
        pBt->nPage = 0;
      }
      rc = newDatabase(pBt);
      pBt->nPage = get4byte(28 + pBt->pPage1->aData);

................................................................................
/*
** This function is used to read or overwrite payload information
** for the entry that the pCur cursor is pointing to. The eOp
** argument is interpreted as follows:
**
**   0: The operation is a read. Populate the overflow cache.
**   1: The operation is a write. Populate the overflow cache.

**
** A total of "amt" bytes are read or written beginning at "offset".
** Data is read to or from the buffer pBuf.
**
** The content being read or written might appear on the main page
** or be scattered out on multiple overflow pages.
**
** If the current cursor entry uses one or more overflow pages
** this function may allocate space for and lazily populate
** the overflow page-list cache array (BtCursor.aOverflow). 
** Subsequent calls use this cache to make seeking to the supplied offset 
** more efficient.
**
** Once an overflow page-list cache has been allocated, it must be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
**
**   * An incremental vacuum,
**   * A commit in auto_vacuum="full" mode,
**   * Creating a table (may require moving an overflow page).
................................................................................
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  int iIdx = 0;
  MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
  BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */

#endif

  assert( pPage );
  assert( eOp==0 || eOp==1 );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );


  getCellInfo(pCur);
  aPayload = pCur->info.pPayload;



  assert( offset+amt <= pCur->info.nPayload );

  assert( aPayload > pPage->aData );
  if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
    /* Trying to read or write past the end of the data is an error.  The
    ** conditional above is really:
    **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
................................................................................

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
    if( a+offset>pCur->info.nLocal ){
      a = pCur->info.nLocal - offset;
    }
    rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
    offset = 0;
    pBuf += a;
    amt -= a;
  }else{
    offset -= pCur->info.nLocal;
  }

................................................................................
  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

    /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.

    **
    ** The aOverflow[] array is sized at one entry for each overflow page
    ** in the overflow chain. The page number of the first overflow page is
    ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
    ** means "not yet known" (the cache is lazily populated).
    */
    if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      if( nOvfl>pCur->nOvflAlloc ){
        Pgno *aNew = (Pgno*)sqlite3Realloc(
            pCur->aOverflow, nOvfl*2*sizeof(Pgno)
        );
        if( aNew==0 ){
          return SQLITE_NOMEM_BKPT;
        }else{
          pCur->nOvflAlloc = nOvfl*2;
          pCur->aOverflow = aNew;
        }
      }

      memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
      pCur->curFlags |= BTCF_ValidOvfl;



    }else{
      /* If the overflow page-list cache has been allocated and the
      ** entry for the first required overflow page is valid, skip
      ** directly to it.
      */

      if( pCur->aOverflow[offset/ovflSize] ){

        iIdx = (offset/ovflSize);
        nextPage = pCur->aOverflow[iIdx];
        offset = (offset%ovflSize);
      }
    }


    assert( rc==SQLITE_OK && amt>0 );
    while( nextPage ){
      /* If required, populate the overflow page-list cache. */

      assert( pCur->aOverflow[iIdx]==0
              || pCur->aOverflow[iIdx]==nextPage
              || CORRUPT_DB );
      pCur->aOverflow[iIdx] = nextPage;


      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
        ** number for the next page in the overflow chain. The page
        ** data is not required. So first try to lookup the overflow
        ** page-list cache, if any, then fall back to the getOverflowPage()
        ** function.



        */

        assert( pCur->curFlags & BTCF_ValidOvfl );
        assert( pCur->pBtree->db==pBt->db );
        if( pCur->aOverflow[iIdx+1] ){
          nextPage = pCur->aOverflow[iIdx+1];
        }else{
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        }
        offset -= ovflSize;
      }else{
        /* Need to read this page properly. It contains some of the
        ** range of data that is being read (eOp==0) or written (eOp!=0).
        */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
        sqlite3_file *fd;      /* File from which to do direct overflow read */
#endif
        int a = amt;
        if( a + offset > ovflSize ){
          a = ovflSize - offset;
        }

#ifdef SQLITE_DIRECT_OVERFLOW_READ
        /* If all the following are true:
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and

        **   3) there is no open write-transaction, and
        **   4) the database is file-backed, and

        **   5) the page is not in the WAL file
        **   6) at least 4 bytes have already been read into the output buffer 
        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( eOp==0                                             /* (1) */
         && offset==0                                          /* (2) */

         && pBt->inTransaction==TRANS_READ                     /* (3) */
         && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (4) */
         && 0==sqlite3PagerUseWal(pBt->pPager, nextPage)       /* (5) */
         && &pBuf[-4]>=pBufStart                               /* (6) */
        ){
          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];
          assert( aWrite>=pBufStart );                         /* due to (6) */
          memcpy(aSave, aWrite, 4);
          rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
              (eOp==0 ? PAGER_GET_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
            sqlite3PagerUnref(pDbPage);
            offset = 0;
          }
        }
        amt -= a;
        if( amt==0 ) return rc;
        pBuf += a;
      }
      if( rc ) break;
      iIdx++;
    }
  }

  if( rc==SQLITE_OK && amt>0 ){
    return SQLITE_CORRUPT_BKPT; /* Overflow chain ends prematurely */
  }
  return rc;
}

/*
** Read part of the payload for the row at which that cursor pCur is currently
** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
................................................................................
SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}

/*
** This variant of sqlite3BtreePayload() works even if the cursor has not
** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
** interface.
*/
#ifndef SQLITE_OMIT_INCRBLOB

static SQLITE_NOINLINE int accessPayloadChecked(
  BtCursor *pCur,
  u32 offset,
  u32 amt,
  void *pBuf
){
  int rc;
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
  assert( cursorOwnsBtShared(pCur) );
  rc = btreeRestoreCursorPosition(pCur);
  return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
}
SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  if( pCur->eState==CURSOR_VALID ){


    assert( cursorOwnsBtShared(pCur) );
    return accessPayload(pCur, offset, amt, pBuf, 0);
  }else{
    return accessPayloadChecked(pCur, offset, amt, pBuf);
  }

}
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if index btrees (pPage->intKey==0) and is the data for
................................................................................
  if( pIdxKey==0
   && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }
    if( pCur->info.nKey<intKey ){
      if( (pCur->curFlags & BTCF_AtLast)!=0 ){
        *pRes = -1;
        return SQLITE_OK;
      }
      /* If the requested key is one more than the previous key, then
      ** try to get there using sqlite3BtreeNext() rather than a full
      ** binary search.  This is an optimization only.  The correct answer
      ** is still obtained without this ase, only a little more slowely */
      if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
        *pRes = 0;
        rc = sqlite3BtreeNext(pCur, pRes);
        if( rc ) return rc;
        if( *pRes==0 ){
          getCellInfo(pCur);
          if( pCur->info.nKey==intKey ){
            return SQLITE_OK;
          }
        }
      }
    }
  }

  if( pIdxKey ){
    xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
    pIdxKey->errCode = 0;
    assert( pIdxKey->default_rc==1 
................................................................................
          }
          pCellKey = sqlite3Malloc( nCell+18 );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM_BKPT;
            goto moveto_finish;
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
          pCur->curFlags &= ~BTCF_ValidOvfl;
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);
        }
................................................................................
  ** usableSpace: Number of bytes of space available on each sibling.
  ** 
  */
  usableSpace = pBt->usableSize - 12 + leafCorrection;
  for(i=0; i<nOld; i++){
    MemPage *p = apOld[i];
    szNew[i] = usableSpace - p->nFree;

    for(j=0; j<p->nOverflow; j++){
      szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
    }
    cntNew[i] = cntOld[i];
  }
  k = nOld;
  for(i=0; i<k; i++){
................................................................................
** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
** key values and pX->aMem can be used instead of pX->pKey to avoid having
** to decode the key.
*/
SQLITE_PRIVATE int sqlite3BtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const BtreePayload *pX,        /* Content of the row to be inserted */
  int flags,                     /* True if this is likely an append */
  int seekResult                 /* Result of prior MovetoUnpacked() call */
){
  int rc;
  int loc = seekResult;          /* -1: before desired location  +1: after */
  int szNew = 0;
  int idx;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;

  assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorOwnsBtShared(pCur) );
................................................................................

  if( pCur->pKeyInfo==0 ){
    assert( pX->pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, pX->nKey, 0);

    /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 
    ** to a row with the same key as the new entry being inserted.  */
    assert( (flags & BTREE_SAVEPOSITION)==0 || 
            ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
      loc = 0;
    }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
               && pCur->info.nKey==pX->nKey-1 ){
      loc = -1;
    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
    if( pX->nMem ){
      UnpackedRecord r;
      r.pKeyInfo = pCur->pKeyInfo;
      r.aMem = pX->aMem;
      r.nField = pX->nMem;
      r.default_rc = 0;
      r.errCode = 0;
      r.r1 = 0;
      r.r2 = 0;
      r.eqSeen = 0;
      rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
    }else{
      rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
    }
    if( rc ) return rc;
  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->intKey || pX->nKey>=0 );
................................................................................

    /* Must make sure nOverflow is reset to zero even if the balance()
    ** fails. Internal data structure corruption will result otherwise. 
    ** Also, set the cursor state to invalid. This stops saveCursorPosition()
    ** from trying to save the current position of the cursor.  */
    pCur->apPage[pCur->iPage]->nOverflow = 0;
    pCur->eState = CURSOR_INVALID;
    if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
      rc = moveToRoot(pCur);
      if( pCur->pKeyInfo ){
        assert( pCur->pKey==0 );
        pCur->pKey = sqlite3Malloc( pX->nKey );
        if( pCur->pKey==0 ){
          rc = SQLITE_NOMEM;
        }else{
          memcpy(pCur->pKey, pX->pKey, pX->nKey);
        }
      }
      pCur->eState = CURSOR_REQUIRESEEK;
      pCur->nKey = pX->nKey;
    }
  }
  assert( pCur->apPage[pCur->iPage]->nOverflow==0 );

end_insert:
  return rc;
}

................................................................................
}
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
  sqlite3VdbeGetOp(p,addr)->p2 = val;
}
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
  sqlite3VdbeGetOp(p,addr)->p3 = val;
}
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
  assert( p->nOp>0 || p->db->mallocFailed );
  if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
}

/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
................................................................................
** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 
** statement transaction is committed.
**
** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 
** Otherwise SQLITE_OK.
*/
static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
  sqlite3 *const db = p->db;
  int rc = SQLITE_OK;







  int i;
  const int iSavepoint = p->iStatement-1;

  assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
  assert( db->nStatement>0 );
  assert( p->iStatement==(db->nStatement+db->nSavepoint) );

  for(i=0; i<db->nDb; i++){ 
    int rc2 = SQLITE_OK;
    Btree *pBt = db->aDb[i].pBt;
    if( pBt ){
      if( eOp==SAVEPOINT_ROLLBACK ){
        rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
      }
      if( rc2==SQLITE_OK ){
        rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
      }
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
  }
  db->nStatement--;
  p->iStatement = 0;

  if( rc==SQLITE_OK ){
    if( eOp==SAVEPOINT_ROLLBACK ){
      rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
    }
    if( rc==SQLITE_OK ){
      rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
    }
  }

  /* If the statement transaction is being rolled back, also restore the 
  ** database handles deferred constraint counter to the value it had when 
  ** the statement transaction was opened.  */
  if( eOp==SAVEPOINT_ROLLBACK ){
    db->nDeferredCons = p->nStmtDefCons;
    db->nDeferredImmCons = p->nStmtDefImmCons;

  }
  return rc;
}
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
  if( p->db->nStatement && p->iStatement ){
    return vdbeCloseStatement(p, eOp);
  }
  return SQLITE_OK;
}


/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
................................................................................
** If the second argument is not NULL, release any allocations associated 
** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
** structure itself, using sqlite3DbFree().
**
** This function is used to free UnpackedRecord structures allocated by
** the vdbeUnpackRecord() function found in vdbeapi.c.
*/
static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
  if( p ){
    int i;
    for(i=0; i<nField; i++){
      Mem *pMem = &p->aMem[i];
      if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
    }
    sqlite3DbFree(db, p);
  }
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
................................................................................
  i64 iKey2;
  PreUpdate preupdate;
  const char *zTbl = pTab->zName;
  static const u8 fakeSortOrder = 0;

  assert( db->pPreUpdate==0 );
  memset(&preupdate, 0, sizeof(PreUpdate));
  if( HasRowid(pTab)==0 ){
    iKey1 = iKey2 = 0;
    preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
  }else{
    if( op==SQLITE_UPDATE ){
      iKey2 = v->aMem[iReg].u.i;
    }else{
      iKey2 = iKey1;
    }
  }

  assert( pCsr->nField==pTab->nCol 
       || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
  );

  preupdate.v = v;
................................................................................
  preupdate.iKey2 = iKey2;
  preupdate.pTab = pTab;

  db->pPreUpdate = &preupdate;
  db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
  db->pPreUpdate = 0;
  sqlite3DbFree(db, preupdate.aRecord);
  vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked);
  vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked);
  if( preupdate.aNew ){
    int i;
    for(i=0; i<pCsr->nField; i++){
      sqlite3VdbeMemRelease(&preupdate.aNew[i]);
    }
    sqlite3DbFree(db, preupdate.aNew);
  }
................................................................................

/*
** This function is called from within a pre-update callback to retrieve
** a field of the row currently being updated or deleted.
*/
SQLITE_API int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
  PreUpdate *p = db->pPreUpdate;
  Mem *pMem;
  int rc = SQLITE_OK;

  /* Test that this call is being made from within an SQLITE_DELETE or
  ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
  if( !p || p->op==SQLITE_INSERT ){
    rc = SQLITE_MISUSE_BKPT;
    goto preupdate_old_out;
  }
  if( p->pPk ){
    iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
  }
  if( iIdx>=p->pCsr->nField || iIdx<0 ){
    rc = SQLITE_RANGE;
    goto preupdate_old_out;
  }

  /* If the old.* record has not yet been loaded into memory, do so now. */
  if( p->pUnpacked==0 ){
................................................................................
    if( rc!=SQLITE_OK ){
      sqlite3DbFree(db, aRec);
      goto preupdate_old_out;
    }
    p->aRecord = aRec;
  }




  pMem = *ppValue = &p->pUnpacked->aMem[iIdx];

  if( iIdx==p->pTab->iPKey ){
    sqlite3VdbeMemSetInt64(pMem, p->iKey1);
  }else if( iIdx>=p->pUnpacked->nField ){
    *ppValue = (sqlite3_value *)columnNullValue();
  }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
    if( pMem->flags & MEM_Int ){
      sqlite3VdbeMemRealify(pMem);

    }
  }

 preupdate_old_out:
  sqlite3Error(db, rc);
  return sqlite3ApiExit(db, rc);
}
................................................................................
  int rc = SQLITE_OK;
  Mem *pMem;

  if( !p || p->op==SQLITE_DELETE ){
    rc = SQLITE_MISUSE_BKPT;
    goto preupdate_new_out;
  }
  if( p->pPk && p->op!=SQLITE_UPDATE ){
    iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
  }
  if( iIdx>=p->pCsr->nField || iIdx<0 ){
    rc = SQLITE_RANGE;
    goto preupdate_new_out;
  }

  if( p->op==SQLITE_INSERT ){
    /* For an INSERT, memory cell p->iNewReg contains the serialized record
................................................................................
      pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
      if( !pUnpack ){
        rc = SQLITE_NOMEM;
        goto preupdate_new_out;
      }
      p->pNewUnpacked = pUnpack;
    }



    pMem = &pUnpack->aMem[iIdx];
    if( iIdx==p->pTab->iPKey ){
      sqlite3VdbeMemSetInt64(pMem, p->iKey2);

    }else if( iIdx>=pUnpack->nField ){
      pMem = (sqlite3_value *)columnNullValue();
    }
  }else{
    /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
    ** value. Make a copy of the cell contents and return a pointer to it.
    ** It is not safe to return a pointer to the memory cell itself as the
    ** caller may modify the value text encoding.
    */
................................................................................
  unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
#endif
  Mem *aMem = p->aMem;       /* Copy of p->aMem */
  Mem *pIn1 = 0;             /* 1st input operand */
  Mem *pIn2 = 0;             /* 2nd input operand */
  Mem *pIn3 = 0;             /* 3rd input operand */
  Mem *pOut = 0;             /* Output operand */


#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
#endif
  /*** INSERT STACK UNION HERE ***/

  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
  sqlite3VdbeEnter(p);
................................................................................
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
    goto no_mem;
  }
  assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
  assert( p->bIsReader || p->readOnly!=0 );

  p->iCurrentTime = 0;
  assert( p->explain==0 );
  p->pResultSet = 0;
  db->busyHandler.nBusy = 0;
  if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
  sqlite3VdbeIOTraceSql(p);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
................................................................................
  if( pOp->p1==SQLITE_OK && p->pFrame ){
    /* Halt the sub-program. Return control to the parent frame. */
    pFrame = p->pFrame;
    p->pFrame = pFrame->pParent;
    p->nFrame--;
    sqlite3VdbeSetChanges(db, p->nChange);
    pcx = sqlite3VdbeFrameRestore(pFrame);

    if( pOp->p2==OE_Ignore ){
      /* Instruction pcx is the OP_Program that invoked the sub-program 
      ** currently being halted. If the p2 instruction of this OP_Halt
      ** instruction is set to OE_Ignore, then the sub-program is throwing
      ** an IGNORE exception. In this case jump to the address specified
      ** as the p2 of the calling OP_Program.  */
      pcx = p->aOp[pcx].p2-1;
................................................................................

  assert( pOp->p1>0 && pOp->p1<=p->nVar );
  assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  pOut = &aMem[pOp->p2];
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis: r[P2@P3]=r[P1@P3]
................................................................................
  for(i=0; i<pCtx->argc; i++){
    assert( memIsValid(pCtx->argv[i]) );
    REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
  }
#endif
  MemSetTypeFlag(pCtx->pOut, MEM_Null);
  pCtx->fErrorOrAux = 0;

  (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */


  /* If the function returned an error, throw an exception */
  if( pCtx->fErrorOrAux ){
    if( pCtx->isError ){
      sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
      rc = pCtx->isError;
    }
................................................................................
  if( iCompare!=0 ) goto jump_to_p2;
  break;
}


/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator in the next
** instruction.  The permutation is stored in the P4 operand.
**
** The permutation is only valid until the next OP_Compare that has
** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 
** occur immediately prior to the OP_Compare.
**
** The first integer in the P4 integer array is the length of the array
** and does not become part of the permutation.
*/
case OP_Permutation: {
  assert( pOp->p4type==P4_INTARRAY );
  assert( pOp->p4.ai );
  assert( pOp[1].opcode==OP_Compare );
  assert( pOp[1].p5 & OPFLAG_PERMUTE );
  break;
}

/* Opcode: Compare P1 P2 P3 P4 P5
** Synopsis: r[P1@P3] <-> r[P2@P3]
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
................................................................................
  int i;
  int p1;
  int p2;
  const KeyInfo *pKeyInfo;
  int idx;
  CollSeq *pColl;    /* Collating sequence to use on this term */
  int bRev;          /* True for DESCENDING sort order */
  int *aPermute;     /* The permutation */

  if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
    aPermute = 0;
  }else{
    assert( pOp>aOp );
    assert( pOp[-1].opcode==OP_Permutation );
    assert( pOp[-1].p4type==P4_INTARRAY );
    aPermute = pOp[-1].p4.ai + 1;
    assert( aPermute!=0 );
  }
  n = pOp->p3;
  pKeyInfo = pOp->p4.pKeyInfo;
  assert( n>0 );
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  p2 = pOp->p2;
#if SQLITE_DEBUG
................................................................................
    bRev = pKeyInfo->aSortOrder[i];
    iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
    if( iCompare ){
      if( bRev ) iCompare = -iCompare;
      break;
    }
  }

  break;
}

/* Opcode: Jump P1 P2 P3 * *
**
** Jump to the instruction at address P1, P2, or P3 depending on whether
** in the most recent OP_Compare instruction the P1 vector was less than
................................................................................
  if( zAffinity ){
    pRec = pData0;
    do{
      applyAffinity(pRec++, *(zAffinity++), encoding);
      assert( zAffinity[0]==0 || pRec<=pLast );
    }while( zAffinity[0] );
  }

#ifdef SQLITE_ENABLE_NULL_TRIM
  /* NULLs can be safely trimmed from the end of the record, as long as
  ** as the schema format is 2 or more and none of the omitted columns
  ** have a non-NULL default value.  Also, the record must be left with
  ** at least one field.  If P5>0 then it will be one more than the
  ** index of the right-most column with a non-NULL default value */
  if( pOp->p5 ){
    while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
      pLast--;
      nField--;
    }
  }
#endif

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  pRec = pLast;
  do{
    assert( memIsValid(pRec) );
................................................................................
  pData = &aMem[pOp->p2];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( memIsValid(pData) );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
  assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
  REGISTER_TRACE(pOp->p2, pData);

  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );
................................................................................
    x.nKey = pKey->u.i;
  }else{
    assert( pOp->opcode==OP_InsertInt );
    x.nKey = pOp->p3;
  }

  if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){

    assert( pC->iDb>=0 );
    zDb = db->aDb[pC->iDb].zDbSName;
    pTab = pOp->p4.pTab;
    assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
    op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
  }else{
    pTab = 0; /* Not needed.  Silence a compiler warning. */
    zDb = 0;  /* Not needed.  Silence a compiler warning. */
  }

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
  /* Invoke the pre-update hook, if any */
  if( db->xPreUpdateCallback 
   && pOp->p4type==P4_TABLE
   && !(pOp->p5 & OPFLAG_ISUPDATE)
  ){
    sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
  }
  if( pOp->p5 & OPFLAG_ISNOOP ) break;
#endif

  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
  if( pData->flags & MEM_Null ){
    x.pData = 0;
    x.nData = 0;
  }else{
    assert( pData->flags & (MEM_Blob|MEM_Str) );
    x.pData = pData->z;
    x.nData = pData->n;
................................................................................
  if( pData->flags & MEM_Zero ){
    x.nZero = pData->u.nZero;
  }else{
    x.nZero = 0;
  }
  x.pKey = 0;
  rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
      (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
  );
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc ) goto abort_due_to_error;
  if( db->xUpdateCallback && op ){
................................................................................
  }else{
    zDb = 0;   /* Not needed.  Silence a compiler warning. */
    pTab = 0;  /* Not needed.  Silence a compiler warning. */
  }

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
  /* Invoke the pre-update-hook if required. */
  if( db->xPreUpdateCallback && pOp->p4.pTab ){
    assert( !(opflags & OPFLAG_ISUPDATE) 
         || HasRowid(pTab)==0 
         || (aMem[pOp->p3].flags & MEM_Int) 
    );
    sqlite3VdbePreUpdateHook(p, pC,
        (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 
        zDb, pTab, pC->movetoTarget,
        pOp->p3
    );
  }
  if( opflags & OPFLAG_ISNOOP ) break;
................................................................................
  assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  if( rc ) goto abort_due_to_error;
  p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
  break;
}

/* Opcode: RowData P1 P2 P3 * *
** Synopsis: r[P2]=data
**
** Write into register P2 the complete row content for the row at 
** which cursor P1 is currently pointing.
** There is no interpretation of the data.  
** It is just copied onto the P2 register exactly as 
** it is found in the database file.
**
** If cursor P1 is an index, then the content is the key of the row.
** If cursor P2 is a table, then the content extracted is the data.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
**
** If P3!=0 then this opcode is allowed to make an ephermeral pointer
** into the database page.  That means that the content of the output
** register will be invalidated as soon as the cursor moves - including
** moves caused by other cursors that "save" the the current cursors
** position in order that they can write to the same table.  If P3==0
** then a copy of the data is made into memory.  P3!=0 is faster, but
** P3==0 is safer.
**
** If P3!=0 then the content of the P2 register is unsuitable for use
** in OP_Result and any OP_Result will invalidate the P2 register content.
** The P2 register content is invalidated by opcodes like OP_Function or
** by any use of another cursor pointing to the same table.
*/
case OP_RowData: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  u32 n;

  pOut = out2Prerelease(p, pOp);


  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( isSorter(pC)==0 );
  assert( pC->nullRow==0 );
................................................................................
#endif

  n = sqlite3BtreePayloadSize(pCrsr);
  if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  testcase( n==0 );





  rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
  if( rc ) goto abort_due_to_error;

  if( !pOp->p3 ) Deephemeralize(pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
  REGISTER_TRACE(pOp->p2, pOut);
  break;
}

/* Opcode: Rowid P1 P2 * * *
** Synopsis: r[P2]=rowid
................................................................................
    rc = sqlite3VdbeSorterWrite(pC, pIn2);
  }else{
    x.nKey = pIn2->n;
    x.pKey = pIn2->z;
    x.aMem = aMem + pOp->p3;
    x.nMem = (u16)pOp->p4.i;
    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
         (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 
        ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
        );
    assert( pC->deferredMoveto==0 );
    pC->cacheStatus = CACHE_STALE;
  }
  if( rc) goto abort_due_to_error;
  break;
................................................................................
      pTabCur->deferredMoveto = 1;
      assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
      pTabCur->aAltMap = pOp->p4.ai;
      pTabCur->pAltCursor = pC;
    }else{
      pOut = out2Prerelease(p, pOp);
      pOut->u.i = rowid;

    }
  }else{
    assert( pOp->opcode==OP_IdxRowid );
    sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
  }
  break;
}
................................................................................
        || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
    assert( pProgram->nCsr==pFrame->nChildCsr );
    assert( (int)(pOp - aOp)==pFrame->pc );
  }

  p->nFrame++;
  pFrame->pParent = p->pFrame;
  pFrame->lastRowid = db->lastRowid;
  pFrame->nChange = p->nChange;
  pFrame->nDbChange = p->db->nChange;
  assert( pFrame->pAuxData==0 );
  pFrame->pAuxData = p->pAuxData;
  p->pAuxData = 0;
  p->nChange = 0;
  p->pFrame = pFrame;
................................................................................
    }
    db->vtabOnConflict = pOp->p5;
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    db->vtabOnConflict = vtabOnConflict;
    sqlite3VtabImportErrmsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = rowid;
    }
    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;
      }else{
        p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
      }
................................................................................
    sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:

  testcase( nVmStep>0 );
  p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
  sqlite3VdbeLeave(p);
  assert( rc!=SQLITE_OK || nExtraDelete==0 
       || sqlite3_strlike("DELETE%",p->zSql,0)!=0 
  );
  return rc;
................................................................................
#ifndef SQLITE_OMIT_INCRBLOB

/*
** Valid sqlite3_blob* handles point to Incrblob structures.
*/
typedef struct Incrblob Incrblob;
struct Incrblob {

  int nByte;              /* Size of open blob, in bytes */
  int iOffset;            /* Byte offset of blob in cursor data */
  u16 iCol;               /* Table column this handle is open on */
  BtCursor *pCsr;         /* Cursor pointing at blob row */
  sqlite3_stmt *pStmt;    /* Statement holding cursor open */
  sqlite3 *db;            /* The associated database */
  char *zDb;              /* Database name */
  Table *pTab;            /* Table object */
};

................................................................................
** immediately return SQLITE_ABORT.
*/
static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){
  int rc;                         /* Error code */
  char *zErr = 0;                 /* Error message */
  Vdbe *v = (Vdbe *)p->pStmt;

  /* Set the value of register r[1] in the SQL statement to integer iRow. 
  ** This is done directly as a performance optimization

  */

  v->aMem[1].flags = MEM_Int;
  v->aMem[1].u.i = iRow;

  /* If the statement has been run before (and is paused at the OP_ResultRow)
  ** then back it up to the point where it does the OP_SeekRowid.  This could
  ** have been down with an extra OP_Goto, but simply setting the program
  ** counter is faster. */
  if( v->pc>3 ){
    v->pc = 3;
    rc = sqlite3VdbeExec(v);
  }else{
    rc = sqlite3_step(p->pStmt);
  }
  if( rc==SQLITE_ROW ){
    VdbeCursor *pC = v->apCsr[0];

    u32 type = pC->nHdrParsed>p->iCol ? pC->aType[p->iCol] : 0;
    testcase( pC->nHdrParsed==p->iCol );
    testcase( pC->nHdrParsed==p->iCol+1 );
    if( type<12 ){
      zErr = sqlite3MPrintf(p->db, "cannot open value of type %s",
          type==0?"null": type==7?"real": "integer"
      );
      rc = SQLITE_ERROR;
      sqlite3_finalize(p->pStmt);
      p->pStmt = 0;
................................................................................
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3* db,            /* The database connection */
  const char *zDb,        /* The attached database containing the blob */
  const char *zTable,     /* The table containing the blob */
  const char *zColumn,    /* The column containing the blob */
  sqlite_int64 iRow,      /* The row containing the glob */
  int wrFlag,             /* True -> read/write access, false -> read-only */
  sqlite3_blob **ppBlob   /* Handle for accessing the blob returned here */
){
  int nAttempt = 0;
  int iCol;               /* Index of zColumn in row-record */
  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
................................................................................
#endif
  *ppBlob = 0;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zTable==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  wrFlag = !!wrFlag;                /* wrFlag = (wrFlag ? 1 : 0); */

  sqlite3_mutex_enter(db->mutex);

  pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
  if( !pBlob ) goto blob_open_out;
  pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
  if( !pParse ) goto blob_open_out;
................................................................................
      rc = SQLITE_ERROR;
      sqlite3BtreeLeaveAll(db);
      goto blob_open_out;
    }

    /* If the value is being opened for writing, check that the
    ** column is not indexed, and that it is not part of a foreign key. 
    */
    if( wrFlag ){

      const char *zFault = 0;
      Index *pIdx;
#ifndef SQLITE_OMIT_FOREIGN_KEY
      if( db->flags&SQLITE_ForeignKeys ){
        /* Check that the column is not part of an FK child key definition. It
        ** is not necessary to check if it is part of a parent key, as parent
        ** key columns must be indexed. The check below will pick up this 
................................................................................
      ** which closes the b-tree cursor and (possibly) commits the 
      ** transaction.
      */
      static const int iLn = VDBE_OFFSET_LINENO(2);
      static const VdbeOpList openBlob[] = {
        {OP_TableLock,      0, 0, 0},  /* 0: Acquire a read or write lock */
        {OP_OpenRead,       0, 0, 0},  /* 1: Open a cursor */
        /* blobSeekToRow() will initialize r[1] to the desired rowid */
        {OP_NotExists,      0, 5, 1},  /* 2: Seek the cursor to rowid=r[1] */
        {OP_Column,         0, 0, 1},  /* 3  */
        {OP_ResultRow,      1, 0, 0},  /* 4  */

        {OP_Halt,           0, 0, 0},  /* 5  */
      };
      Vdbe *v = (Vdbe *)pBlob->pStmt;
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      VdbeOp *aOp;

      sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, wrFlag, 
                           pTab->pSchema->schema_cookie,
                           pTab->pSchema->iGeneration);
      sqlite3VdbeChangeP5(v, 1);     
      aOp = sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn);

      /* Make sure a mutex is held on the table to be accessed */
      sqlite3VdbeUsesBtree(v, iDb); 
................................................................................
        assert( aOp!=0 );
        /* Configure the OP_TableLock instruction */
#ifdef SQLITE_OMIT_SHARED_CACHE
        aOp[0].opcode = OP_Noop;
#else
        aOp[0].p1 = iDb;
        aOp[0].p2 = pTab->tnum;
        aOp[0].p3 = wrFlag;
        sqlite3VdbeChangeP4(v, 1, pTab->zName, P4_TRANSIENT);
      }
      if( db->mallocFailed==0 ){
#endif

        /* Remove either the OP_OpenWrite or OpenRead. Set the P2 
        ** parameter of the other to pTab->tnum.  */
        if( wrFlag ) aOp[1].opcode = OP_OpenWrite;
        aOp[1].p2 = pTab->tnum;
        aOp[1].p3 = iDb;   

        /* Configure the number of columns. Configure the cursor to
        ** think that the table has one more column than it really
        ** does. An OP_Column to retrieve this imaginary column will
        ** always return an SQL NULL. This is useful because it means
        ** we can invoke OP_Column to fill in the vdbe cursors type 
        ** and offset cache without causing any IO.
        */
        aOp[1].p4type = P4_INT32;
        aOp[1].p4.i = pTab->nCol+1;
        aOp[3].p2 = pTab->nCol;

        pParse->nVar = 0;
        pParse->nMem = 1;
        pParse->nTab = 1;
        sqlite3VdbeMakeReady(v, pParse);
      }
    }
   

    pBlob->iCol = iCol;
    pBlob->db = db;
    sqlite3BtreeLeaveAll(db);
    if( db->mallocFailed ){
      goto blob_open_out;
    }

    rc = blobSeekToRow(pBlob, iRow, &zErr);
  } while( (++nAttempt)<SQLITE_MAX_SCHEMA_RETRY && rc==SQLITE_SCHEMA );

blob_open_out:
  if( rc==SQLITE_OK && db->mallocFailed==0 ){
    *ppBlob = (sqlite3_blob *)pBlob;
  }else{
................................................................................
*************************************************************************
**
** This file contains routines used for walking the parser tree and
** resolve all identifiers by associating them with a particular
** table and column.
*/
/* #include "sqliteInt.h" */



/*
** Walk the expression tree pExpr and increase the aggregate function
** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node.
** This needs to occur when copying a TK_AGG_FUNCTION node from an
** outer query into an inner subquery.
**
................................................................................
    x = (ynVar)(++pParse->nVar);
  }else{
    int doAdd = 0;
    if( z[0]=='?' ){
      /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
      ** use it as the variable number */
      i64 i;
      int bOk;
      if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
        i = z[1]-'0';  /* The common case of ?N for a single digit N */
        bOk = 1;
      }else{
        bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);

      }
      testcase( i==0 );
      testcase( i==1 );
      testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
      testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
      if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
        sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
            db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
        return;
      }
      x = (ynVar)i;
      if( x>pParse->nVar ){
        pParse->nVar = (int)x;
        doAdd = 1;
      }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
        doAdd = 1;
      }
    }else{
................................................................................
    struct IdList_item *pNewItem = &pNew->a[i];
    struct IdList_item *pOldItem = &p->a[i];
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pNewItem->idx = pOldItem->idx;
  }
  return pNew;
}
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
  Select *pRet = 0;
  Select *pNext = 0;
  Select **pp = &pRet;
  Select *p;

  assert( db!=0 );

  for(p=pDup; p; p=p->pPrior){
    Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
    if( pNew==0 ) break;
    pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
    pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
    pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
    pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
    pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
    pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
    pNew->op = p->op;

    pNew->pNext = pNext;
    pNew->pPrior = 0;
    pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
    pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
    pNew->iLimit = 0;
    pNew->iOffset = 0;
    pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
    pNew->addrOpenEphm[0] = -1;
    pNew->addrOpenEphm[1] = -1;
    pNew->nSelectRow = p->nSelectRow;
    pNew->pWith = withDup(db, p->pWith);
    sqlite3SelectSetName(pNew, p->zSelName);
    *pp = pNew;
    pp = &pNew->pPrior;
    pNext = pNew;
  }

  return pRet;
}
#else
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  assert( p==0 );
  return 0;
}
#endif
................................................................................
** pColumns and pExpr form a vector assignment which is part of the SET
** clause of an UPDATE statement.  Like this:
**
**        (a,b,c) = (expr1,expr2,expr3)
** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
**
** For each term of the vector assignment, append new entries to the
** expression list pList.  In the case of a subquery on the RHS, append
** TK_SELECT_COLUMN expressions.
*/
SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(
  Parse *pParse,         /* Parsing context */
  ExprList *pList,       /* List to which to append. Might be NULL */
  IdList *pColumns,      /* List of names of LHS of the assignment */
  Expr *pExpr            /* Vector expression to be appended. Might be NULL */
................................................................................
      const char *zId;       /* The function name */
      u32 constMask = 0;     /* Mask of function arguments that are constant */
      int i;                 /* Loop counter */
      sqlite3 *db = pParse->db;  /* The database connection */
      u8 enc = ENC(db);      /* The text encoding used by this database */
      CollSeq *pColl = 0;    /* A collating sequence */

      if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
        /* SQL functions can be expensive. So try to move constant functions
        ** out of the inner loop, even if that means an extra OP_Copy. */
        return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
      }
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      if( ExprHasProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
      }else{
        pFarg = pExpr->x.pList;
      }
      nFarg = pFarg ? pFarg->nExpr : 0;
................................................................................
      /* The UNLIKELY() function is a no-op.  The result is the value
      ** of the first argument.
      */
      if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
        assert( nFarg>=1 );
        return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
      }

#ifdef SQLITE_DEBUG
      /* The AFFINITY() function evaluates to a string that describes
      ** the type affinity of the argument.  This is used for testing of
      ** the SQLite type logic.
      */
      if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
        const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
        char aff;
        assert( nFarg==1 );
        aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
        sqlite3VdbeLoadString(v, target, 
                              aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
        return target;
      }
#endif

      for(i=0; i<nFarg; i++){
        if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
          testcase( i==31 );
          constMask |= MASKBIT32(i);
        }
        if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
................................................................................
  sqlite3ReleaseTempReg(pParse, regFree1);
  sqlite3ReleaseTempReg(pParse, regFree2);
  return inReg;
}

/*
** Factor out the code of the given expression to initialization time.
**
** If regDest>=0 then the result is always stored in that register and the
** result is not reusable.  If regDest<0 then this routine is free to 
** store the value whereever it wants.  The register where the expression 
** is stored is returned.  When regDest<0, two identical expressions will
** code to the same register.
*/
SQLITE_PRIVATE int sqlite3ExprCodeAtInit(
  Parse *pParse,    /* Parsing context */
  Expr *pExpr,      /* The expression to code when the VDBE initializes */
  int regDest       /* Store the value in this register */

){
  ExprList *p;
  assert( ConstFactorOk(pParse) );
  p = pParse->pConstExpr;
  if( regDest<0 && p ){
    struct ExprList_item *pItem;
    int i;
    for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
      if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
        return pItem->u.iConstExprReg;
      }
    }
  }
  pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
  p = sqlite3ExprListAppend(pParse, p, pExpr);
  if( p ){
     struct ExprList_item *pItem = &p->a[p->nExpr-1];
     pItem->reusable = regDest<0;
     if( regDest<0 ) regDest = ++pParse->nMem;
     pItem->u.iConstExprReg = regDest;

  }
  pParse->pConstExpr = p;
  return regDest;
}

/*
** Generate code to evaluate an expression and store the results
** into a register.  Return the register number where the results
** are stored.
**
................................................................................
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
  int r2;
  pExpr = sqlite3ExprSkipCollate(pExpr);
  if( ConstFactorOk(pParse)
   && pExpr->op!=TK_REGISTER
   && sqlite3ExprIsConstantNotJoin(pExpr)
  ){


    *pReg  = 0;









    r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
  }else{
    int r1 = sqlite3GetTempReg(pParse);
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
    if( r2==r1 ){
      *pReg = r1;
    }else{
      sqlite3ReleaseTempReg(pParse, r1);
................................................................................
** Generate code that will evaluate expression pExpr and store the
** results in register target.  The results are guaranteed to appear
** in register target.  If the expression is constant, then this routine
** might choose to code the expression at initialization time.
*/
SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
  if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
    sqlite3ExprCodeAtInit(pParse, pExpr, target);
  }else{
    sqlite3ExprCode(pParse, pExpr, target);
  }
}

/*
** Generate code that evaluates the given expression and puts the result
................................................................................
      if( flags & SQLITE_ECEL_OMITREF ){
        i--;
        n--;
      }else{
        sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
      }
    }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
      sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
    }else{
      int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
      if( inReg!=target+i ){
        VdbeOp *pOp;
        if( copyOp==OP_Copy
         && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
         && pOp->p1+pOp->p3+1==inReg
................................................................................
/*
** Implementation of the stat_get(P,J) SQL function.  This routine is
** used to query statistical information that has been gathered into
** the Stat4Accum object by prior calls to stat_push().  The P parameter
** has type BLOB but it is really just a pointer to the Stat4Accum object.
** The content to returned is determined by the parameter J
** which is one of the STAT_GET_xxxx values defined above.
**
** The stat_get(P,J) function is not available to generic SQL.  It is
** inserted as part of a manually constructed bytecode program.  (See
** the callStatGet() routine below.)  It is guaranteed that the P
** parameter will always be a poiner to a Stat4Accum object, never a
** NULL.
**
** If neither STAT3 nor STAT4 are enabled, then J is always
** STAT_GET_STAT1 and is hence omitted and this routine becomes
** a one-parameter function, stat_get(P), that always returns the
** stat1 table entry information.
*/
static void statGet(
................................................................................
         || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 
        ){
          sumEq += aSample[i].anEq[iCol];
          nSum100 += 100;
        }
      }

      if( nDist100>nSum100 && sumEq<nRow ){
        avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;
    }
  }
}
................................................................................
    return;
  }
  assert( pVfs );
  flags |= SQLITE_OPEN_MAIN_DB;
  rc = sqlite3BtreeOpen(pVfs, zPath, db, &aNew->pBt, 0, flags);
  sqlite3_free( zPath );
  db->nDb++;
  db->skipBtreeMutex = 0;
  if( rc==SQLITE_CONSTRAINT ){
    rc = SQLITE_ERROR;
    zErrDyn = sqlite3MPrintf(db, "database is already attached");
  }else if( rc==SQLITE_OK ){
    Pager *pPager;
    aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
    if( !aNew->pSchema ){
................................................................................
      if( eOnePass==ONEPASS_SINGLE && sqlite3IsToplevel(pParse) ){
        pParse->isMultiWrite = 0;
      }
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */




      sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
          iKey, nKey, count, OE_Default, eOnePass, aiCurOnePass[1]);
    }
  
    /* End of the loop over all rowids/primary-keys. */
    if( eOnePass!=ONEPASS_OFF ){
      sqlite3VdbeResolveLabel(v, addrBypass);
      sqlite3WhereEnd(pWInfo);
    }else if( pPk ){
................................................................................
**   ONEPASS_MULTI.  If eMode is not ONEPASS_OFF, then the cursor
**   iDataCur already points to the row to delete. If eMode is ONEPASS_OFF
**   then this function must seek iDataCur to the entry identified by iPk
**   and nPk before reading from it.
**
**   If eMode is ONEPASS_MULTI, then this call is being made as part
**   of a ONEPASS delete that affects multiple rows. In this case, if 
**   iIdxNoSeek is a valid cursor number (>=0) and is not the same as
**   iDataCur, then its position should be preserved following the delete
**   operation. Or, if iIdxNoSeek is not a valid cursor number, the
**   position of iDataCur should be preserved instead.

**
** iIdxNoSeek:
**   If iIdxNoSeek is a valid cursor number (>=0) not equal to iDataCur,
**   then it identifies an index cursor (from within array of cursors
**   starting at iIdxCur) that already points to the index entry to be deleted.
**   Except, this optimization is disabled if there are BEFORE triggers since
**   the trigger body might have moved the cursor.
*/
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
  Parse *pParse,     /* Parsing context */
  Table *pTab,       /* Table containing the row to be deleted */
  Trigger *pTrigger, /* List of triggers to (potentially) fire */
  int iDataCur,      /* Cursor from which column data is extracted */
  int iIdxCur,       /* First index cursor */
................................................................................
    addrStart = sqlite3VdbeCurrentAddr(v);
    sqlite3CodeRowTrigger(pParse, pTrigger, 
        TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel
    );

    /* If any BEFORE triggers were coded, then seek the cursor to the 
    ** row to be deleted again. It may be that the BEFORE triggers moved
    ** the cursor or already deleted the row that the cursor was
    ** pointing to.
    **
    ** Also disable the iIdxNoSeek optimization since the BEFORE trigger
    ** may have moved that cursor.
    */
    if( addrStart<sqlite3VdbeCurrentAddr(v) ){
      sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
      VdbeCoverageIf(v, opSeek==OP_NotExists);
      VdbeCoverageIf(v, opSeek==OP_NotFound);
      testcase( iIdxNoSeek>=0 );
      iIdxNoSeek = -1;
    }

    /* Do FK processing. This call checks that any FK constraints that
    ** refer to this table (i.e. constraints attached to other tables) 
    ** are not violated by deleting this row.  */
    sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
  }
................................................................................
  ** the update-hook is not invoked for rows removed by REPLACE, but the 
  ** pre-update-hook is.
  */ 
  if( pTab->pSelect==0 ){
    u8 p5 = 0;
    sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek);
    sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));
    if( pParse->nested==0 ){
      sqlite3VdbeAppendP4(v, (char*)pTab, P4_TABLE);
    }
    if( eMode!=ONEPASS_OFF ){
      sqlite3VdbeChangeP5(v, OPFLAG_AUXDELETE);
    }
    if( iIdxNoSeek>=0 && iIdxNoSeek!=iDataCur ){
      sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek);
    }
    if( eMode==ONEPASS_MULTI ) p5 |= OPFLAG_SAVEPOSITION;
    sqlite3VdbeChangeP5(v, p5);
  }

  /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
................................................................................
    ** But we are getting ready to store this value back into an index, where
    ** it should be converted by to INTEGER again.  So omit the OP_RealAffinity
    ** opcode if it is present */
    sqlite3VdbeDeletePriorOpcode(v, OP_RealAffinity);
  }
  if( regOut ){
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regOut);
    if( pIdx->pTable->pSelect ){
      const char *zAff = sqlite3IndexAffinityStr(pParse->db, pIdx);
      sqlite3VdbeChangeP4(v, -1, zAff, P4_TRANSIENT);
    }
  }
  sqlite3ReleaseTempRange(pParse, regBase, nCol);
  return regBase;
}

/*
** If a prior call to sqlite3GenerateIndexKey() generated a jump-over label
................................................................................
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
    DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
    DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
    FUNCTION2(unlikely,          1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
    FUNCTION2(likelihood,        2, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
    FUNCTION2(likely,            1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
#ifdef SQLITE_DEBUG
    FUNCTION2(affinity,          1, 0, 0, noopFunc,  SQLITE_FUNC_AFFINITY),
#endif
    FUNCTION(ltrim,              1, 1, 0, trimFunc         ),
    FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
    FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
    FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
    FUNCTION(trim,               1, 3, 0, trimFunc         ),
    FUNCTION(trim,               2, 3, 0, trimFunc         ),
    FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
................................................................................
        assert( onError==OE_Replace );
        sqlite3MultiWrite(pParse);
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
            regR, nPkField, 0, OE_Replace,
            (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrUniqueOk);
    if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
  }
................................................................................
    sqlite3VdbeGoto(v, ipkTop+1);
    sqlite3VdbeJumpHere(v, ipkBottom);
  }
  
  *pbMayReplace = seenReplace;
  VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
}

#ifdef SQLITE_ENABLE_NULL_TRIM
/*
** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
** to be the number of columns in table pTab that must not be NULL-trimmed.
**
** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
*/
SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
  u16 i;

  /* Records with omitted columns are only allowed for schema format
  ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
  if( pTab->pSchema->file_format<2 ) return;

  for(i=pTab->nCol; i>1 && pTab->aCol[i-1].pDflt==0; i--){}
  sqlite3VdbeChangeP5(v, i);
}
#endif

/*
** This routine generates code to finish the INSERT or UPDATE operation
** that was started by a prior call to sqlite3GenerateConstraintChecks.
** A consecutive range of registers starting at regNewData contains the
** rowid and the content to be inserted.
**
................................................................................
SQLITE_PRIVATE void sqlite3CompleteInsertion(
  Parse *pParse,      /* The parser context */
  Table *pTab,        /* the table into which we are inserting */
  int iDataCur,       /* Cursor of the canonical data source */
  int iIdxCur,        /* First index cursor */
  int regNewData,     /* Range of content */
  int *aRegIdx,       /* Register used by each index.  0 for unused indices */
  int update_flags,   /* True for UPDATE, False for INSERT */
  int appendBias,     /* True if this is likely to be an append */
  int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
  Vdbe *v;            /* Prepared statements under construction */
  Index *pIdx;        /* An index being inserted or updated */
  u8 pik_flags;       /* flag values passed to the btree insert */
  int regData;        /* Content registers (after the rowid) */
  int regRec;         /* Register holding assembled record for the table */
  int i;              /* Loop counter */
  u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */

  assert( update_flags==0
       || update_flags==OPFLAG_ISUPDATE
       || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
  );

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    if( aRegIdx[i]==0 ) continue;
    bAffinityDone = 1;
    if( pIdx->pPartIdxWhere ){
      sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
      VdbeCoverage(v);
    }




    pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
      assert( pParse->nested==0 );
      pik_flags |= OPFLAG_NCHANGE;
      pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
      if( update_flags==0 ){
        sqlite3VdbeAddOp4(v, OP_InsertInt, 
            iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE
        );
        sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
      }
#endif
    }
    sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
                         aRegIdx[i]+1,
                         pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
    sqlite3VdbeChangeP5(v, pik_flags);
  }
  if( !HasRowid(pTab) ) return;
  regData = regNewData + 1;
  regRec = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
  sqlite3SetMakeRecordP5(v, pTab);
  if( !bAffinityDone ){
    sqlite3TableAffinity(v, pTab, 0);
    sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
  }
  if( pParse->nested ){
    pik_flags = 0;
  }else{
    pik_flags = OPFLAG_NCHANGE;
    pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
  }
  if( appendBias ){
    pik_flags |= OPFLAG_APPEND;
  }
  if( useSeekResult ){
    pik_flags |= OPFLAG_USESEEKRESULT;
  }
................................................................................
      autoIncStep(pParse, regAutoinc, regRowid);
    }else if( pDest->pIndex==0 ){
      addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
    }else{
      addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
      assert( (pDest->tabFlags & TF_Autoincrement)==0 );
    }
    sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
    if( db->flags & SQLITE_Vacuum ){
      sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
      insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
                           OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
    }else{
      insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
    }
................................................................................
    sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
    VdbeComment((v, "%s", pSrcIdx->zName));
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
    sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
    sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
    VdbeComment((v, "%s", pDestIdx->zName));
    addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
    sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
    if( db->flags & SQLITE_Vacuum ){
      /* This INSERT command is part of a VACUUM operation, which guarantees
      ** that the destination table is empty. If all indexed columns use
      ** collation sequence BINARY, then it can also be assumed that the
      ** index will be populated by inserting keys in strictly sorted 
      ** order. In this case, instead of seeking within the b-tree as part
      ** of every OP_IdxInsert opcode, an OP_Last is added before the
................................................................................
#endif

#endif /* SQLITE3EXT_H */

/************** End of sqlite3ext.h ******************************************/
/************** Continuing where we left off in loadext.c ********************/
/* #include "sqliteInt.h" */


#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Some API routines are omitted when various features are
** excluded from a build of SQLite.  Substitute a NULL pointer
** for any missing APIs.
*/
................................................................................
  return azModeName[eMode];
}

/*
** Locate a pragma in the aPragmaName[] array.
*/
static const PragmaName *pragmaLocate(const char *zName){
  int upr, lwr, mid = 0, rc;
  lwr = 0;
  upr = ArraySize(aPragmaName)-1;
  while( lwr<=upr ){
    mid = (lwr+upr)/2;
    rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
    if( rc==0 ) break;
    if( rc<0 ){
................................................................................
  int r1;

  v = pParse->pVdbe;
  r1 = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
  sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  sqlite3ReleaseTempReg(pParse, r1);
}

/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
................................................................................
      return SQLITE_ERROR;
    }
    assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));

    pCte->zCteErr = "circular reference: %s";
    pSavedWith = pParse->pWith;
    pParse->pWith = pWith;
    if( bMayRecursive ){
      Select *pPrior = pSel->pPrior;
      assert( pPrior->pWith==0 );
      pPrior->pWith = pSel->pWith;
      sqlite3WalkSelect(pWalker, pPrior);
      pPrior->pWith = 0;
    }else{
      sqlite3WalkSelect(pWalker, pSel);
    }
    pParse->pWith = pWith;

    for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
    pEList = pLeft->pEList;
    if( pCte->pCols ){
      if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
        sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
................................................................................
**
** This function is used as the xSelectCallback2() callback by
** sqlite3SelectExpand() when walking a SELECT tree to resolve table
** names and other FROM clause elements. 
*/
static void selectPopWith(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;
  if( pParse->pWith && p->pPrior==0 ){
    With *pWith = findRightmost(p)->pWith;
    if( pWith!=0 ){
      assert( pParse->pWith==pWith );
      pParse->pWith = pWith->pOuter;
    }
  }
}
#else
#define selectPopWith 0
#endif

/*
................................................................................
    return WRC_Abort;
  }
  if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }
  pTabList = p->pSrc;
  pEList = p->pEList;
  if( p->pWith ){
    sqlite3WithPush(pParse, p->pWith, 0);
  }

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);

................................................................................
  w.xExprCallback = sqlite3ExprWalkNoop;
  w.pParse = pParse;
  if( pParse->hasCompound ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;

  w.xSelectCallback2 = selectPopWith;

  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
................................................................................
        }
  
        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row
        ** of output.
        */
        resetAccumulator(pParse, &sAggInfo);
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        assert( pMinMax==0 || pMinMax->nExpr==1 );
        if( sqlite3WhereIsOrdered(pWInfo)>0 ){
................................................................................
** interface routines.  These are just wrappers around the main
** interface routine of sqlite3_exec().
**
** These routines are in a separate files so that they will not be linked
** if they are not used.
*/
/* #include "sqliteInt.h" */



#ifndef SQLITE_OMIT_GET_TABLE

/*
** This structure is used to pass data from sqlite3_get_table() through
** to the callback function is uses to build the result.
*/
................................................................................
    VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
    assert( i<pTab->nCol );
    sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
                         pCol->affinity, &pValue);
    if( pValue ){
      sqlite3VdbeAppendP4(v, pValue, P4_MEM);
    }
  }
#ifndef SQLITE_OMIT_FLOATING_POINT
  if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
    sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
  }
#endif

}

/*
** Process an UPDATE statement.
**
**   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
**          \_______/ \________/     \______/       \________________/
................................................................................
  Index *pIdx;           /* For looping over indices */
  Index *pPk;            /* The PRIMARY KEY index for WITHOUT ROWID tables */
  int nIdx;              /* Number of indices that need updating */
  int iBaseCur;          /* Base cursor number */
  int iDataCur;          /* Cursor for the canonical data btree */
  int iIdxCur;           /* Cursor for the first index */
  sqlite3 *db;           /* The database structure */
  int *aRegIdx = 0;      /* First register in array assigned to each index */
  int *aXRef = 0;        /* aXRef[i] is the index in pChanges->a[] of the
                         ** an expression for the i-th column of the table.
                         ** aXRef[i]==-1 if the i-th column is not changed. */
  u8 *aToOpen;           /* 1 for tables and indices to be opened */
  u8 chngPk;             /* PRIMARY KEY changed in a WITHOUT ROWID table */
  u8 chngRowid;          /* Rowid changed in a normal table */
  u8 chngKey;            /* Either chngPk or chngRowid */
  Expr *pRowidExpr = 0;  /* Expression defining the new record number */
  AuthContext sContext;  /* The authorization context */
  NameContext sNC;       /* The name-context to resolve expressions in */
  int iDb;               /* Database containing the table being updated */
  int eOnePass;          /* ONEPASS_XXX value from where.c */
  int hasFK;             /* True if foreign key processing is required */
  int labelBreak;        /* Jump here to break out of UPDATE loop */
  int labelContinue;     /* Jump here to continue next step of UPDATE loop */
  int flags;             /* Flags for sqlite3WhereBegin() */

#ifndef SQLITE_OMIT_TRIGGER
  int isView;            /* True when updating a view (INSTEAD OF trigger) */
  Trigger *pTrigger;     /* List of triggers on pTab, if required */
  int tmask;             /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
#endif
  int newmask;           /* Mask of NEW.* columns accessed by BEFORE triggers */
  int iEph = 0;          /* Ephemeral table holding all primary key values */
  int nKey = 0;          /* Number of elements in regKey for WITHOUT ROWID */
  int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */
  int addrOpen = 0;      /* Address of OP_OpenEphemeral */
  int iPk = 0;           /* First of nPk cells holding PRIMARY KEY value */
  i16 nPk = 0;           /* Number of components of the PRIMARY KEY */
  int bReplace = 0;      /* True if REPLACE conflict resolution might happen */

  /* Register Allocations */
  int regRowCount = 0;   /* A count of rows changed */
  int regOldRowid = 0;   /* The old rowid */
  int regNewRowid = 0;   /* The new rowid */
  int regNew = 0;        /* Content of the NEW.* table in triggers */
  int regOld = 0;        /* Content of OLD.* table in triggers */
................................................................................
    }else{
      reg = 0;
      for(i=0; i<pIdx->nKeyCol; i++){
        i16 iIdxCol = pIdx->aiColumn[i];
        if( iIdxCol<0 || aXRef[iIdxCol]>=0 ){
          reg = ++pParse->nMem;
          pParse->nMem += pIdx->nColumn;
          if( (onError==OE_Replace)
           || (onError==OE_Default && pIdx->onError==OE_Replace) 
          ){
            bReplace = 1;
          }
          break;
        }
      }
    }
    if( reg==0 ) aToOpen[j+1] = 0;
    aRegIdx[j] = reg;
  }
  if( bReplace ){
    /* If REPLACE conflict resolution might be invoked, open cursors on all 
    ** indexes in case they are needed to delete records.  */
    memset(aToOpen, 1, nIdx+1);
  }

  /* Begin generating code. */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

................................................................................
  if( IsVirtual(pTab) ){
    updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
                       pWhere, onError);
    goto update_cleanup;
  }
#endif

  /* Initialize the count of updated rows */

  if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){
    regRowCount = ++pParse->nMem;










    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);


  }




  if( HasRowid(pTab) ){
    sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  }else{




    assert( pPk!=0 );
    nPk = pPk->nKeyCol;
    iPk = pParse->nMem+1;
    pParse->nMem += nPk;
    regKey = ++pParse->nMem;
    iEph = pParse->nTab++;

    sqlite3VdbeAddOp2(v, OP_Null, 0, iPk);
    addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk);
    sqlite3VdbeSetP4KeyInfo(pParse, pPk);
  }

  /* Begin the database scan. 
  **
  ** Do not consider a single-pass strategy for a multi-row update if
  ** there are any triggers or foreign keys to process, or rows may
  ** be deleted as a result of REPLACE conflict handling. Any of these
  ** things might disturb a cursor being used to scan through the table
  ** or index, causing a single-pass approach to malfunction.  */
  flags = WHERE_ONEPASS_DESIRED|WHERE_SEEK_UNIQ_TABLE;
  if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace ){
    flags |= WHERE_ONEPASS_MULTIROW;
  }
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, flags, iIdxCur);

  if( pWInfo==0 ) goto update_cleanup;

  /* A one-pass strategy that might update more than one row may not
  ** be used if any column of the index used for the scan is being
  ** updated. Otherwise, if there is an index on "b", statements like
  ** the following could create an infinite loop:
  **
  **   UPDATE t1 SET b=b+1 WHERE b>?
  **
  ** Fall back to ONEPASS_OFF if where.c has selected a ONEPASS_MULTI
  ** strategy that uses an index for which one or more columns are being
  ** updated.  */
  eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
  if( eOnePass==ONEPASS_MULTI ){
    int iCur = aiCurOnePass[1];
    if( iCur>=0 && iCur!=iDataCur && aToOpen[iCur-iBaseCur] ){
      eOnePass = ONEPASS_OFF;
    }
    assert( iCur!=iDataCur || !HasRowid(pTab) );
  }
  
  if( HasRowid(pTab) ){
    /* Read the rowid of the current row of the WHERE scan. In ONEPASS_OFF
    ** mode, write the rowid into the FIFO. In either of the one-pass modes,
    ** leave it in register regOldRowid.  */
    sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid);
    if( eOnePass==ONEPASS_OFF ){
      sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
    }
  }else{
    /* Read the PK of the current row into an array of registers. In
    ** ONEPASS_OFF mode, serialize the array into a record and store it in
    ** the ephemeral table. Or, in ONEPASS_SINGLE or MULTI mode, change
    ** the OP_OpenEphemeral instruction to a Noop (the ephemeral table 
    ** is not required) and leave the PK fields in the array of registers.  */
    for(i=0; i<nPk; i++){
      assert( pPk->aiColumn[i]>=0 );
      sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur,pPk->aiColumn[i],iPk+i);

    }
    if( eOnePass ){
      sqlite3VdbeChangeToNoop(v, addrOpen);
      nKey = nPk;
      regKey = iPk;
    }else{
      sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey,
                        sqlite3IndexAffinityStr(db, pPk), nPk);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEph, regKey, iPk, nPk);
    }

  }

  if( eOnePass!=ONEPASS_MULTI ){
    sqlite3WhereEnd(pWInfo);




  }

  labelBreak = sqlite3VdbeMakeLabel(v);
  if( !isView ){













    int addrOnce = 0;




    /* Open every index that needs updating. */
    if( eOnePass!=ONEPASS_OFF ){
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
      if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
    }

    if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){
      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
    }
    sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen,
                               0, 0);
    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
  }

  /* Top of the update loop */
  if( eOnePass!=ONEPASS_OFF ){
    if( !isView && aiCurOnePass[0]!=iDataCur && aiCurOnePass[1]!=iDataCur ){
      assert( pPk );
      sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey);
      VdbeCoverageNeverTaken(v);
    }
    if( eOnePass==ONEPASS_SINGLE ){
      labelContinue = labelBreak;
    }else{
      labelContinue = sqlite3VdbeMakeLabel(v);
    }
    sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak);
    VdbeCoverageIf(v, pPk==0);
    VdbeCoverageIf(v, pPk!=0);
  }else if( pPk ){
    labelContinue = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v);
    addrTop = sqlite3VdbeAddOp2(v, OP_RowData, iEph, regKey);
................................................................................
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i);
      }
    }
  }

  if( !isView ){
    int addr1 = 0;        /* Address of jump instruction */


    /* Do constraint checks. */
    assert( regOldRowid>0 );
    sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
        regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace,
        aXRef);

................................................................................
    ** pre-update hook. If the caller invokes preupdate_new(), the returned
    ** value is copied from memory cell (regNewRowid+1+iCol), where iCol
    ** is the column index supplied by the user.
    */
    assert( regNew==regNewRowid+1 );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeAddOp3(v, OP_Delete, iDataCur,
        OPFLAG_ISUPDATE | ((hasFK || chngKey) ? 0 : OPFLAG_ISNOOP),
        regNewRowid
    );
    if( eOnePass==ONEPASS_MULTI ){
      assert( hasFK==0 && chngKey==0 );
      sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
    }
    if( !pParse->nested ){
      sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
    }
#else
    if( hasFK || chngKey ){
      sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
    }
#endif
    if( bReplace || chngKey ){
      sqlite3VdbeJumpHere(v, addr1);
    }

    if( hasFK ){
      sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngKey);
    }
  
    /* Insert the new index entries and the new record. */
    sqlite3CompleteInsertion(
        pParse, pTab, iDataCur, iIdxCur, regNewRowid, aRegIdx, 
        OPFLAG_ISUPDATE | (eOnePass==ONEPASS_MULTI ? OPFLAG_SAVEPOSITION : 0), 
        0, 0
    );

    /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
    ** handle rows (possibly in other tables) that refer via a foreign key
    ** to the row just updated. */ 
    if( hasFK ){
      sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey);
    }
................................................................................

  sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, 
      TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue);

  /* Repeat the above with the next record to be updated, until
  ** all record selected by the WHERE clause have been updated.
  */
  if( eOnePass==ONEPASS_SINGLE ){
    /* Nothing to do at end-of-loop for a single-pass */
  }else if( eOnePass==ONEPASS_MULTI ){
    sqlite3VdbeResolveLabel(v, labelContinue);
    sqlite3WhereEnd(pWInfo);
  }else if( pPk ){
    sqlite3VdbeResolveLabel(v, labelContinue);
    sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v);
  }else{
    sqlite3VdbeGoto(v, labelContinue);
  }
  sqlite3VdbeResolveLabel(v, labelBreak);
................................................................................
      testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
    }

    /* Seek the table cursor, if required */
    if( omitTable ){
      /* pIdx is a covering index.  No need to access the main table. */
    }else if( HasRowid(pIdx->pTable) ){
      if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
          (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE) 
       && (pWInfo->eOnePass==ONEPASS_SINGLE)
      )){
        iRowidReg = ++pParse->nMem;
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
        sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
        sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
        VdbeCoverage(v);
      }else{
        codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
................................................................................
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* uppercase equivalent to lowercase */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */
  unsigned char eOp2;              /* op2 value for LIKE/REGEXP/GLOB */
  int nLeft;                       /* Number of elements on left side vector */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
................................................................................
  }
  prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr);
  if( ExprHasProperty(pExpr, EP_FromJoin) ){
    Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
    prereqAll |= x;
    extraRight = x-1;  /* ON clause terms may not be used with an index
                       ** on left table of a LEFT JOIN.  Ticket #3015 */
    if( (prereqAll>>1)>=x ){
      sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
      return;
    }
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    int iCur, iColumn;
................................................................................
  ** new terms completely replace the original vector comparison, which is
  ** no longer used.
  **
  ** This is only required if at least one side of the comparison operation
  ** is not a sub-select.  */
  if( pWC->op==TK_AND 
  && (pExpr->op==TK_EQ || pExpr->op==TK_IS)
  && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
  && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
  && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 
    || (pExpr->pRight->flags & EP_xIsSelect)==0)
  ){

    int i;

    for(i=0; i<nLeft; i++){
      int idxNew;
      Expr *pNew;
      Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
      Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);

      pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
................................................................................
            assert( x>=0 );
          }
          x = sqlite3ColumnOfIndex(pIdx, x);
          if( x>=0 ){
            pOp->p2 = x;
            pOp->p1 = pLevel->iIdxCur;
          }
          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 
              || pWInfo->eOnePass );
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }
      }
    }
  }
................................................................................

/*
** Indicate that sqlite3ParserFree() will never be called with a null
** pointer.
*/
#define YYPARSEFREENEVERNULL 1

/*
** In the amalgamation, the parse.c file generated by lemon and the
** tokenize.c file are concatenated.  In that case, sqlite3RunParser()
** has access to the the size of the yyParser object and so the parser
** engine can be allocated from stack.  In that case, only the
** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
** omitted.
*/
#ifdef SQLITE_AMALGAMATION
# define sqlite3Parser_ENGINEALWAYSONSTACK 1
#endif

/*
** Alternative datatype for the argument to the malloc() routine passed
** into sqlite3ParserAlloc().  The default is size_t.
*/
#define YYMALLOCARGTYPE  u64

/*
................................................................................
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif

/* Initialize a new parser that has already been allocated.
*/
SQLITE_PRIVATE void sqlite3ParserInit(void *yypParser){
  yyParser *pParser = (yyParser*)yypParser;
#ifdef YYTRACKMAXSTACKDEPTH
  pParser->yyhwm = 0;
#endif
#if YYSTACKDEPTH<=0
  pParser->yytos = NULL;
  pParser->yystack = NULL;
  pParser->yystksz = 0;
  if( yyGrowStack(pParser) ){
    pParser->yystack = &pParser->yystk0;
    pParser->yystksz = 1;
  }
#endif
#ifndef YYNOERRORRECOVERY
  pParser->yyerrcnt = -1;
#endif
  pParser->yytos = pParser->yystack;
  pParser->yystack[0].stateno = 0;
  pParser->yystack[0].major = 0;
}

#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
................................................................................
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to sqlite3Parser and sqlite3ParserFree.
*/
SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(YYMALLOCARGTYPE)){
  yyParser *pParser;
  pParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
  if( pParser ) sqlite3ParserInit(pParser);

  return pParser;








}







#endif /* sqlite3Parser_ENGINEALWAYSONSTACK */




/* The following function deletes the "minor type" or semantic value
** associated with a symbol.  The symbol can be either a terminal
** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
** a pointer to the value to be deleted.  The code used to do the 
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
................................................................................
      yyTracePrompt,
      yyTokenName[yytos->major]);
  }
#endif
  yy_destructor(pParser, yytos->major, &yytos->minor);
}

/*
** Clear all secondary memory allocations from the parser
*/
SQLITE_PRIVATE void sqlite3ParserFinalize(void *p){
  yyParser *pParser = (yyParser*)p;
  while( pParser->yytos>pParser->yystack ) yy_pop_parser_stack(pParser);
#if YYSTACKDEPTH<=0
  if( pParser->yystack!=&pParser->yystk0 ) free(pParser->yystack);
#endif
}

#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
/* 
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.
**
** If the YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.
*/
SQLITE_PRIVATE void sqlite3ParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){

#ifndef YYPARSEFREENEVERNULL
  if( p==0 ) return;
#endif




  sqlite3ParserFinalize(p);
  (*freeProc)(p);
}
#endif /* sqlite3Parser_ENGINEALWAYSONSTACK */

/*
** Return the peak depth of the stack for a parser.
*/
#ifdef YYTRACKMAXSTACKDEPTH
SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
  yyParser *pParser = (yyParser*)p;
................................................................................
  int nErr = 0;                   /* Number of errors encountered */
  int i;                          /* Loop counter */
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  unsigned char zSpace[sizeof(yyParser)];  /* Space for parser engine object */
#endif

  assert( zSql!=0 );
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  pEngine = zSpace;
  sqlite3ParserInit(pEngine);
#else
  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    sqlite3OomFault(db);
    return SQLITE_NOMEM_BKPT;
  }
#endif
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->pVList==0 );
  while( 1 ){
    assert( i>=0 );
    if( zSql[i]!=0 ){
................................................................................
#ifdef YYTRACKMAXSTACKDEPTH
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
#ifdef sqlite3Parser_ENGINEALWAYSONSTACK
  sqlite3ParserFinalize(pEngine);
#else
  sqlite3ParserFree(pEngine, sqlite3_free);
#endif
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM_BKPT;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
    pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc));
  }
  assert( pzErrMsg!=0 );
................................................................................
  p->db = db;
  p->nColumn = nCol;
  p->nPendingData = 0;
  p->azColumn = (char **)&p[1];
  p->pTokenizer = pTokenizer;
  p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
  p->bHasDocsize = (isFts4 && bNoDocsize==0);
  p->bHasStat = (u8)isFts4;
  p->bFts4 = (u8)isFts4;
  p->bDescIdx = (u8)bDescIdx;
  p->nAutoincrmerge = 0xff;   /* 0xff means setting unknown */
  p->zContentTbl = zContent;
  p->zLanguageid = zLanguageid;
  zContent = 0;
  zLanguageid = 0;
  TESTONLY( p->inTransaction = -1 );
  TESTONLY( p->mxSavepoint = -1 );
................................................................................
    char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName);
    if( zSql ){
      sqlite3_stmt *pStmt = 0;
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
      if( rc==SQLITE_OK ){
        int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW);
        rc = sqlite3_finalize(pStmt);
        if( rc==SQLITE_OK ) p->bHasStat = (u8)bHasStat;
      }
      sqlite3_free(zSql);
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  return rc;
................................................................................
** An rtree virtual-table object.
*/
struct Rtree {
  sqlite3_vtab base;          /* Base class.  Must be first */
  sqlite3 *db;                /* Host database connection */
  int iNodeSize;              /* Size in bytes of each node in the node table */
  u8 nDim;                    /* Number of dimensions */
  u8 nDim2;                   /* Twice the number of dimensions */
  u8 eCoordType;              /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
  u8 nBytesPerCell;           /* Bytes consumed per cell */
  u8 inWrTrans;               /* True if inside write transaction */
  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 
  u32 nBusy;                  /* Current number of users of this structure */
  i64 nRowEst;                /* Estimated number of rows in this table */
  u32 nCursor;                /* Number of open cursors */

  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
  */
  RtreeNode *pDeleted;
  int iReinsertHeight;        /* Height of sub-trees Reinsert() has run on */

  /* Blob I/O on xxx_node */
  sqlite3_blob *pNodeBlob;

  /* Statements to read/write/delete a record from xxx_node */

  sqlite3_stmt *pWriteNode;
  sqlite3_stmt *pDeleteNode;

  /* Statements to read/write/delete a record from xxx_rowid */
  sqlite3_stmt *pReadRowid;
  sqlite3_stmt *pWriteRowid;
  sqlite3_stmt *pDeleteRowid;
................................................................................
#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN
# define MIN(x,y) ((x) > (y) ? (y) : (x))
#endif

/* What version of GCC is being used.  0 means GCC is not being used */
#ifndef GCC_VERSION
#ifdef __GNUC__
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif
#endif

/* What version of CLANG is being used.  0 means CLANG is not being used */
#ifndef CLANG_VERSION
#if defined(__clang__) && !defined(_WIN32)
# define CLANG_VERSION \
            (__clang_major__*1000000+__clang_minor__*1000+__clang_patchlevel__)
#else
# define CLANG_VERSION 0
#endif
#endif

/* The testcase() macro should already be defined in the amalgamation.  If
** it is not, make it a no-op.
*/
#ifndef SQLITE_AMALGAMATION
# define testcase(X)
#endif

/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
** at run-time.
*/
#ifndef SQLITE_BYTEORDER
#if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
     defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
     defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
     defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    1234
#elif (defined(sparc)    || defined(__ppc__))  \
    && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    4321
#else
# define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
#endif
#endif


/* What version of MSVC is being used.  0 means MSVC is not being used */
#ifndef MSVC_VERSION
#if defined(_MSC_VER)
# define MSVC_VERSION _MSC_VER
#else
# define MSVC_VERSION 0
#endif
#endif

/*
** Functions to deserialize a 16 bit integer, 32 bit real number and
** 64 bit integer. The deserialized value is returned.
*/
static int readInt16(u8 *p){
  return (p[0]<<8) + p[1];
}
static void readCoord(u8 *p, RtreeCoord *pCoord){
  assert( ((((char*)p) - (char*)0)&3)==0 );  /* p is always 4-byte aligned */
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
  pCoord->u = _byteswap_ulong(*(u32*)p);
#elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  pCoord->u = __builtin_bswap32(*(u32*)p);
#elif SQLITE_BYTEORDER==1234
  pCoord->u = ((pCoord->u>>24)&0xff)|((pCoord->u>>8)&0xff00)|
              ((pCoord->u&0xff)<<24)|((pCoord->u&0xff00)<<8);
#elif SQLITE_BYTEORDER==4321
  pCoord->u = *(u32*)p;
#else
  pCoord->u = (
    (((u32)p[0]) << 24) + 
    (((u32)p[1]) << 16) + 
    (((u32)p[2]) <<  8) + 
    (((u32)p[3]) <<  0)
  );
#endif
}
static i64 readInt64(u8 *p){
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
  u64 x;
  memcpy(&x, p, 8);
  return (i64)_byteswap_uint64(x);
#elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  u64 x;
  memcpy(&x, p, 8);
  return (i64)__builtin_bswap64(x);
#elif SQLITE_BYTEORDER==4321
  i64 x;
  memcpy(&x, p, 8);
  return x;
#else
  return (
    (((i64)p[0]) << 56) + 
    (((i64)p[1]) << 48) + 
    (((i64)p[2]) << 40) + 
    (((i64)p[3]) << 32) + 
    (((i64)p[4]) << 24) + 
    (((i64)p[5]) << 16) + 
    (((i64)p[6]) <<  8) + 
    (((i64)p[7]) <<  0)
  );
#endif
}

/*
** Functions to serialize a 16 bit integer, 32 bit real number and
** 64 bit integer. The value returned is the number of bytes written
** to the argument buffer (always 2, 4 and 8 respectively).
*/
................................................................................
static int writeInt16(u8 *p, int i){
  p[0] = (i>> 8)&0xFF;
  p[1] = (i>> 0)&0xFF;
  return 2;
}
static int writeCoord(u8 *p, RtreeCoord *pCoord){
  u32 i;
  assert( ((((char*)p) - (char*)0)&3)==0 );  /* p is always 4-byte aligned */
  assert( sizeof(RtreeCoord)==4 );
  assert( sizeof(u32)==4 );
#if SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  i = __builtin_bswap32(pCoord->u);
  memcpy(p, &i, 4);
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
  i = _byteswap_ulong(pCoord->u);
  memcpy(p, &i, 4);
#elif SQLITE_BYTEORDER==4321
  i = pCoord->u;
  memcpy(p, &i, 4);
#else
  i = pCoord->u;
  p[0] = (i>>24)&0xFF;
  p[1] = (i>>16)&0xFF;
  p[2] = (i>> 8)&0xFF;
  p[3] = (i>> 0)&0xFF;
#endif
  return 4;
}
static int writeInt64(u8 *p, i64 i){
#if SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  i = (i64)__builtin_bswap64((u64)i);
  memcpy(p, &i, 8);
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
  i = (i64)_byteswap_uint64((u64)i);
  memcpy(p, &i, 8);
#elif SQLITE_BYTEORDER==4321
  memcpy(p, &i, 8);
#else
  p[0] = (i>>56)&0xFF;
  p[1] = (i>>48)&0xFF;
  p[2] = (i>>40)&0xFF;
  p[3] = (i>>32)&0xFF;
  p[4] = (i>>24)&0xFF;
  p[5] = (i>>16)&0xFF;
  p[6] = (i>> 8)&0xFF;
  p[7] = (i>> 0)&0xFF;
#endif
  return 8;
}

/*
** Increment the reference count of node p.
*/
static void nodeReference(RtreeNode *p){
................................................................................
    pNode->nRef = 1;
    pNode->pParent = pParent;
    pNode->isDirty = 1;
    nodeReference(pParent);
  }
  return pNode;
}

/*
** Clear the Rtree.pNodeBlob object
*/
static void nodeBlobReset(Rtree *pRtree){
  if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){
    sqlite3_blob *pBlob = pRtree->pNodeBlob;
    pRtree->pNodeBlob = 0;
    sqlite3_blob_close(pBlob);
  }
}

/*
** Obtain a reference to an r-tree node.
*/
static int nodeAcquire(
  Rtree *pRtree,             /* R-tree structure */
  i64 iNode,                 /* Node number to load */
  RtreeNode *pParent,        /* Either the parent node or NULL */
  RtreeNode **ppNode         /* OUT: Acquired node */
){

  int rc = SQLITE_OK;
  RtreeNode *pNode = 0;

  /* Check if the requested node is already in the hash table. If so,
  ** increase its reference count and return it.
  */
  if( (pNode = nodeHashLookup(pRtree, iNode)) ){
    assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
    if( pParent && !pNode->pParent ){
................................................................................
      pNode->pParent = pParent;
    }
    pNode->nRef++;
    *ppNode = pNode;
    return SQLITE_OK;
  }

  if( pRtree->pNodeBlob ){
    sqlite3_blob *pBlob = pRtree->pNodeBlob;
    pRtree->pNodeBlob = 0;
    rc = sqlite3_blob_reopen(pBlob, iNode);
    pRtree->pNodeBlob = pBlob;
    if( rc ){
      nodeBlobReset(pRtree);
      if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;

    }
  }
  if( pRtree->pNodeBlob==0 ){
    char *zTab = sqlite3_mprintf("%s_node", pRtree->zName);
    if( zTab==0 ) return SQLITE_NOMEM;
    rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0,
                           &pRtree->pNodeBlob);
    sqlite3_free(zTab);
  }
  if( rc ){
    nodeBlobReset(pRtree);
    *ppNode = 0;
    /* If unable to open an sqlite3_blob on the desired row, that can only
    ** be because the shadow tables hold erroneous data. */
    if( rc==SQLITE_ERROR ) rc = SQLITE_CORRUPT_VTAB;
  }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){
    pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
    if( !pNode ){
      rc = SQLITE_NOMEM;
    }else{
      pNode->pParent = pParent;
      pNode->zData = (u8 *)&pNode[1];
      pNode->nRef = 1;
      pNode->iNode = iNode;
      pNode->isDirty = 0;
      pNode->pNext = 0;
      rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData,
                             pRtree->iNodeSize, 0);
      nodeReference(pParent);
    }
  }




  /* If the root node was just loaded, set pRtree->iDepth to the height
  ** of the r-tree structure. A height of zero means all data is stored on
  ** the root node. A height of one means the children of the root node
  ** are the leaves, and so on. If the depth as specified on the root node
  ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
  */
................................................................................
  RtreeNode *pNode,          /* The node into which the cell is to be written */
  RtreeCell *pCell,          /* The cell to write */
  int iCell                  /* Index into pNode into which pCell is written */
){
  int ii;
  u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
  p += writeInt64(p, pCell->iRowid);
  for(ii=0; ii<pRtree->nDim2; ii++){
    p += writeCoord(p, &pCell->aCoord[ii]);
  }
  pNode->isDirty = 1;
}

/*
** Remove the cell with index iCell from node pNode.
................................................................................
  Rtree *pRtree,               /* The overall R-Tree */
  RtreeNode *pNode,            /* The node containing the cell to be read */
  int iCell,                   /* Index of the cell within the node */
  RtreeCell *pCell             /* OUT: Write the cell contents here */
){
  u8 *pData;
  RtreeCoord *pCoord;
  int ii = 0;
  pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
  pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
  pCoord = pCell->aCoord;
  do{
    readCoord(pData, &pCoord[ii]);

    readCoord(pData+4, &pCoord[ii+1]);
    pData += 8;
    ii += 2;
  }while( ii<pRtree->nDim2 );
}


/* Forward declaration for the function that does the work of
** the virtual table module xCreate() and xConnect() methods.
*/
static int rtreeInit(
................................................................................
/*
** Decrement the r-tree reference count. When the reference count reaches
** zero the structure is deleted.
*/
static void rtreeRelease(Rtree *pRtree){
  pRtree->nBusy--;
  if( pRtree->nBusy==0 ){
    pRtree->inWrTrans = 0;
    pRtree->nCursor = 0;
    nodeBlobReset(pRtree);
    sqlite3_finalize(pRtree->pWriteNode);
    sqlite3_finalize(pRtree->pDeleteNode);
    sqlite3_finalize(pRtree->pReadRowid);
    sqlite3_finalize(pRtree->pWriteRowid);
    sqlite3_finalize(pRtree->pDeleteRowid);
    sqlite3_finalize(pRtree->pReadParent);
    sqlite3_finalize(pRtree->pWriteParent);
................................................................................
    pRtree->zDb, pRtree->zName, 
    pRtree->zDb, pRtree->zName,
    pRtree->zDb, pRtree->zName
  );
  if( !zCreate ){
    rc = SQLITE_NOMEM;
  }else{
    nodeBlobReset(pRtree);
    rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
    sqlite3_free(zCreate);
  }
  if( rc==SQLITE_OK ){
    rtreeRelease(pRtree);
  }

................................................................................
}

/* 
** Rtree virtual table module xOpen method.
*/
static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  int rc = SQLITE_NOMEM;
  Rtree *pRtree = (Rtree *)pVTab;
  RtreeCursor *pCsr;

  pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
  if( pCsr ){
    memset(pCsr, 0, sizeof(RtreeCursor));
    pCsr->base.pVtab = pVTab;
    rc = SQLITE_OK;
    pRtree->nCursor++;
  }
  *ppCursor = (sqlite3_vtab_cursor *)pCsr;

  return rc;
}


................................................................................
/* 
** Rtree virtual table module xClose method.
*/
static int rtreeClose(sqlite3_vtab_cursor *cur){
  Rtree *pRtree = (Rtree *)(cur->pVtab);
  int ii;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  assert( pRtree->nCursor>0 );
  freeCursorConstraints(pCsr);
  sqlite3_free(pCsr->aPoint);
  for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
  sqlite3_free(pCsr);
  pRtree->nCursor--;
  nodeBlobReset(pRtree);
  return SQLITE_OK;
}

/*
** Rtree virtual table module xEof method.
**
** Return non-zero if the cursor does not currently point to a valid 
................................................................................
** Convert raw bits from the on-disk RTree record into a coordinate value.
** The on-disk format is big-endian and needs to be converted for little-
** endian platforms.  The on-disk record stores integer coordinates if
** eInt is true and it stores 32-bit floating point records if eInt is
** false.  a[] is the four bytes of the on-disk record to be decoded.
** Store the results in "r".
**
** There are five versions of this macro.  The last one is generic.  The
** other four are various architectures-specific optimizations.
*/
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
    RtreeCoord c;    /* Coordinate decoded */                   \
    c.u = _byteswap_ulong(*(u32*)a);                            \
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
}
#elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
    RtreeCoord c;    /* Coordinate decoded */                   \
    c.u = __builtin_bswap32(*(u32*)a);                          \
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
}
#elif SQLITE_BYTEORDER==1234
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
    RtreeCoord c;    /* Coordinate decoded */                   \
    memcpy(&c.u,a,4);                                           \
    c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)|                   \
          ((c.u&0xff)<<24)|((c.u&0xff00)<<8);                   \
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
}
#elif SQLITE_BYTEORDER==4321
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
    RtreeCoord c;    /* Coordinate decoded */                   \
    memcpy(&c.u,a,4);                                           \
    r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
}
#else
#define RTREE_DECODE_COORD(eInt, a, r) {                        \
................................................................................
  RtreeConstraint *pConstraint,  /* The constraint to test */
  int eInt,                      /* True if RTree holding integer coordinates */
  u8 *pCellData,                 /* Raw cell content */
  RtreeSearchPoint *pSearch,     /* Container of this cell */
  sqlite3_rtree_dbl *prScore,    /* OUT: score for the cell */
  int *peWithin                  /* OUT: visibility of the cell */
){

  sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
  int nCoord = pInfo->nCoord;                           /* No. of coordinates */
  int rc;                                             /* Callback return code */
  RtreeCoord c;                                       /* Translator union */
  sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2];   /* Decoded coordinates */

  assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
  assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );

  if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
    pInfo->iRowid = readInt64(pCellData);
  }
  pCellData += 8;
#ifndef SQLITE_RTREE_INT_ONLY
  if( eInt==0 ){
    switch( nCoord ){
      case 10:  readCoord(pCellData+36, &c); aCoord[9] = c.f;
                readCoord(pCellData+32, &c); aCoord[8] = c.f;
      case 8:   readCoord(pCellData+28, &c); aCoord[7] = c.f;
                readCoord(pCellData+24, &c); aCoord[6] = c.f;
      case 6:   readCoord(pCellData+20, &c); aCoord[5] = c.f;
                readCoord(pCellData+16, &c); aCoord[4] = c.f;
      case 4:   readCoord(pCellData+12, &c); aCoord[3] = c.f;
                readCoord(pCellData+8,  &c); aCoord[2] = c.f;
      default:  readCoord(pCellData+4,  &c); aCoord[1] = c.f;
                readCoord(pCellData,    &c); aCoord[0] = c.f;
    }
  }else
#endif
  {
    switch( nCoord ){
      case 10:  readCoord(pCellData+36, &c); aCoord[9] = c.i;
                readCoord(pCellData+32, &c); aCoord[8] = c.i;
      case 8:   readCoord(pCellData+28, &c); aCoord[7] = c.i;
                readCoord(pCellData+24, &c); aCoord[6] = c.i;
      case 6:   readCoord(pCellData+20, &c); aCoord[5] = c.i;
                readCoord(pCellData+16, &c); aCoord[4] = c.i;
      case 4:   readCoord(pCellData+12, &c); aCoord[3] = c.i;
                readCoord(pCellData+8,  &c); aCoord[2] = c.i;
      default:  readCoord(pCellData+4,  &c); aCoord[1] = c.i;
                readCoord(pCellData,    &c); aCoord[0] = c.i;
    }
  }
  if( pConstraint->op==RTREE_MATCH ){
    int eWithin = 0;
    rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
                              nCoord, aCoord, &eWithin);
    if( eWithin==0 ) *peWithin = NOT_WITHIN;
    *prScore = RTREE_ZERO;
  }else{
    pInfo->aCoord = aCoord;
    pInfo->iLevel = pSearch->iLevel - 1;
    pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
    pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
    rc = pConstraint->u.xQueryFunc(pInfo);
................................................................................
  /* p->iCoord might point to either a lower or upper bound coordinate
  ** in a coordinate pair.  But make pCellData point to the lower bound.
  */
  pCellData += 8 + 4*(p->iCoord&0xfe);

  assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
      || p->op==RTREE_GT || p->op==RTREE_EQ );
  assert( ((((char*)pCellData) - (char*)0)&3)==0 );  /* 4-byte aligned */
  switch( p->op ){
    case RTREE_LE:
    case RTREE_LT:
    case RTREE_EQ:
      RTREE_DECODE_COORD(eInt, pCellData, val);
      /* val now holds the lower bound of the coordinate pair */
      if( p->u.rValue>=val ) return;
................................................................................
  int *peWithin              /* Adjust downward, as appropriate */
){
  RtreeDValue xN;      /* Coordinate value converted to a double */

  assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
      || p->op==RTREE_GT || p->op==RTREE_EQ );
  pCellData += 8 + p->iCoord*4;
  assert( ((((char*)pCellData) - (char*)0)&3)==0 );  /* 4-byte aligned */
  RTREE_DECODE_COORD(eInt, pCellData, xN);
  switch( p->op ){
    case RTREE_LE: if( xN <= p->u.rValue ) return;  break;
    case RTREE_LT: if( xN <  p->u.rValue ) return;  break;
    case RTREE_GE: if( xN >= p->u.rValue ) return;  break;
    case RTREE_GT: if( xN >  p->u.rValue ) return;  break;
    default:       if( xN == p->u.rValue ) return;  break;
................................................................................
  if( pA->rScore>pB->rScore ) return +1;
  if( pA->iLevel<pB->iLevel ) return -1;
  if( pA->iLevel>pB->iLevel ) return +1;
  return 0;
}

/*
** Interchange two search points in a cursor.
*/
static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
  RtreeSearchPoint t = p->aPoint[i];
  assert( i<j );
  p->aPoint[i] = p->aPoint[j];
  p->aPoint[j] = t;
  i++; j++;
................................................................................
      if( p->iCell>=nCell ){
        RTREE_QUEUE_TRACE(pCur, "POP-S:");
        rtreeSearchPointPop(pCur);
      }
      if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
      p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
      if( p==0 ) return SQLITE_NOMEM;
      p->eWithin = (u8)eWithin;
      p->id = x.id;
      p->iCell = x.iCell;
      RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
      break;
    }
    if( p->iCell>=nCell ){
      RTREE_QUEUE_TRACE(pCur, "POP-Se:");
................................................................................
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);

  if( rc ) return rc;
  if( p==0 ) return SQLITE_OK;
  if( i==0 ){
    sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
  }else{

    nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else
#endif
    {
................................................................................
    if( rc==SQLITE_OK && pLeaf!=0 ){
      p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
      assert( p!=0 );  /* Always returns pCsr->sPoint */
      pCsr->aNode[0] = pLeaf;
      p->id = iNode;
      p->eWithin = PARTLY_WITHIN;
      rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
      p->iCell = (u8)iCell;
      RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
    }else{
      pCsr->atEOF = 1;
    }
  }else{
    /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 
    ** with the configured constraints. 
................................................................................
            ** can be cast into an RtreeMatchArg object. One created using
            ** an sqlite3_rtree_geometry_callback() SQL user function.
            */
            rc = deserializeGeometry(argv[ii], p);
            if( rc!=SQLITE_OK ){
              break;
            }
            p->pInfo->nCoord = pRtree->nDim2;
            p->pInfo->anQueue = pCsr->anQueue;
            p->pInfo->mxLevel = pRtree->iDepth + 1;
          }else{
#ifdef SQLITE_RTREE_INT_ONLY
            p->u.rValue = sqlite3_value_int64(argv[ii]);
#else
            p->u.rValue = sqlite3_value_double(argv[ii]);
................................................................................
#endif
          }
        }
      }
    }
    if( rc==SQLITE_OK ){
      RtreeSearchPoint *pNew;
      pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
      if( pNew==0 ) return SQLITE_NOMEM;
      pNew->id = 1;
      pNew->iCell = 0;
      pNew->eWithin = PARTLY_WITHIN;
      assert( pCsr->bPoint==1 );
      pCsr->aNode[0] = pRoot;
      pRoot = 0;
................................................................................
  }

  nodeRelease(pRtree, pRoot);
  rtreeRelease(pRtree);
  return rc;
}














/*
** Rtree virtual table module xBestIndex method. There are three
** table scan strategies to choose from (in order from most to 
** least desirable):
**
**   idxNum     idxStr        Strategy
**   ------------------------------------------------
................................................................................
      /* This strategy involves a two rowid lookups on an B-Tree structures
      ** and then a linear search of an R-Tree node. This should be 
      ** considered almost as quick as a direct rowid lookup (for which 
      ** sqlite uses an internal cost of 0.0). It is expected to return
      ** a single row.
      */ 
      pIdxInfo->estimatedCost = 30.0;
      pIdxInfo->estimatedRows = 1;
      return SQLITE_OK;
    }

    if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
      u8 op;
      switch( p->op ){
        case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
................................................................................
        case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
        default:
          assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
          op = RTREE_MATCH; 
          break;
      }
      zIdxStr[iIdx++] = op;
      zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0');
      pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
      pIdxInfo->aConstraintUsage[ii].omit = 1;
    }
  }

  pIdxInfo->idxNum = 2;
  pIdxInfo->needToFreeIdxStr = 1;
  if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
    return SQLITE_NOMEM;
  }

  nRow = pRtree->nRowEst >> (iIdx/2);
  pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
  pIdxInfo->estimatedRows = nRow;

  return rc;
}

/*
** Return the N-dimensional volumn of the cell stored in *p.
*/
static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
  RtreeDValue area = (RtreeDValue)1;
  assert( pRtree->nDim>=1 && pRtree->nDim<=5 );
#ifndef SQLITE_RTREE_INT_ONLY
  if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
    switch( pRtree->nDim ){

      case 5:  area  = p->aCoord[9].f - p->aCoord[8].f;
      case 4:  area *= p->aCoord[7].f - p->aCoord[6].f;
      case 3:  area *= p->aCoord[5].f - p->aCoord[4].f;
      case 2:  area *= p->aCoord[3].f - p->aCoord[2].f;
      default: area *= p->aCoord[1].f - p->aCoord[0].f;
    }
  }else
#endif
  {
    switch( pRtree->nDim ){
      case 5:  area  = p->aCoord[9].i - p->aCoord[8].i;
      case 4:  area *= p->aCoord[7].i - p->aCoord[6].i;
      case 3:  area *= p->aCoord[5].i - p->aCoord[4].i;
      case 2:  area *= p->aCoord[3].i - p->aCoord[2].i;
      default: area *= p->aCoord[1].i - p->aCoord[0].i;
    }
  }
  return area;
}

/*
** Return the margin length of cell p. The margin length is the sum
** of the objects size in each dimension.
*/
static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
  RtreeDValue margin = 0;
  int ii = pRtree->nDim2 - 2;
  do{
    margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));

    ii -= 2;
  }while( ii>=0 );
  return margin;
}

/*
** Store the union of cells p1 and p2 in p1.
*/
static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
  int ii = 0;
  if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
    do{
      p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
      p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);

      ii += 2;
    }while( ii<pRtree->nDim2 );
  }else{

    do{
      p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
      p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);

      ii += 2;
    }while( ii<pRtree->nDim2 );
  }
}

/*
** Return true if the area covered by p2 is a subset of the area covered
** by p1. False otherwise.
*/
static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
  int ii;
  int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
  for(ii=0; ii<pRtree->nDim2; ii+=2){
    RtreeCoord *a1 = &p1->aCoord[ii];
    RtreeCoord *a2 = &p2->aCoord[ii];
    if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 
     || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 
    ){
      return 0;
    }
................................................................................
  int nCell
){
  int ii;
  RtreeDValue overlap = RTREE_ZERO;
  for(ii=0; ii<nCell; ii++){
    int jj;
    RtreeDValue o = (RtreeDValue)1;
    for(jj=0; jj<pRtree->nDim2; jj+=2){
      RtreeDValue x1, x2;
      x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
      x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
      if( x2<x1 ){
        o = (RtreeDValue)0;
        break;
      }else{
................................................................................
    **
    ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
    ** with "column" that are interpreted as table constraints.
    ** Example:  CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
    ** This problem was discovered after years of use, so we silently ignore
    ** these kinds of misdeclared tables to avoid breaking any legacy.
    */
    assert( nData<=(pRtree->nDim2 + 3) );

#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<nData-4; ii+=2){
        cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]);
        cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
................................................................................
    }
  }

constraint:
  rtreeRelease(pRtree);
  return rc;
}

/*
** Called when a transaction starts.
*/
static int rtreeBeginTransaction(sqlite3_vtab *pVtab){
  Rtree *pRtree = (Rtree *)pVtab;
  assert( pRtree->inWrTrans==0 );
  pRtree->inWrTrans++;
  return SQLITE_OK;
}

/*
** Called when a transaction completes (either by COMMIT or ROLLBACK).
** The sqlite3_blob object should be released at this point.
*/
static int rtreeEndTransaction(sqlite3_vtab *pVtab){
  Rtree *pRtree = (Rtree *)pVtab;
  pRtree->inWrTrans = 0;
  nodeBlobReset(pRtree);
  return SQLITE_OK;
}

/*
** The xRename method for rtree module virtual tables.
*/
static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_NOMEM;
................................................................................
  );
  if( zSql ){
    rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
    sqlite3_free(zSql);
  }
  return rc;
}


/*
** This function populates the pRtree->nRowEst variable with an estimate
** of the number of rows in the virtual table. If possible, this is based
** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
*/
static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
................................................................................
  rtreeClose,                 /* xClose - close a cursor */
  rtreeFilter,                /* xFilter - configure scan constraints */
  rtreeNext,                  /* xNext - advance a cursor */
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  rtreeBeginTransaction,      /* xBegin - begin transaction */
  rtreeEndTransaction,        /* xSync - sync transaction */
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  0,                          /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */
};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 
  const char *zDb, 
  const char *zPrefix, 
  int isCreate
){
  int rc = SQLITE_OK;

  #define N_STATEMENT 8
  static const char *azSql[N_STATEMENT] = {
    /* Write the xxx_node table */

    "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",

    /* Read and write the xxx_rowid table */
    "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
    "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
    "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
................................................................................
    rc = sqlite3_exec(db, zCreate, 0, 0, 0);
    sqlite3_free(zCreate);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }


  appStmt[0] = &pRtree->pWriteNode;
  appStmt[1] = &pRtree->pDeleteNode;
  appStmt[2] = &pRtree->pReadRowid;
  appStmt[3] = &pRtree->pWriteRowid;
  appStmt[4] = &pRtree->pDeleteRowid;
  appStmt[5] = &pRtree->pReadParent;
  appStmt[6] = &pRtree->pWriteParent;
  appStmt[7] = &pRtree->pDeleteParent;

  rc = rtreeQueryStat1(db, pRtree);
  for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
    char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
    if( zSql ){
      rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); 
    }else{
................................................................................
    return SQLITE_NOMEM;
  }
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
  pRtree->nBusy = 1;
  pRtree->base.pModule = &rtreeModule;
  pRtree->zDb = (char *)&pRtree[1];
  pRtree->zName = &pRtree->zDb[nDb+1];
  pRtree->nDim = (u8)((argc-4)/2);
  pRtree->nDim2 = pRtree->nDim*2;
  pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
  pRtree->eCoordType = (u8)eCoordType;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate, pzErr);

  /* Create/Connect to the underlying relational database schema. If
................................................................................
  RtreeNode node;
  Rtree tree;
  int ii;

  UNUSED_PARAMETER(nArg);
  memset(&node, 0, sizeof(RtreeNode));
  memset(&tree, 0, sizeof(Rtree));
  tree.nDim = (u8)sqlite3_value_int(apArg[0]);
  tree.nDim2 = tree.nDim*2;
  tree.nBytesPerCell = 8 + 8 * tree.nDim;
  node.zData = (u8 *)sqlite3_value_blob(apArg[1]);

  for(ii=0; ii<NCELL(&node); ii++){
    char zCell[512];
    int nCell = 0;
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = (int)strlen(zCell);
    for(jj=0; jj<tree.nDim2; jj++){
#ifndef SQLITE_RTREE_INT_ONLY
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %g",
                       (double)cell.aCoord[jj].f);
#else
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
                       cell.aCoord[jj].i);
#endif
................................................................................
  }
}

/*
** Register the ICU extension functions with database db.
*/
SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){
  static const struct IcuScalar {
    const char *zName;                        /* Function name */
    unsigned char nArg;                       /* Number of arguments */
    unsigned short enc;                       /* Optimal text encoding */
    unsigned char iContext;                   /* sqlite3_user_data() context */
    void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
  } scalars[] = {
    {"icu_load_collation",  2, SQLITE_UTF8,                1, icuLoadCollation},
    {"regexp", 2, SQLITE_ANY|SQLITE_DETERMINISTIC,         0, icuRegexpFunc},

    {"lower",  1, SQLITE_UTF16|SQLITE_DETERMINISTIC,       0, icuCaseFunc16},
    {"lower",  2, SQLITE_UTF16|SQLITE_DETERMINISTIC,       0, icuCaseFunc16},
    {"upper",  1, SQLITE_UTF16|SQLITE_DETERMINISTIC,       1, icuCaseFunc16},
    {"upper",  2, SQLITE_UTF16|SQLITE_DETERMINISTIC,       1, icuCaseFunc16},

    {"lower",  1, SQLITE_UTF8|SQLITE_DETERMINISTIC,        0, icuCaseFunc16},
    {"lower",  2, SQLITE_UTF8|SQLITE_DETERMINISTIC,        0, icuCaseFunc16},
    {"upper",  1, SQLITE_UTF8|SQLITE_DETERMINISTIC,        1, icuCaseFunc16},
    {"upper",  2, SQLITE_UTF8|SQLITE_DETERMINISTIC,        1, icuCaseFunc16},

    {"like",   2, SQLITE_UTF8|SQLITE_DETERMINISTIC,        0, icuLikeFunc},
    {"like",   3, SQLITE_UTF8|SQLITE_DETERMINISTIC,        0, icuLikeFunc},


  };

  int rc = SQLITE_OK;
  int i;

  
  for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){
    const struct IcuScalar *p = &scalars[i];
    rc = sqlite3_create_function(
        db, p->zName, p->nArg, p->enc, 
        p->iContext ? (void*)db : (void*)0,
        p->xFunc, 0, 0
    );
  }

  return rc;
}

#if !SQLITE_CORE
................................................................................
}


/*
** Open the database handle and attach the RBU database as "rbu". If an
** error occurs, leave an error code and message in the RBU handle.
*/
static void rbuOpenDatabase(sqlite3rbu *p, int *pbRetry){
  assert( p->rc || (p->dbMain==0 && p->dbRbu==0) );
  assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 );

  /* Open the RBU database */
  p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1);

  if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
................................................................................
    rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
    if( rc!=SQLITE_NOTFOUND ) p->rc = rc;
    if( p->eStage>=RBU_STAGE_MOVE ){
      bOpen = 1;
    }else{
      RbuState *pState = rbuLoadState(p);
      if( pState ){
        bOpen = (pState->eStage>=RBU_STAGE_MOVE);
        rbuFreeState(pState);
      }
    }
    if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1);
  }

  p->eStage = 0;
  if( p->rc==SQLITE_OK && p->dbMain==0 ){
    if( !rbuIsVacuum(p) ){
      p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
    }else if( p->pRbuFd->pWalFd ){
      if( pbRetry ){
        p->pRbuFd->bNolock = 0;
        sqlite3_close(p->dbRbu);
        sqlite3_close(p->dbMain);
        p->dbMain = 0;
        p->dbRbu = 0;
        *pbRetry = 1;
        return;
      }
      p->rc = SQLITE_ERROR;
      p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database");
    }else{
      char *zTarget;
      char *zExtra = 0;
      if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){
        zExtra = &p->zRbu[5];
................................................................................
  if( p->rc==SQLITE_OK ){
    int rc2;
    p->eStage = RBU_STAGE_CAPTURE;
    rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0);
    if( rc2!=SQLITE_INTERNAL ) p->rc = rc2;
  }

  if( p->rc==SQLITE_OK && p->nFrame>0 ){
    p->eStage = RBU_STAGE_CKPT;
    p->nStep = (pState ? pState->nRow : 0);
    p->aBuf = rbuMalloc(p, p->pgsz);
    p->iWalCksum = rbuShmChecksum(p);
  }

  if( p->rc==SQLITE_OK ){
    if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){
      p->rc = SQLITE_DONE;
      p->eStage = RBU_STAGE_DONE;
    }
  }
}

/*
** Called when iAmt bytes are read from offset iOff of the wal file while
** the rbu object is in capture mode. Record the frame number of the frame
** being read in the aFrame[] array.
................................................................................
        }
      }
#else
      p->rc = rename(zOal, zWal) ? SQLITE_IOERR : SQLITE_OK;
#endif

      if( p->rc==SQLITE_OK ){
        rbuOpenDatabase(p, 0);
        rbuSetupCheckpoint(p, 0);
      }
    }
  }

  sqlite3_free(zWal);
  sqlite3_free(zOal);
................................................................................
    /* Create the custom VFS. */
    memset(p, 0, sizeof(sqlite3rbu));
    rbuCreateVfs(p);

    /* Open the target, RBU and state databases */
    if( p->rc==SQLITE_OK ){
      char *pCsr = (char*)&p[1];
      int bRetry = 0;
      if( zTarget ){
        p->zTarget = pCsr;
        memcpy(p->zTarget, zTarget, nTarget+1);
        pCsr += nTarget+1;
      }
      p->zRbu = pCsr;
      memcpy(p->zRbu, zRbu, nRbu+1);
      pCsr += nRbu+1;
      if( zState ){
        p->zState = rbuMPrintf(p, "%s", zState);
      }

      /* If the first attempt to open the database file fails and the bRetry
      ** flag it set, this means that the db was not opened because it seemed
      ** to be a wal-mode db. But, this may have happened due to an earlier
      ** RBU vacuum operation leaving an old wal file in the directory.
      ** If this is the case, it will have been checkpointed and deleted
      ** when the handle was closed and a second attempt to open the 
      ** database may succeed.  */
      rbuOpenDatabase(p, &bRetry);
      if( bRetry ){
        rbuOpenDatabase(p, 0);
      }
    }

    if( p->rc==SQLITE_OK ){
      pState = rbuLoadState(p);
      assert( pState || p->rc!=SQLITE_OK );
      if( p->rc==SQLITE_OK ){

................................................................................
  sqlite3_changeset_iter *pIter,  /* Changeset iterator */
  int iVal,                       /* Index of conflict record value to fetch */
  sqlite3_value **ppValue         /* OUT: Value from conflicting row */
){
  if( !pIter->pConflict ){
    return SQLITE_MISUSE;
  }
  if( iVal<0 || iVal>=pIter->nCol ){
    return SQLITE_RANGE;
  }
  *ppValue = sqlite3_column_value(pIter->pConflict, iVal);
  return SQLITE_OK;
}

/*
................................................................................
){
  int rc = SQLITE_OK;
  int i;
  SessionBuffer buf = {0, 0, 0};

  sessionAppendStr(&buf, "INSERT INTO main.", &rc);
  sessionAppendIdent(&buf, zTab, &rc);
  sessionAppendStr(&buf, "(", &rc);
  for(i=0; i<p->nCol; i++){
    if( i!=0 ) sessionAppendStr(&buf, ", ", &rc);
    sessionAppendIdent(&buf, p->azCol[i], &rc);
  }

  sessionAppendStr(&buf, ") VALUES(?", &rc);
  for(i=1; i<p->nCol; i++){
    sessionAppendStr(&buf, ", ?", &rc);
  }
  sessionAppendStr(&buf, ")", &rc);

  if( rc==SQLITE_OK ){
    rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0);
................................................................................
        if( zTab==0 ){
          rc = SQLITE_NOMEM;
          break;
        }
        nTab = (int)strlen(zTab);
        sApply.azCol = (const char **)zTab;
      }else{
        int nMinCol = 0;
        int i;

        sqlite3changeset_pk(pIter, &abPK, 0);
        rc = sessionTableInfo(
            db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK
        );
        if( rc!=SQLITE_OK ) break;
        for(i=0; i<sApply.nCol; i++){
          if( sApply.abPK[i] ) nMinCol = i+1;
        }
  
        if( sApply.nCol==0 ){
          schemaMismatch = 1;
          sqlite3_log(SQLITE_SCHEMA, 
              "sqlite3changeset_apply(): no such table: %s", zTab
          );
        }
        else if( sApply.nCol<nCol ){
          schemaMismatch = 1;
          sqlite3_log(SQLITE_SCHEMA, 
              "sqlite3changeset_apply(): table %s has %d columns, "
              "expected %d or more", 
              zTab, sApply.nCol, nCol
          );
        }
        else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){
          schemaMismatch = 1;
          sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): "
              "primary key mismatch for table %s", zTab
          );
        }
        else{
          sApply.nCol = nCol;
          if((rc = sessionSelectRow(db, zTab, &sApply))
          || (rc = sessionUpdateRow(db, zTab, &sApply))
          || (rc = sessionDeleteRow(db, zTab, &sApply))
          || (rc = sessionInsertRow(db, zTab, &sApply))
          ){
            break;
          }
        }
        nTab = sqlite3Strlen30(zTab);
      }
    }

    /* If there is a schema mismatch on the current table, proceed to the
    ** next change. A log message has already been issued. */
................................................................................
** For the time being, all JSON is stored as pure text.  (We might add
** a JSONB type in the future which stores a binary encoding of JSON in
** a BLOB, but there is no support for JSONB in the current implementation.
** This implementation parses JSON text at 250 MB/s, so it is hard to see
** how JSONB might improve on that.)
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_JSON1)
#if !defined(SQLITEINT_H)
/* #include "sqlite3ext.h" */
#endif
SQLITE_EXTENSION_INIT1
/* #include <assert.h> */
/* #include <string.h> */
/* #include <stdlib.h> */
/* #include <stdarg.h> */
................................................................................
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef fts5YYMALLOCARGTYPE
# define fts5YYMALLOCARGTYPE size_t
#endif

/* Initialize a new parser that has already been allocated.
*/
static void sqlite3Fts5ParserInit(void *fts5yypParser){
  fts5yyParser *pParser = (fts5yyParser*)fts5yypParser;
#ifdef fts5YYTRACKMAXSTACKDEPTH
  pParser->fts5yyhwm = 0;
#endif
#if fts5YYSTACKDEPTH<=0
  pParser->fts5yytos = NULL;
  pParser->fts5yystack = NULL;
  pParser->fts5yystksz = 0;
  if( fts5yyGrowStack(pParser) ){
    pParser->fts5yystack = &pParser->fts5yystk0;
    pParser->fts5yystksz = 1;
  }
#endif
#ifndef fts5YYNOERRORRECOVERY
  pParser->fts5yyerrcnt = -1;
#endif
  pParser->fts5yytos = pParser->fts5yystack;
  pParser->fts5yystack[0].stateno = 0;
  pParser->fts5yystack[0].major = 0;
}

#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
................................................................................
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to sqlite3Fts5Parser and sqlite3Fts5ParserFree.
*/
static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(fts5YYMALLOCARGTYPE)){
  fts5yyParser *pParser;
  pParser = (fts5yyParser*)(*mallocProc)( (fts5YYMALLOCARGTYPE)sizeof(fts5yyParser) );
  if( pParser ) sqlite3Fts5ParserInit(pParser);

  return pParser;








}







#endif /* sqlite3Fts5Parser_ENGINEALWAYSONSTACK */




/* The following function deletes the "minor type" or semantic value
** associated with a symbol.  The symbol can be either a terminal
** or nonterminal. "fts5yymajor" is the symbol code, and "fts5yypminor" is
** a pointer to the value to be deleted.  The code used to do the 
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
................................................................................
      fts5yyTracePrompt,
      fts5yyTokenName[fts5yytos->major]);
  }
#endif
  fts5yy_destructor(pParser, fts5yytos->major, &fts5yytos->minor);
}

/*
** Clear all secondary memory allocations from the parser
*/
static void sqlite3Fts5ParserFinalize(void *p){
  fts5yyParser *pParser = (fts5yyParser*)p;
  while( pParser->fts5yytos>pParser->fts5yystack ) fts5yy_pop_parser_stack(pParser);
#if fts5YYSTACKDEPTH<=0
  if( pParser->fts5yystack!=&pParser->fts5yystk0 ) free(pParser->fts5yystack);
#endif
}

#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
/* 
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.
**
** If the fts5YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.
*/
static void sqlite3Fts5ParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){

#ifndef fts5YYPARSEFREENEVERNULL
  if( p==0 ) return;
#endif




  sqlite3Fts5ParserFinalize(p);
  (*freeProc)(p);
}
#endif /* sqlite3Fts5Parser_ENGINEALWAYSONSTACK */

/*
** Return the peak depth of the stack for a parser.
*/
#ifdef fts5YYTRACKMAXSTACKDEPTH
static int sqlite3Fts5ParserStackPeak(void *p){
  fts5yyParser *pParser = (fts5yyParser*)p;
................................................................................
  char *z = 0;

  memset(&sCtx, 0, sizeof(TokenCtx));
  sCtx.pPhrase = pAppend;

  rc = fts5ParseStringFromToken(pToken, &z);
  if( rc==SQLITE_OK ){
    int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_PREFIX : 0);
    int n;
    sqlite3Fts5Dequote(z);
    n = (int)strlen(z);
    rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
  }
  sqlite3_free(z);
  if( rc || (rc = sCtx.rc) ){
................................................................................
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2017-02-07 12:58:38 07fe6228208684d579c4f6c334c90eb6262a9233", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,

Changes to src/sqlite3.h.

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
...
255
256
257
258
259
260
261



262

263
264
265
266
267
268
269
...
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
...
718
719
720
721
722
723
724



725
726
727
728
729
730
731
....
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
....
6188
6189
6190
6191
6192
6193
6194






6195
6196
6197
6198
6199
6200
6201
....
6211
6212
6213
6214
6215
6216
6217




6218
6219
6220
6221
6222
6223
6224
....
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
....
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190


8191
8192
8193
8194
8195
8196




8197
8198
8199
8200
8201
8202
8203
....
8893
8894
8895
8896
8897
8898
8899
8900

8901
8902
8903
8904
8905
8906
8907
....
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
....
9523
9524
9525
9526
9527
9528
9529
9530




9531
9532
9533
9534
9535
9536
9537
....
9538
9539
9540
9541
9542
9543
9544
9545


9546
9547
9548
9549
9550
9551
9552
....
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.16.2"
#define SQLITE_VERSION_NUMBER 3016002
#define SQLITE_SOURCE_ID      "2017-01-06 16:32:41 a65a62893ca8319e89e48b8a38cf8a59c69a8209"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
................................................................................
** ^The sqlite3_int64 and sqlite_int64 types can store integer values
** between -9223372036854775808 and +9223372036854775807 inclusive.  ^The
** sqlite3_uint64 and sqlite_uint64 types can store integer values 
** between 0 and +18446744073709551615 inclusive.
*/
#ifdef SQLITE_INT64_TYPE
  typedef SQLITE_INT64_TYPE sqlite_int64;



  typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;

#elif defined(_MSC_VER) || defined(__BORLANDC__)
  typedef __int64 sqlite_int64;
  typedef unsigned __int64 sqlite_uint64;
#else
  typedef long long int sqlite_int64;
  typedef unsigned long long int sqlite_uint64;
#endif
................................................................................
** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
** information is written to disk in the same order as calls
** to xWrite().  The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
** after reboot following a crash or power loss, the only bytes in a
** file that were written at the application level might have changed
** and that adjacent bytes, even bytes within the same sector are
** guaranteed to be unchanged.  The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
** flag indicate that a file cannot be deleted when open.  The
** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
** read-only media and cannot be changed even by processes with
** elevated privileges.
*/
#define SQLITE_IOCAP_ATOMIC                 0x00000001
#define SQLITE_IOCAP_ATOMIC512              0x00000002
#define SQLITE_IOCAP_ATOMIC1K               0x00000004
................................................................................
** <li> [SQLITE_IOCAP_ATOMIC4K]
** <li> [SQLITE_IOCAP_ATOMIC8K]
** <li> [SQLITE_IOCAP_ATOMIC16K]
** <li> [SQLITE_IOCAP_ATOMIC32K]
** <li> [SQLITE_IOCAP_ATOMIC64K]
** <li> [SQLITE_IOCAP_SAFE_APPEND]
** <li> [SQLITE_IOCAP_SEQUENTIAL]



** </ul>
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and
** are aligned to an address which is an integer multiple of
** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
................................................................................
** ^In the case of an update, this is the [rowid] after the update takes place.
**
** ^(The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).)^
** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
**
** ^In the current implementation, the update hook
** is not invoked when duplication rows are deleted because of an
** [ON CONFLICT | ON CONFLICT REPLACE] clause.  ^Nor is the update hook
** invoked when rows are deleted using the [truncate optimization].
** The exceptions defined in this paragraph might change in a future
** release of SQLite.
**
** The update hook implementation must not do anything that will modify
** the database connection that invoked the update hook.  Any actions
................................................................................
**         being opened for read/write access)^.
** </ul>
**
** ^Unless it returns SQLITE_MISUSE, this function sets the 
** [database connection] error code and message accessible via 
** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. 
**






**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
................................................................................
**
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].




*/
SQLITE_API int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
................................................................................
  sqlite3_blob **ppBlob
);

/*
** CAPI3REF: Move a BLOB Handle to a New Row
** METHOD: sqlite3_blob
**
** ^This function is used to move an existing blob handle so that it points
** to a different row of the same database table. ^The new row is identified
** by the rowid value passed as the second argument. Only the row can be
** changed. ^The database, table and column on which the blob handle is open
** remain the same. Moving an existing blob handle to a new row can be
** faster than closing the existing handle and opening a new one.
**
** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
** it must exist and there must be either a blob or text value stored in
** the nominated column.)^ ^If the new row is not present in the table, or if
** it does not contain a blob or text value, or if another error occurs, an
** SQLite error code is returned and the blob handle is considered aborted.
................................................................................
** CAPI3REF: The pre-update hook.
**
** ^These interfaces are only available if SQLite is compiled using the
** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
**
** ^The [sqlite3_preupdate_hook()] interface registers a callback function
** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
** on a [rowid table].
** ^At most one preupdate hook may be registered at a time on a single
** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
** the previous setting.
** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
** with a NULL pointer as the second parameter.
** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
** the first parameter to callbacks.
**
** ^The preupdate hook only fires for changes to [rowid tables]; the preupdate
** hook is not invoked for changes to [virtual tables] or [WITHOUT ROWID]
** tables.
**
** ^The second parameter to the preupdate callback is a pointer to
** the [database connection] that registered the preupdate hook.
** ^The third parameter to the preupdate callback is one of the constants
** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
** kind of update operation that is about to occur.
** ^(The fourth parameter to the preupdate callback is the name of the
** database within the database connection that is being modified.  This
** will be "main" for the main database or "temp" for TEMP tables or 
** the name given after the AS keyword in the [ATTACH] statement for attached
** databases.)^
** ^The fifth parameter to the preupdate callback is the name of the
** table that is being modified.


** ^The sixth parameter to the preupdate callback is the initial [rowid] of the
** row being changes for SQLITE_UPDATE and SQLITE_DELETE changes and is
** undefined for SQLITE_INSERT changes.
** ^The seventh parameter to the preupdate callback is the final [rowid] of
** the row being changed for SQLITE_UPDATE and SQLITE_INSERT changes and is
** undefined for SQLITE_DELETE changes.




**
** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
** provide additional information about a preupdate event. These routines
** may only be called from within a preupdate callback.  Invoking any of
** these routines from outside of a preupdate callback or with a
** [database connection] pointer that is different from the one supplied
................................................................................
**   <li> For each row (primary key) that exists in the to-table but not in 
**     the from-table, an INSERT record is added to the session object.
**
**   <li> For each row (primary key) that exists in the to-table but not in 
**     the from-table, a DELETE record is added to the session object.
**
**   <li> For each row (primary key) that exists in both tables, but features 
**     different in each, an UPDATE record is added to the session.

** </ul>
**
** To clarify, if this function is called and then a changeset constructed
** using [sqlite3session_changeset()], then after applying that changeset to 
** database zFrom the contents of the two compatible tables would be 
** identical.
**
................................................................................
** For each table that is not excluded by the filter callback, this function 
** tests that the target database contains a compatible table. A table is 
** considered compatible if all of the following are true:
**
** <ul>
**   <li> The table has the same name as the name recorded in the 
**        changeset, and
**   <li> The table has the same number of columns as recorded in the 
**        changeset, and
**   <li> The table has primary key columns in the same position as 
**        recorded in the changeset.
** </ul>
**
** If there is no compatible table, it is not an error, but none of the
** changes associated with the table are applied. A warning message is issued
................................................................................
**   original row values stored in the changeset. If it does, and the values 
**   stored in all non-primary key columns also match the values stored in 
**   the changeset the row is deleted from the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the non-primary key fields contains a value different from the original
**   row value stored in the changeset, the conflict-handler function is
**   invoked with [SQLITE_CHANGESET_DATA] as the second argument.




**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.
**
**   If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
**   (which can only happen if a foreign key constraint is violated), the
................................................................................
**   conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
**   passed as the second argument. This includes the case where the DELETE
**   operation is attempted because an earlier call to the conflict handler
**   function returned [SQLITE_CHANGESET_REPLACE].
**
** <dt>INSERT Changes<dd>
**   For each INSERT change, an attempt is made to insert the new row into
**   the database.


**
**   If the attempt to insert the row fails because the database already 
**   contains a row with the same primary key values, the conflict handler
**   function is invoked with the second argument set to 
**   [SQLITE_CHANGESET_CONFLICT].
**
**   If the attempt to insert the row fails because of some other constraint
................................................................................
**   an earlier call to the conflict handler function returned 
**   [SQLITE_CHANGESET_REPLACE].
**
** <dt>UPDATE Changes<dd>
**   For each UPDATE change, this function checks if the target database 
**   contains a row with the same primary key value (or values) as the 
**   original row values stored in the changeset. If it does, and the values 
**   stored in all non-primary key columns also match the values stored in 
**   the changeset the row is updated within the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the non-primary key fields contains a value different from an original
**   row value stored in the changeset, the conflict-handler function is
**   invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
**   UPDATE changes only contain values for non-primary key fields that are
**   to be modified, only those fields need to match the original values to
**   avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.







|
|
|







 







>
>
>
|
>







 







|







 







>
>
>







 







|







 







>
>
>
>
>
>







 







>
>
>
>







 







|



|







 







|








|
|
|













>
>
|
<
<
|
|
|
>
>
>
>







 







|
>







 







|







 







|
>
>
>
>







 







|
>
>







 







|
|


|
|
|







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
...
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
...
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
...
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
....
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
....
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
....
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
....
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
....
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210


8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
....
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
....
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
....
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
....
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
....
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.17.0"
#define SQLITE_VERSION_NUMBER 3017000
#define SQLITE_SOURCE_ID      "2017-02-07 13:51:48 a136609c98ed3cc673c5a3c2578d49db3f2518d1"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
................................................................................
** ^The sqlite3_int64 and sqlite_int64 types can store integer values
** between -9223372036854775808 and +9223372036854775807 inclusive.  ^The
** sqlite3_uint64 and sqlite_uint64 types can store integer values 
** between 0 and +18446744073709551615 inclusive.
*/
#ifdef SQLITE_INT64_TYPE
  typedef SQLITE_INT64_TYPE sqlite_int64;
# ifdef SQLITE_UINT64_TYPE
    typedef SQLITE_UINT64_TYPE sqlite_uint64;
# else  
    typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
# endif
#elif defined(_MSC_VER) || defined(__BORLANDC__)
  typedef __int64 sqlite_int64;
  typedef unsigned __int64 sqlite_uint64;
#else
  typedef long long int sqlite_int64;
  typedef unsigned long long int sqlite_uint64;
#endif
................................................................................
** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
** information is written to disk in the same order as calls
** to xWrite().  The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
** after reboot following a crash or power loss, the only bytes in a
** file that were written at the application level might have changed
** and that adjacent bytes, even bytes within the same sector are
** guaranteed to be unchanged.  The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
** flag indicates that a file cannot be deleted when open.  The
** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
** read-only media and cannot be changed even by processes with
** elevated privileges.
*/
#define SQLITE_IOCAP_ATOMIC                 0x00000001
#define SQLITE_IOCAP_ATOMIC512              0x00000002
#define SQLITE_IOCAP_ATOMIC1K               0x00000004
................................................................................
** <li> [SQLITE_IOCAP_ATOMIC4K]
** <li> [SQLITE_IOCAP_ATOMIC8K]
** <li> [SQLITE_IOCAP_ATOMIC16K]
** <li> [SQLITE_IOCAP_ATOMIC32K]
** <li> [SQLITE_IOCAP_ATOMIC64K]
** <li> [SQLITE_IOCAP_SAFE_APPEND]
** <li> [SQLITE_IOCAP_SEQUENTIAL]
** <li> [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN]
** <li> [SQLITE_IOCAP_POWERSAFE_OVERWRITE]
** <li> [SQLITE_IOCAP_IMMUTABLE]
** </ul>
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and
** are aligned to an address which is an integer multiple of
** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
................................................................................
** ^In the case of an update, this is the [rowid] after the update takes place.
**
** ^(The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).)^
** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
**
** ^In the current implementation, the update hook
** is not invoked when conflicting rows are deleted because of an
** [ON CONFLICT | ON CONFLICT REPLACE] clause.  ^Nor is the update hook
** invoked when rows are deleted using the [truncate optimization].
** The exceptions defined in this paragraph might change in a future
** release of SQLite.
**
** The update hook implementation must not do anything that will modify
** the database connection that invoked the update hook.  Any actions
................................................................................
**         being opened for read/write access)^.
** </ul>
**
** ^Unless it returns SQLITE_MISUSE, this function sets the 
** [database connection] error code and message accessible via 
** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. 
**
** A BLOB referenced by sqlite3_blob_open() may be read using the
** [sqlite3_blob_read()] interface and modified by using
** [sqlite3_blob_write()].  The [BLOB handle] can be moved to a
** different row of the same table using the [sqlite3_blob_reopen()]
** interface.  However, the column, table, or database of a [BLOB handle]
** cannot be changed after the [BLOB handle] is opened.
**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
................................................................................
**
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
**
** See also: [sqlite3_blob_close()],
** [sqlite3_blob_reopen()], [sqlite3_blob_read()],
** [sqlite3_blob_bytes()], [sqlite3_blob_write()].
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
................................................................................
  sqlite3_blob **ppBlob
);

/*
** CAPI3REF: Move a BLOB Handle to a New Row
** METHOD: sqlite3_blob
**
** ^This function is used to move an existing [BLOB handle] so that it points
** to a different row of the same database table. ^The new row is identified
** by the rowid value passed as the second argument. Only the row can be
** changed. ^The database, table and column on which the blob handle is open
** remain the same. Moving an existing [BLOB handle] to a new row is
** faster than closing the existing handle and opening a new one.
**
** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
** it must exist and there must be either a blob or text value stored in
** the nominated column.)^ ^If the new row is not present in the table, or if
** it does not contain a blob or text value, or if another error occurs, an
** SQLite error code is returned and the blob handle is considered aborted.
................................................................................
** CAPI3REF: The pre-update hook.
**
** ^These interfaces are only available if SQLite is compiled using the
** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
**
** ^The [sqlite3_preupdate_hook()] interface registers a callback function
** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
** on a database table.
** ^At most one preupdate hook may be registered at a time on a single
** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
** the previous setting.
** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
** with a NULL pointer as the second parameter.
** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
** the first parameter to callbacks.
**
** ^The preupdate hook only fires for changes to real database tables; the
** preupdate hook is not invoked for changes to [virtual tables] or to
** system tables like sqlite_master or sqlite_stat1.
**
** ^The second parameter to the preupdate callback is a pointer to
** the [database connection] that registered the preupdate hook.
** ^The third parameter to the preupdate callback is one of the constants
** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
** kind of update operation that is about to occur.
** ^(The fourth parameter to the preupdate callback is the name of the
** database within the database connection that is being modified.  This
** will be "main" for the main database or "temp" for TEMP tables or 
** the name given after the AS keyword in the [ATTACH] statement for attached
** databases.)^
** ^The fifth parameter to the preupdate callback is the name of the
** table that is being modified.
**
** For an UPDATE or DELETE operation on a [rowid table], the sixth
** parameter passed to the preupdate callback is the initial [rowid] of the 


** row being modified or deleted. For an INSERT operation on a rowid table,
** or any operation on a WITHOUT ROWID table, the value of the sixth 
** parameter is undefined. For an INSERT or UPDATE on a rowid table the
** seventh parameter is the final rowid value of the row being inserted
** or updated. The value of the seventh parameter passed to the callback
** function is not defined for operations on WITHOUT ROWID tables, or for
** INSERT operations on rowid tables.
**
** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
** provide additional information about a preupdate event. These routines
** may only be called from within a preupdate callback.  Invoking any of
** these routines from outside of a preupdate callback or with a
** [database connection] pointer that is different from the one supplied
................................................................................
**   <li> For each row (primary key) that exists in the to-table but not in 
**     the from-table, an INSERT record is added to the session object.
**
**   <li> For each row (primary key) that exists in the to-table but not in 
**     the from-table, a DELETE record is added to the session object.
**
**   <li> For each row (primary key) that exists in both tables, but features 
**     different non-PK values in each, an UPDATE record is added to the
**     session.  
** </ul>
**
** To clarify, if this function is called and then a changeset constructed
** using [sqlite3session_changeset()], then after applying that changeset to 
** database zFrom the contents of the two compatible tables would be 
** identical.
**
................................................................................
** For each table that is not excluded by the filter callback, this function 
** tests that the target database contains a compatible table. A table is 
** considered compatible if all of the following are true:
**
** <ul>
**   <li> The table has the same name as the name recorded in the 
**        changeset, and
**   <li> The table has at least as many columns as recorded in the 
**        changeset, and
**   <li> The table has primary key columns in the same position as 
**        recorded in the changeset.
** </ul>
**
** If there is no compatible table, it is not an error, but none of the
** changes associated with the table are applied. A warning message is issued
................................................................................
**   original row values stored in the changeset. If it does, and the values 
**   stored in all non-primary key columns also match the values stored in 
**   the changeset the row is deleted from the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the non-primary key fields contains a value different from the original
**   row value stored in the changeset, the conflict-handler function is
**   invoked with [SQLITE_CHANGESET_DATA] as the second argument. If the
**   database table has more columns than are recorded in the changeset,
**   only the values of those non-primary key fields are compared against
**   the current database contents - any trailing database table columns
**   are ignored.
**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.
**
**   If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT
**   (which can only happen if a foreign key constraint is violated), the
................................................................................
**   conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT]
**   passed as the second argument. This includes the case where the DELETE
**   operation is attempted because an earlier call to the conflict handler
**   function returned [SQLITE_CHANGESET_REPLACE].
**
** <dt>INSERT Changes<dd>
**   For each INSERT change, an attempt is made to insert the new row into
**   the database. If the changeset row contains fewer fields than the
**   database table, the trailing fields are populated with their default
**   values.
**
**   If the attempt to insert the row fails because the database already 
**   contains a row with the same primary key values, the conflict handler
**   function is invoked with the second argument set to 
**   [SQLITE_CHANGESET_CONFLICT].
**
**   If the attempt to insert the row fails because of some other constraint
................................................................................
**   an earlier call to the conflict handler function returned 
**   [SQLITE_CHANGESET_REPLACE].
**
** <dt>UPDATE Changes<dd>
**   For each UPDATE change, this function checks if the target database 
**   contains a row with the same primary key value (or values) as the 
**   original row values stored in the changeset. If it does, and the values 
**   stored in all modified non-primary key columns also match the values
**   stored in the changeset the row is updated within the target database.
**
**   If a row with matching primary key values is found, but one or more of
**   the modified non-primary key fields contains a value different from an
**   original row value stored in the changeset, the conflict-handler function
**   is invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since
**   UPDATE changes only contain values for non-primary key fields that are
**   to be modified, only those fields need to match the original values to
**   avoid the SQLITE_CHANGESET_DATA conflict-handler callback.
**
**   If no row with matching primary key values is found in the database,
**   the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND]
**   passed as the second argument.