Fossil

Check-in [186f5c26]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite to the latest 3.38.0 alpha that includes all of the bug fixes that appear in 3.37.2.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA3-256: 186f5c262381a9273cf08835fcc8400068a79c6c11728331e6ed50ad15e63460
User & Date: drh 2022-01-06 22:19:02
Context
2022-01-06
22:34
Fix the capexpr TH1 command so that it actually works for a list of terms. ... (check-in: 8188ef9b user: drh tags: trunk)
22:19
Update the built-in SQLite to the latest 3.38.0 alpha that includes all of the bug fixes that appear in 3.37.2. ... (check-in: 186f5c26 user: drh tags: trunk)
19:00
Corrected new cherry-pick merge alias to account for users entering a partial command name like 'cher'. Reported Martin G. in /chat. ... (check-in: 7ffc999f user: stephan tags: trunk)
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to extsrc/shell.c.

14441
14442
14443
14444
14445
14446
14447
14448



14449
14450
14451
14452
14453
14454
14455
        azCols[i] = (char *)sqlite3_column_name(pStmt, i);
      }
      do{
        nRow++;
        /* extract the data and data types */
        for(i=0; i<nCol; i++){
          aiTypes[i] = x = sqlite3_column_type(pStmt, i);
          if( x==SQLITE_BLOB && pArg && pArg->cMode==MODE_Insert ){



            azVals[i] = "";
          }else{
            azVals[i] = (char*)sqlite3_column_text(pStmt, i);
          }
          if( !azVals[i] && (aiTypes[i]!=SQLITE_NULL) ){
            rc = SQLITE_NOMEM;
            break; /* from for */







|
>
>
>







14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
        azCols[i] = (char *)sqlite3_column_name(pStmt, i);
      }
      do{
        nRow++;
        /* extract the data and data types */
        for(i=0; i<nCol; i++){
          aiTypes[i] = x = sqlite3_column_type(pStmt, i);
          if( x==SQLITE_BLOB
           && pArg
           && (pArg->cMode==MODE_Insert || pArg->cMode==MODE_Quote)
          ){
            azVals[i] = "";
          }else{
            azVals[i] = (char*)sqlite3_column_text(pStmt, i);
          }
          if( !azVals[i] && (aiTypes[i]!=SQLITE_NULL) ){
            rc = SQLITE_NOMEM;
            break; /* from for */

Changes to extsrc/sqlite3.c.

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.38.0"
#define SQLITE_VERSION_NUMBER 3038000
#define SQLITE_SOURCE_ID      "2021-12-31 22:53:15 e654b57a9fc32021453eed48d1c1bba65c833fb1aac3946567968c877e4cbd10"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.38.0"
#define SQLITE_VERSION_NUMBER 3038000
#define SQLITE_SOURCE_ID      "2022-01-06 17:13:56 2d6a16caa7d28ad5c766036b2eb6c2020683fcc9389b3c7df2013739929dd36f"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
20135
20136
20137
20138
20139
20140
20141

20142
20143
20144
20145
20146
20147
20148

20149
20150
20151
20152
20153
20154
20155
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
SQLITE_PRIVATE   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
SQLITE_PRIVATE   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
SQLITE_PRIVATE   int sqlite3FkRequired(Parse*, Table*, int*, int);
SQLITE_PRIVATE   u32 sqlite3FkOldmask(Parse*, Table*);
SQLITE_PRIVATE   FKey *sqlite3FkReferences(Table *);

#else
  #define sqlite3FkActions(a,b,c,d,e,f)
  #define sqlite3FkCheck(a,b,c,d,e,f)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)         0
  #define sqlite3FkRequired(a,b,c,d)    0
  #define sqlite3FkReferences(a)        0

#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE   void sqlite3FkDelete(sqlite3 *, Table*);
SQLITE_PRIVATE   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
#else
  #define sqlite3FkDelete(a,b)
  #define sqlite3FkLocateIndex(a,b,c,d,e)







>







>







20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
SQLITE_PRIVATE   void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE   void sqlite3FkDropTable(Parse*, SrcList *, Table*);
SQLITE_PRIVATE   void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
SQLITE_PRIVATE   int sqlite3FkRequired(Parse*, Table*, int*, int);
SQLITE_PRIVATE   u32 sqlite3FkOldmask(Parse*, Table*);
SQLITE_PRIVATE   FKey *sqlite3FkReferences(Table *);
SQLITE_PRIVATE   void sqlite3FkClearTriggerCache(sqlite3*,int);
#else
  #define sqlite3FkActions(a,b,c,d,e,f)
  #define sqlite3FkCheck(a,b,c,d,e,f)
  #define sqlite3FkDropTable(a,b,c)
  #define sqlite3FkOldmask(a,b)         0
  #define sqlite3FkRequired(a,b,c,d)    0
  #define sqlite3FkReferences(a)        0
  #define sqlite3FkClearTriggerCache(a,b)
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
SQLITE_PRIVATE   void sqlite3FkDelete(sqlite3 *, Table*);
SQLITE_PRIVATE   int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
#else
  #define sqlite3FkDelete(a,b)
  #define sqlite3FkLocateIndex(a,b,c,d,e)
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814

21815
21816
21817


21818
21819
21820
21821
21822
21823
21824
**      * A sorter
**      * A virtual table
**      * A one-row "pseudotable" stored in a single register
*/
typedef struct VdbeCursor VdbeCursor;
struct VdbeCursor {
  u8 eCurType;            /* One of the CURTYPE_* values above */
  i8 iDb;                 /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;             /* True if pointing to a row with no data */
  u8 deferredMoveto;      /* A call to sqlite3BtreeMoveto() is needed */
  u8 isTable;             /* True for rowid tables.  False for indexes */
#ifdef SQLITE_DEBUG
  u8 seekOp;              /* Most recent seek operation on this cursor */
  u8 wrFlag;              /* The wrFlag argument to sqlite3BtreeCursor() */
#endif
  Bool isEphemeral:1;     /* True for an ephemeral table */
  Bool useRandomRowid:1;  /* Generate new record numbers semi-randomly */
  Bool isOrdered:1;       /* True if the table is not BTREE_UNORDERED */
  Bool hasBeenDuped:1;    /* This cursor was source or target of OP_OpenDup */
  u16 seekHit;            /* See the OP_SeekHit and OP_IfNoHope opcodes */

  Btree *pBtx;            /* Separate file holding temporary table */
  i64 seqCount;           /* Sequence counter */
  u32 *aAltMap;           /* Mapping from table to index column numbers */



  /* Cached OP_Column parse information is only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
  ** CACHE_STALE (0) and so setting cacheStatus=CACHE_STALE guarantees that
  ** the cache is out of date. */
  u32 cacheStatus;        /* Cache is valid if this matches Vdbe.cacheCtr */
  int seekResult;         /* Result of previous sqlite3BtreeMoveto() or 0







|












>
|
<
|
>
>







21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818

21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
**      * A sorter
**      * A virtual table
**      * A one-row "pseudotable" stored in a single register
*/
typedef struct VdbeCursor VdbeCursor;
struct VdbeCursor {
  u8 eCurType;            /* One of the CURTYPE_* values above */
  i8 iDb;                 /* Index of cursor database in db->aDb[] */
  u8 nullRow;             /* True if pointing to a row with no data */
  u8 deferredMoveto;      /* A call to sqlite3BtreeMoveto() is needed */
  u8 isTable;             /* True for rowid tables.  False for indexes */
#ifdef SQLITE_DEBUG
  u8 seekOp;              /* Most recent seek operation on this cursor */
  u8 wrFlag;              /* The wrFlag argument to sqlite3BtreeCursor() */
#endif
  Bool isEphemeral:1;     /* True for an ephemeral table */
  Bool useRandomRowid:1;  /* Generate new record numbers semi-randomly */
  Bool isOrdered:1;       /* True if the table is not BTREE_UNORDERED */
  Bool hasBeenDuped:1;    /* This cursor was source or target of OP_OpenDup */
  u16 seekHit;            /* See the OP_SeekHit and OP_IfNoHope opcodes */
  union {                 /* pBtx for isEphermeral.  pAltMap otherwise */
    Btree *pBtx;            /* Separate file holding temporary table */

    u32 *aAltMap;           /* Mapping from table to index column numbers */
  } ub;
  i64 seqCount;           /* Sequence counter */

  /* Cached OP_Column parse information is only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
  ** CACHE_STALE (0) and so setting cacheStatus=CACHE_STALE guarantees that
  ** the cache is out of date. */
  u32 cacheStatus;        /* Cache is valid if this matches Vdbe.cacheCtr */
  int seekResult;         /* Result of previous sqlite3BtreeMoveto() or 0
56662
56663
56664
56665
56666
56667
56668
56669
56670
56671
56672
56673
56674
56675
56676
56677
56678
56679
56680
56681
56682
56683
56684

56685



56686




56687
56688
56689
56690
56691
56692
56693
** Function assertTruncateConstraint(pPager) checks that one of the
** following is true for all dirty pages currently in the page-cache:
**
**   a) The page number is less than or equal to the size of the
**      current database image, in pages, OR
**
**   b) if the page content were written at this time, it would not
**      be necessary to write the current content out to the sub-journal
**      (as determined by function subjRequiresPage()).
**
** If the condition asserted by this function were not true, and the
** dirty page were to be discarded from the cache via the pagerStress()
** routine, pagerStress() would not write the current page content to
** the database file. If a savepoint transaction were rolled back after
** this happened, the correct behavior would be to restore the current
** content of the page. However, since this content is not present in either
** the database file or the portion of the rollback journal and
** sub-journal rolled back the content could not be restored and the
** database image would become corrupt. It is therefore fortunate that
** this circumstance cannot arise.
*/
#if defined(SQLITE_DEBUG)
static void assertTruncateConstraintCb(PgHdr *pPg){

  assert( pPg->flags&PGHDR_DIRTY );



  assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize );




}
static void assertTruncateConstraint(Pager *pPager){
  sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
}
#else
# define assertTruncateConstraint(pPager)
#endif







|
<














>

>
>
>
|
>
>
>
>







56666
56667
56668
56669
56670
56671
56672
56673

56674
56675
56676
56677
56678
56679
56680
56681
56682
56683
56684
56685
56686
56687
56688
56689
56690
56691
56692
56693
56694
56695
56696
56697
56698
56699
56700
56701
56702
56703
56704
** Function assertTruncateConstraint(pPager) checks that one of the
** following is true for all dirty pages currently in the page-cache:
**
**   a) The page number is less than or equal to the size of the
**      current database image, in pages, OR
**
**   b) if the page content were written at this time, it would not
**      be necessary to write the current content out to the sub-journal.

**
** If the condition asserted by this function were not true, and the
** dirty page were to be discarded from the cache via the pagerStress()
** routine, pagerStress() would not write the current page content to
** the database file. If a savepoint transaction were rolled back after
** this happened, the correct behavior would be to restore the current
** content of the page. However, since this content is not present in either
** the database file or the portion of the rollback journal and
** sub-journal rolled back the content could not be restored and the
** database image would become corrupt. It is therefore fortunate that
** this circumstance cannot arise.
*/
#if defined(SQLITE_DEBUG)
static void assertTruncateConstraintCb(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  assert( pPg->flags&PGHDR_DIRTY );
  if( pPg->pgno>pPager->dbSize ){      /* if (a) is false */
    Pgno pgno = pPg->pgno;
    int i;
    for(i=0; i<pPg->pPager->nSavepoint; i++){
      PagerSavepoint *p = &pPager->aSavepoint[i];
      assert( p->nOrig<pgno || sqlite3BitvecTestNotNull(p->pInSavepoint,pgno) );
    }
  }
}
static void assertTruncateConstraint(Pager *pPager){
  sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
}
#else
# define assertTruncateConstraint(pPager)
#endif
58020
58021
58022
58023
58024
58025
58026
58027
58028
58029
58030
58031
58032
58033
58034
      **
      ** If the journal does not exist, it usually means that some
      ** other connection managed to get in and roll it back before
      ** this connection obtained the exclusive lock above. Or, it
      ** may mean that the pager was in the error-state when this
      ** function was called and the journal file does not exist.
      */
      if( !isOpen(pPager->jfd) ){
        sqlite3_vfs * const pVfs = pPager->pVfs;
        int bExists;              /* True if journal file exists */
        rc = sqlite3OsAccess(
            pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
        if( rc==SQLITE_OK && bExists ){
          int fout = 0;
          int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;







|







58031
58032
58033
58034
58035
58036
58037
58038
58039
58040
58041
58042
58043
58044
58045
      **
      ** If the journal does not exist, it usually means that some
      ** other connection managed to get in and roll it back before
      ** this connection obtained the exclusive lock above. Or, it
      ** may mean that the pager was in the error-state when this
      ** function was called and the journal file does not exist.
      */
      if( !isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
        sqlite3_vfs * const pVfs = pPager->pVfs;
        int bExists;              /* True if journal file exists */
        rc = sqlite3OsAccess(
            pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
        if( rc==SQLITE_OK && bExists ){
          int fout = 0;
          int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
60027
60028
60029
60030
60031
60032
60033
60034
60035
60036
60037
60038
60039
60040
60041
60042
60043
60044
60045
60046
**
** The returned indicate the current (possibly updated) journal-mode.
*/
SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){
  u8 eOld = pPager->journalMode;    /* Prior journalmode */

  /* The eMode parameter is always valid */
  assert(      eMode==PAGER_JOURNALMODE_DELETE
            || eMode==PAGER_JOURNALMODE_TRUNCATE
            || eMode==PAGER_JOURNALMODE_PERSIST
            || eMode==PAGER_JOURNALMODE_OFF
            || eMode==PAGER_JOURNALMODE_WAL
            || eMode==PAGER_JOURNALMODE_MEMORY );

  /* This routine is only called from the OP_JournalMode opcode, and
  ** the logic there will never allow a temporary file to be changed
  ** to WAL mode.
  */
  assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL );








|
|
|
|
|
|







60038
60039
60040
60041
60042
60043
60044
60045
60046
60047
60048
60049
60050
60051
60052
60053
60054
60055
60056
60057
**
** The returned indicate the current (possibly updated) journal-mode.
*/
SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){
  u8 eOld = pPager->journalMode;    /* Prior journalmode */

  /* The eMode parameter is always valid */
  assert(      eMode==PAGER_JOURNALMODE_DELETE    /* 0 */
            || eMode==PAGER_JOURNALMODE_PERSIST   /* 1 */
            || eMode==PAGER_JOURNALMODE_OFF       /* 2 */
            || eMode==PAGER_JOURNALMODE_TRUNCATE  /* 3 */
            || eMode==PAGER_JOURNALMODE_MEMORY    /* 4 */
            || eMode==PAGER_JOURNALMODE_WAL       /* 5 */ );

  /* This routine is only called from the OP_JournalMode opcode, and
  ** the logic there will never allow a temporary file to be changed
  ** to WAL mode.
  */
  assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL );

60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
    assert( (PAGER_JOURNALMODE_DELETE & 5)==0 );
    assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 );
    assert( (PAGER_JOURNALMODE_OFF & 5)==0 );
    assert( (PAGER_JOURNALMODE_WAL & 5)==5 );

    assert( isOpen(pPager->fd) || pPager->exclusiveMode );
    if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){

      /* In this case we would like to delete the journal file. If it is
      ** not possible, then that is not a problem. Deleting the journal file
      ** here is an optimization only.
      **
      ** Before deleting the journal file, obtain a RESERVED lock on the
      ** database file. This ensures that the journal file is not deleted
      ** while it is in use by some other client.







<







60080
60081
60082
60083
60084
60085
60086

60087
60088
60089
60090
60091
60092
60093
    assert( (PAGER_JOURNALMODE_DELETE & 5)==0 );
    assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 );
    assert( (PAGER_JOURNALMODE_OFF & 5)==0 );
    assert( (PAGER_JOURNALMODE_WAL & 5)==5 );

    assert( isOpen(pPager->fd) || pPager->exclusiveMode );
    if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){

      /* In this case we would like to delete the journal file. If it is
      ** not possible, then that is not a problem. Deleting the journal file
      ** here is an optimization only.
      **
      ** Before deleting the journal file, obtain a RESERVED lock on the
      ** database file. This ensures that the journal file is not deleted
      ** while it is in use by some other client.
66902
66903
66904
66905
66906
66907
66908
66909

66910
66911
66912
66913
66914
66915
66916
66917

66918








66919
66920





66921
66922
66923
66924
66925
66926
66927
  }
  pIter++;

  /* The next block of code is equivalent to:
  **
  **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
  **
  ** The code is inlined to avoid a function call.

  */
  iKey = *pIter;
  if( iKey>=0x80 ){
    u8 *pEnd = &pIter[7];
    iKey &= 0x7f;
    while(1){
      iKey = (iKey<<7) | (*++pIter & 0x7f);
      if( (*pIter)<0x80 ) break;

      if( pIter>=pEnd ){








        iKey = (iKey<<8) | *++pIter;
        break;





      }
    }
  }
  pIter++;

  pInfo->nKey = *(i64*)&iKey;
  pInfo->nPayload = nPayload;







|
>



|
|
|
|
|
>
|
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>







66912
66913
66914
66915
66916
66917
66918
66919
66920
66921
66922
66923
66924
66925
66926
66927
66928
66929
66930
66931
66932
66933
66934
66935
66936
66937
66938
66939

66940
66941
66942
66943
66944
66945
66946
66947
66948
66949
66950
66951
  }
  pIter++;

  /* The next block of code is equivalent to:
  **
  **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
  **
  ** The code is inlined and the loop is unrolled for performance.
  ** This routine is a high-runner.
  */
  iKey = *pIter;
  if( iKey>=0x80 ){
    u8 x;
    iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
    if( x>=0x80 ){
      iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
      if( x>=0x80 ){
        iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
        if( x>=0x80 ){
          iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
          if( x>=0x80 ){
            iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
            if( x>=0x80 ){
              iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
              if( x>=0x80 ){
                iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
                if( x>=0x80 ){
                  iKey = (iKey<<8) | (*++pIter);

                }
              }
            }
          }
        }
      }
    }
  }
  pIter++;

  pInfo->nKey = *(i64*)&iKey;
  pInfo->nPayload = nPayload;
71238
71239
71240
71241
71242
71243
71244
71245
71246
71247
71248
71249
71250
71251
71252
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey );
    lwr = 0;
    upr = pPage->nCell-1;
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->ix = (u16)idx;
    for(;;){
      i64 nCellKey;
      pCell = findCellPastPtr(pPage, idx);
      if( pPage->intKeyLeaf ){
        while( 0x80 <= *(pCell++) ){
          if( pCell>=pPage->aDataEnd ){
            return SQLITE_CORRUPT_PAGE(pPage);







<







71262
71263
71264
71265
71266
71267
71268

71269
71270
71271
71272
71273
71274
71275
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey );
    lwr = 0;
    upr = pPage->nCell-1;
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */

    for(;;){
      i64 nCellKey;
      pCell = findCellPastPtr(pPage, idx);
      if( pPage->intKeyLeaf ){
        while( 0x80 <= *(pCell++) ){
          if( pCell>=pPage->aDataEnd ){
            return SQLITE_CORRUPT_PAGE(pPage);
71380
71381
71382
71383
71384
71385
71386
71387
71388
71389
71390
71391
71392
71393
71394
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    idx = upr>>1; /* idx = (lwr+upr)/2; */
    pCur->ix = (u16)idx;
    for(;;){
      int nCell;  /* Size of the pCell cell in bytes */
      pCell = findCellPastPtr(pPage, idx);

      /* The maximum supported page-size is 65536 bytes. This means that
      ** the maximum number of record bytes stored on an index B-Tree
      ** page is less than 16384 bytes and may be stored as a 2-byte







<







71403
71404
71405
71406
71407
71408
71409

71410
71411
71412
71413
71414
71415
71416
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    idx = upr>>1; /* idx = (lwr+upr)/2; */

    for(;;){
      int nCell;  /* Size of the pCell cell in bytes */
      pCell = findCellPastPtr(pPage, idx);

      /* The maximum supported page-size is 65536 bytes. This means that
      ** the maximum number of record bytes stored on an index B-Tree
      ** page is less than 16384 bytes and may be stored as a 2-byte
72496
72497
72498
72499
72500
72501
72502
72503

72504
72505
72506
72507
72508
72509

72510
72511
72512
72513
72514
72515
72516
  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;
  assert( idx>=0 && idx<pPage->nCell );

  assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->nFree>=0 );
  data = pPage->aData;
  ptr = &pPage->aCellIdx[2*idx];

  pc = get2byte(ptr);
  hdr = pPage->hdrOffset;
  testcase( pc==(u32)get2byte(&data[hdr+5]) );
  testcase( pc+sz==pPage->pBt->usableSize );
  if( pc+sz > pPage->pBt->usableSize ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;







|
>






>







72518
72519
72520
72521
72522
72523
72524
72525
72526
72527
72528
72529
72530
72531
72532
72533
72534
72535
72536
72537
72538
72539
72540
  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;
  assert( idx>=0 );
  assert( idx<pPage->nCell );
  assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->nFree>=0 );
  data = pPage->aData;
  ptr = &pPage->aCellIdx[2*idx];
  assert( pPage->pBt->usableSize > (int)(ptr-data) );
  pc = get2byte(ptr);
  hdr = pPage->hdrOffset;
  testcase( pc==(u32)get2byte(&data[hdr+5]) );
  testcase( pc+sz==pPage->pBt->usableSize );
  if( pc+sz > pPage->pBt->usableSize ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
72797
72798
72799
72800
72801
72802
72803
72804
72805
72806
72807
72808
72809
72810
72811
  u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
  u8 *pData;
  int k;                          /* Current slot in pCArray->apEnd[] */
  u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */

  assert( i<iEnd );
  j = get2byte(&aData[hdr+5]);
  if( NEVER(j>(u32)usableSize) ){ j = 0; }
  memcpy(&pTmp[j], &aData[j], usableSize - j);

  for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
  pSrcEnd = pCArray->apEnd[k];

  pData = pEnd;
  while( 1/*exit by break*/ ){







|







72821
72822
72823
72824
72825
72826
72827
72828
72829
72830
72831
72832
72833
72834
72835
  u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
  u8 *pData;
  int k;                          /* Current slot in pCArray->apEnd[] */
  u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */

  assert( i<iEnd );
  j = get2byte(&aData[hdr+5]);
  if( j>(u32)usableSize ){ j = 0; }
  memcpy(&pTmp[j], &aData[j], usableSize - j);

  for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
  pSrcEnd = pCArray->apEnd[k];

  pData = pEnd;
  while( 1/*exit by break*/ ){
73028
73029
73030
73031
73032
73033
73034
73035
73036
73037
73038
73039
73040
73041
73042
    int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
    assert( nCell>=nTail );
    nCell -= nTail;
  }

  pData = &aData[get2byteNotZero(&aData[hdr+5])];
  if( pData<pBegin ) goto editpage_fail;
  if( NEVER(pData>pPg->aDataEnd) ) goto editpage_fail;

  /* Add cells to the start of the page */
  if( iNew<iOld ){
    int nAdd = MIN(nNew,iOld-iNew);
    assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
    assert( nAdd>=0 );
    pCellptr = pPg->aCellIdx;







|







73052
73053
73054
73055
73056
73057
73058
73059
73060
73061
73062
73063
73064
73065
73066
    int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
    assert( nCell>=nTail );
    nCell -= nTail;
  }

  pData = &aData[get2byteNotZero(&aData[hdr+5])];
  if( pData<pBegin ) goto editpage_fail;
  if( pData>pPg->aDataEnd ) goto editpage_fail;

  /* Add cells to the start of the page */
  if( iNew<iOld ){
    int nAdd = MIN(nNew,iOld-iNew);
    assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
    assert( nAdd>=0 );
    pCellptr = pPg->aCellIdx;
74904
74905
74906
74907
74908
74909
74910
74911
74912
74913
74914
74915
74916
74917
74918
74919
74920
74921
74922
74923
74924
74925
74926
74927
74928
74929
74930
74931
74932
74933
74934
74935
74936



74937
74938

74939

74940
74941
74942
74943
74944
74945
74946
74947
74948








74949
74950
74951
74952
74953
74954
74955
74956
74957
74958
74959
74960
74961
74962
74963
74964
74965
74966
** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
** but which might be used by alternative storage engines.
*/
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */
  CellInfo info;                       /* Size of the cell being deleted */
  int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
  u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */

  assert( cursorOwnsBtShared(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
  if( pCur->eState==CURSOR_REQUIRESEEK ){
    rc = btreeRestoreCursorPosition(pCur);
    assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
    if( rc || pCur->eState!=CURSOR_VALID ) return rc;
  }
  assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->ix;
  pPage = pCur->pPage;



  pCell = findCell(pPage, iCellIdx);
  if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;



  /* If the bPreserve flag is set to true, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
  ** returning.
  **
  ** Or, if the current delete will not cause a rebalance, then the cursor
  ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
  ** before or after the deleted entry. In this case set bSkipnext to true.  */








  if( bPreserve ){
    if( !pPage->leaf
     || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
     || pPage->nCell==1  /* See dbfuzz001.test for a test case */
    ){
      /* A b-tree rebalance will be required after deleting this entry.
      ** Save the cursor key.  */
      rc = saveCursorKey(pCur);
      if( rc ) return rc;
    }else{
      bSkipnext = 1;
    }
  }

  /* If the page containing the entry to delete is not a leaf page, move
  ** the cursor to the largest entry in the tree that is smaller than
  ** the entry being deleted. This cell will replace the cell being deleted
  ** from the internal node. The 'previous' entry is used for this instead







|
|
|
|
|
|
<
|


















>
>
>

|
>
|
>
|





|

|
>
>
>
>
>
>
>
>










|







74928
74929
74930
74931
74932
74933
74934
74935
74936
74937
74938
74939
74940

74941
74942
74943
74944
74945
74946
74947
74948
74949
74950
74951
74952
74953
74954
74955
74956
74957
74958
74959
74960
74961
74962
74963
74964
74965
74966
74967
74968
74969
74970
74971
74972
74973
74974
74975
74976
74977
74978
74979
74980
74981
74982
74983
74984
74985
74986
74987
74988
74989
74990
74991
74992
74993
74994
74995
74996
74997
74998
74999
75000
75001
75002
** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
** but which might be used by alternative storage engines.
*/
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  int rc;                    /* Return code */
  MemPage *pPage;            /* Page to delete cell from */
  unsigned char *pCell;      /* Pointer to cell to delete */
  int iCellIdx;              /* Index of cell to delete */
  int iCellDepth;            /* Depth of node containing pCell */
  CellInfo info;             /* Size of the cell being deleted */

  u8 bPreserve;              /* Keep cursor valid.  2 for CURSOR_SKIPNEXT */

  assert( cursorOwnsBtShared(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
  if( pCur->eState==CURSOR_REQUIRESEEK ){
    rc = btreeRestoreCursorPosition(pCur);
    assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
    if( rc || pCur->eState!=CURSOR_VALID ) return rc;
  }
  assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->ix;
  pPage = pCur->pPage;
  if( pPage->nCell<=iCellIdx ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCell = findCell(pPage, iCellIdx);
  if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
    return SQLITE_CORRUPT_BKPT;
  }

  /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
  ** returning.
  **
  ** If the current delete will not cause a rebalance, then the cursor
  ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
  ** before or after the deleted entry.
  **
  ** The bPreserve value records which path is required:
  **
  **    bPreserve==0         Not necessary to save the cursor position
  **    bPreserve==1         Use CURSOR_REQUIRESEEK to save the cursor position
  **    bPreserve==2         Cursor won't move.  Set CURSOR_SKIPNEXT.
  */
  bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
  if( bPreserve ){
    if( !pPage->leaf
     || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
     || pPage->nCell==1  /* See dbfuzz001.test for a test case */
    ){
      /* A b-tree rebalance will be required after deleting this entry.
      ** Save the cursor key.  */
      rc = saveCursorKey(pCur);
      if( rc ) return rc;
    }else{
      bPreserve = 2;
    }
  }

  /* If the page containing the entry to delete is not a leaf page, move
  ** the cursor to the largest entry in the tree that is smaller than
  ** the entry being deleted. This cell will replace the cell being deleted
  ** from the internal node. The 'previous' entry is used for this instead
75052
75053
75054
75055
75056
75057
75058
75059
75060
75061
75062
75063
75064
75065
75066
75067
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    pCur->pPage = pCur->apPage[pCur->iPage];
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bSkipnext ){
      assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->pPage || CORRUPT_DB );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->ix = pPage->nCell-1;
      }else{







|
|







75088
75089
75090
75091
75092
75093
75094
75095
75096
75097
75098
75099
75100
75101
75102
75103
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    pCur->pPage = pCur->apPage[pCur->iPage];
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bPreserve>1 ){
      assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->pPage || CORRUPT_DB );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->ix = pPage->nCell-1;
      }else{
81751
81752
81753
81754
81755
81756
81757
81758
81759
81760
81761
81762
81763
81764
81765
81766
** Close a VDBE cursor and release all the resources that cursor
** happens to hold.
*/
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx==0 ){
    return;
  }
  assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
  assert( pCx->pBtx==0 || pCx->isEphemeral );
  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      assert( pCx->uc.pCursor!=0 );







<
<







81787
81788
81789
81790
81791
81792
81793


81794
81795
81796
81797
81798
81799
81800
** Close a VDBE cursor and release all the resources that cursor
** happens to hold.
*/
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx==0 ){
    return;
  }


  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      assert( pCx->uc.pCursor!=0 );
82854
82855
82856
82857
82858
82859
82860
82861
82862
82863
82864
82865
82866
82867
82868
*/
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
  VdbeCursor *p = *pp;
  assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
  if( p->deferredMoveto ){
    u32 iMap;
    assert( !p->isEphemeral );
    if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
      *pp = p->pAltCursor;
      *piCol = iMap - 1;
      return SQLITE_OK;
    }
    return sqlite3VdbeFinishMoveto(p);
  }
  if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){







|







82888
82889
82890
82891
82892
82893
82894
82895
82896
82897
82898
82899
82900
82901
82902
*/
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
  VdbeCursor *p = *pp;
  assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
  if( p->deferredMoveto ){
    u32 iMap;
    assert( !p->isEphemeral );
    if( p->ub.aAltMap && (iMap = p->ub.aAltMap[1+*piCol])>0 && !p->nullRow ){
      *pp = p->pAltCursor;
      *piCol = iMap - 1;
      return SQLITE_OK;
    }
    return sqlite3VdbeFinishMoveto(p);
  }
  if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
87055
87056
87057
87058
87059
87060
87061
87062
87063
87064
87065
87066
87067
87068
87069
** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */
  int iDb,              /* Database the cursor belongs to, or -1 */
  u8 eCurType           /* Type of the new cursor */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **







<







87089
87090
87091
87092
87093
87094
87095

87096
87097
87098
87099
87100
87101
87102
** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */

  u8 eCurType           /* Type of the new cursor */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **
87112
87113
87114
87115
87116
87117
87118
87119
87120
87121
87122
87123
87124
87125
87126
    }
    pMem->szMalloc = nByte;
  }

  p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
  memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
  pCx->eCurType = eCurType;
  pCx->iDb = iDb;
  pCx->nField = nField;
  pCx->aOffset = &pCx->aType[nField];
  if( eCurType==CURTYPE_BTREE ){
    pCx->uc.pCursor = (BtCursor*)
        &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
    sqlite3BtreeCursorZero(pCx->uc.pCursor);
  }







<







87145
87146
87147
87148
87149
87150
87151

87152
87153
87154
87155
87156
87157
87158
    }
    pMem->szMalloc = nByte;
  }

  p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
  memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
  pCx->eCurType = eCurType;

  pCx->nField = nField;
  pCx->aOffset = &pCx->aType[nField];
  if( eCurType==CURTYPE_BTREE ){
    pCx->uc.pCursor = (BtCursor*)
        &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
    sqlite3BtreeCursorZero(pCx->uc.pCursor);
  }
89506
89507
89508
89509
89510
89511
89512

89513
89514
89515
89516
89517
89518
89519

  assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pC!=0 );
  assert( p2<(u32)pC->nField );
  aOffset = pC->aOffset;

  assert( pC->eCurType!=CURTYPE_VTAB );
  assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
  assert( pC->eCurType!=CURTYPE_SORTER );

  if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
    if( pC->nullRow ){
      if( pC->eCurType==CURTYPE_PSEUDO ){







>







89538
89539
89540
89541
89542
89543
89544
89545
89546
89547
89548
89549
89550
89551
89552

  assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pC!=0 );
  assert( p2<(u32)pC->nField );
  aOffset = pC->aOffset;
  assert( aOffset==pC->aType+pC->nField );
  assert( pC->eCurType!=CURTYPE_VTAB );
  assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
  assert( pC->eCurType!=CURTYPE_SORTER );

  if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
    if( pC->nullRow ){
      if( pC->eCurType==CURTYPE_PSEUDO ){
90655
90656
90657
90658
90659
90660
90661

90662
90663
90664
90665
90666
90667
90668
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
  if( pOp->p2==BTREE_SCHEMA_VERSION ){
    /* When the schema cookie changes, record the new cookie internally */
    pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5;
    db->mDbFlags |= DBFLAG_SchemaChange;

  }else if( pOp->p2==BTREE_FILE_FORMAT ){
    /* Record changes in the file format */
    pDb->pSchema->file_format = pOp->p3;
  }
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */







>







90688
90689
90690
90691
90692
90693
90694
90695
90696
90697
90698
90699
90700
90701
90702
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
  if( pOp->p2==BTREE_SCHEMA_VERSION ){
    /* When the schema cookie changes, record the new cookie internally */
    pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5;
    db->mDbFlags |= DBFLAG_SchemaChange;
    sqlite3FkClearTriggerCache(db, pOp->p1);
  }else if( pOp->p2==BTREE_FILE_FORMAT ){
    /* Record changes in the file format */
    pDb->pSchema->file_format = pOp->p3;
  }
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
90832
90833
90834
90835
90836
90837
90838
90839
90840

90841
90842
90843
90844
90845
90846
90847
    nField = pKeyInfo->nAllField;
  }else if( pOp->p4type==P4_INT32 ){
    nField = pOp->p4.i;
  }
  assert( pOp->p1>=0 );
  assert( nField>=0 );
  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
  pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
  if( pCur==0 ) goto no_mem;

  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
#ifdef SQLITE_DEBUG
  pCur->wrFlag = wrFlag;
#endif
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);







|

>







90866
90867
90868
90869
90870
90871
90872
90873
90874
90875
90876
90877
90878
90879
90880
90881
90882
    nField = pKeyInfo->nAllField;
  }else if( pOp->p4type==P4_INT32 ){
    nField = pOp->p4.i;
  }
  assert( pOp->p1>=0 );
  assert( nField>=0 );
  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
  pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
  if( pCur==0 ) goto no_mem;
  pCur->iDb = iDb;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
#ifdef SQLITE_DEBUG
  pCur->wrFlag = wrFlag;
#endif
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
90875
90876
90877
90878
90879
90880
90881
90882
90883
90884
90885
90886
90887
90888
90889
90890
90891
90892
90893
90894
90895
90896
90897
90898
90899
90900
  VdbeCursor *pOrig;    /* The original cursor to be duplicated */
  VdbeCursor *pCx;      /* The new cursor */

  pOrig = p->apCsr[pOp->p2];
  assert( pOrig );
  assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */

  pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->isEphemeral = 1;
  pCx->pKeyInfo = pOrig->pKeyInfo;
  pCx->isTable = pOrig->isTable;
  pCx->pgnoRoot = pOrig->pgnoRoot;
  pCx->isOrdered = pOrig->isOrdered;
  pCx->pBtx = pOrig->pBtx;
  pCx->hasBeenDuped = 1;
  pOrig->hasBeenDuped = 1;
  rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
                          pCx->pKeyInfo, pCx->uc.pCursor);
  /* The sqlite3BtreeCursor() routine can only fail for the first cursor
  ** opened for a database.  Since there is already an open cursor when this
  ** opcode is run, the sqlite3BtreeCursor() cannot fail */
  assert( rc==SQLITE_OK );
  break;
}







|







|


|







90910
90911
90912
90913
90914
90915
90916
90917
90918
90919
90920
90921
90922
90923
90924
90925
90926
90927
90928
90929
90930
90931
90932
90933
90934
90935
  VdbeCursor *pOrig;    /* The original cursor to be duplicated */
  VdbeCursor *pCx;      /* The new cursor */

  pOrig = p->apCsr[pOp->p2];
  assert( pOrig );
  assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */

  pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->isEphemeral = 1;
  pCx->pKeyInfo = pOrig->pKeyInfo;
  pCx->isTable = pOrig->isTable;
  pCx->pgnoRoot = pOrig->pgnoRoot;
  pCx->isOrdered = pOrig->isOrdered;
  pCx->ub.pBtx = pOrig->ub.pBtx;
  pCx->hasBeenDuped = 1;
  pOrig->hasBeenDuped = 1;
  rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
                          pCx->pKeyInfo, pCx->uc.pCursor);
  /* The sqlite3BtreeCursor() routine can only fail for the first cursor
  ** opened for a database.  Since there is already an open cursor when this
  ** opcode is run, the sqlite3BtreeCursor() cannot fail */
  assert( rc==SQLITE_OK );
  break;
}
90959
90960
90961
90962
90963
90964
90965
90966
90967
90968
90969
90970
90971
90972
90973
90974
90975
90976
90977
90978
90979
90980
90981
90982
90983
90984
90985
90986
90987
90988
90989
90990
90991
90992
90993
90994
90995
90996
90997
90998
90999
91000
91001
91002
91003
91004
91005
91006
91007
91008
91009
91010
  if( pCx && !pCx->hasBeenDuped &&  ALWAYS(pOp->p2<=pCx->nField) ){
    /* If the ephermeral table is already open and has no duplicates from
    ** OP_OpenDup, then erase all existing content so that the table is
    ** empty again, rather than creating a new table. */
    assert( pCx->isEphemeral );
    pCx->seqCount = 0;
    pCx->cacheStatus = CACHE_STALE;
    rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0);
  }else{
    pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
    if( pCx==0 ) goto no_mem;
    pCx->isEphemeral = 1;
    rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
                          BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
                          vfsFlags);
    if( rc==SQLITE_OK ){
      rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
      if( rc==SQLITE_OK ){
        /* If a transient index is required, create it by calling
        ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
        ** opening it. If a transient table is required, just use the
        ** automatically created table with root-page 1 (an BLOB_INTKEY table).
        */
        if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
          assert( pOp->p4type==P4_KEYINFO );
          rc = sqlite3BtreeCreateTable(pCx->pBtx, &pCx->pgnoRoot,
              BTREE_BLOBKEY | pOp->p5);
          if( rc==SQLITE_OK ){
            assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
            assert( pKeyInfo->db==db );
            assert( pKeyInfo->enc==ENC(db) );
            rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
                pKeyInfo, pCx->uc.pCursor);
          }
          pCx->isTable = 0;
        }else{
          pCx->pgnoRoot = SCHEMA_ROOT;
          rc = sqlite3BtreeCursor(pCx->pBtx, SCHEMA_ROOT, BTREE_WRCSR,
              0, pCx->uc.pCursor);
          pCx->isTable = 1;
        }
      }
      pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
      if( rc ){
        sqlite3BtreeClose(pCx->pBtx);
      }
    }
  }
  if( rc ) goto abort_due_to_error;
  pCx->nullRow = 1;
  break;
}







|

|


|



|








|





|





|






|







90994
90995
90996
90997
90998
90999
91000
91001
91002
91003
91004
91005
91006
91007
91008
91009
91010
91011
91012
91013
91014
91015
91016
91017
91018
91019
91020
91021
91022
91023
91024
91025
91026
91027
91028
91029
91030
91031
91032
91033
91034
91035
91036
91037
91038
91039
91040
91041
91042
91043
91044
91045
  if( pCx && !pCx->hasBeenDuped &&  ALWAYS(pOp->p2<=pCx->nField) ){
    /* If the ephermeral table is already open and has no duplicates from
    ** OP_OpenDup, then erase all existing content so that the table is
    ** empty again, rather than creating a new table. */
    assert( pCx->isEphemeral );
    pCx->seqCount = 0;
    pCx->cacheStatus = CACHE_STALE;
    rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
  }else{
    pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
    if( pCx==0 ) goto no_mem;
    pCx->isEphemeral = 1;
    rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
                          BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
                          vfsFlags);
    if( rc==SQLITE_OK ){
      rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
      if( rc==SQLITE_OK ){
        /* If a transient index is required, create it by calling
        ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
        ** opening it. If a transient table is required, just use the
        ** automatically created table with root-page 1 (an BLOB_INTKEY table).
        */
        if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
          assert( pOp->p4type==P4_KEYINFO );
          rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
              BTREE_BLOBKEY | pOp->p5);
          if( rc==SQLITE_OK ){
            assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
            assert( pKeyInfo->db==db );
            assert( pKeyInfo->enc==ENC(db) );
            rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
                pKeyInfo, pCx->uc.pCursor);
          }
          pCx->isTable = 0;
        }else{
          pCx->pgnoRoot = SCHEMA_ROOT;
          rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
              0, pCx->uc.pCursor);
          pCx->isTable = 1;
        }
      }
      pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
      if( rc ){
        sqlite3BtreeClose(pCx->ub.pBtx);
      }
    }
  }
  if( rc ) goto abort_due_to_error;
  pCx->nullRow = 1;
  break;
}
91020
91021
91022
91023
91024
91025
91026
91027
91028
91029
91030
91031
91032
91033
91034
** key is sufficient to produce the required results.
*/
case OP_SorterOpen: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  assert( pOp->p2>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
  if( pCx==0 ) goto no_mem;
  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  assert( pCx->pKeyInfo->db==db );
  assert( pCx->pKeyInfo->enc==ENC(db) );
  rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
  if( rc ) goto abort_due_to_error;
  break;







|







91055
91056
91057
91058
91059
91060
91061
91062
91063
91064
91065
91066
91067
91068
91069
** key is sufficient to produce the required results.
*/
case OP_SorterOpen: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  assert( pOp->p2>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
  if( pCx==0 ) goto no_mem;
  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  assert( pCx->pKeyInfo->db==db );
  assert( pCx->pKeyInfo->enc==ENC(db) );
  rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
  if( rc ) goto abort_due_to_error;
  break;
91069
91070
91071
91072
91073
91074
91075
91076
91077
91078
91079
91080
91081
91082
91083
** the pseudo-table.
*/
case OP_OpenPseudo: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  assert( pOp->p3>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->seekResult = pOp->p2;
  pCx->isTable = 1;
  /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
  ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
  ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()







|







91104
91105
91106
91107
91108
91109
91110
91111
91112
91113
91114
91115
91116
91117
91118
** the pseudo-table.
*/
case OP_OpenPseudo: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  assert( pOp->p3>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->seekResult = pOp->p2;
  pCx->isTable = 1;
  /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
  ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
  ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
93009
93010
93011
93012
93013
93014
93015

93016
93017
93018
93019
93020
93021
93022
93023
93024
93025
      assert( pTabCur->eCurType==CURTYPE_BTREE );
      assert( pTabCur->uc.pCursor!=0 );
      assert( pTabCur->isTable );
      pTabCur->nullRow = 0;
      pTabCur->movetoTarget = rowid;
      pTabCur->deferredMoveto = 1;
      assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );

      pTabCur->aAltMap = pOp->p4.ai;
      assert( !pC->isEphemeral );
      assert( !pTabCur->isEphemeral );
      pTabCur->pAltCursor = pC;
    }else{
      pOut = out2Prerelease(p, pOp);
      pOut->u.i = rowid;
    }
  }else{
    assert( pOp->opcode==OP_IdxRowid );







>
|

<







93044
93045
93046
93047
93048
93049
93050
93051
93052
93053

93054
93055
93056
93057
93058
93059
93060
      assert( pTabCur->eCurType==CURTYPE_BTREE );
      assert( pTabCur->uc.pCursor!=0 );
      assert( pTabCur->isTable );
      pTabCur->nullRow = 0;
      pTabCur->movetoTarget = rowid;
      pTabCur->deferredMoveto = 1;
      assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
      assert( !pTabCur->isEphemeral );
      pTabCur->ub.aAltMap = pOp->p4.ai;
      assert( !pC->isEphemeral );

      pTabCur->pAltCursor = pC;
    }else{
      pOut = out2Prerelease(p, pOp);
      pOut->u.i = rowid;
    }
  }else{
    assert( pOp->opcode==OP_IdxRowid );
94533
94534
94535
94536
94537
94538
94539
94540
94541
94542
94543
94544
94545
94546
94547
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc ) goto abort_due_to_error;

  /* Initialize sqlite3_vtab_cursor base class */
  pVCur->pVtab = pVtab;

  /* Initialize vdbe cursor object */
  pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
  if( pCur ){
    pCur->uc.pVCur = pVCur;
    pVtab->nRef++;
  }else{
    assert( db->mallocFailed );
    pModule->xClose(pVCur);
    goto no_mem;







|







94568
94569
94570
94571
94572
94573
94574
94575
94576
94577
94578
94579
94580
94581
94582
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc ) goto abort_due_to_error;

  /* Initialize sqlite3_vtab_cursor base class */
  pVCur->pVtab = pVtab;

  /* Initialize vdbe cursor object */
  pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
  if( pCur ){
    pCur->uc.pVCur = pVCur;
    pVtab->nRef++;
  }else{
    assert( db->mallocFailed );
    pModule->xClose(pVCur);
    goto no_mem;
96858
96859
96860
96861
96862
96863
96864
96865

96866
96867
96868
96869
96870
96871
96872
  ** to exceed the maximum merge count */
#if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
  if( nWorker>=SORTER_MAX_MERGE_COUNT ){
    nWorker = SORTER_MAX_MERGE_COUNT-1;
  }
#endif

  assert( pCsr->pKeyInfo && pCsr->pBtx==0 );

  assert( pCsr->eCurType==CURTYPE_SORTER );
  szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*);
  sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);

  pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
  pCsr->uc.pSorter = pSorter;
  if( pSorter==0 ){







|
>







96893
96894
96895
96896
96897
96898
96899
96900
96901
96902
96903
96904
96905
96906
96907
96908
  ** to exceed the maximum merge count */
#if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
  if( nWorker>=SORTER_MAX_MERGE_COUNT ){
    nWorker = SORTER_MAX_MERGE_COUNT-1;
  }
#endif

  assert( pCsr->pKeyInfo );
  assert( !pCsr->isEphemeral );
  assert( pCsr->eCurType==CURTYPE_SORTER );
  szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nKeyField-1)*sizeof(CollSeq*);
  sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);

  pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
  pCsr->uc.pSorter = pSorter;
  if( pSorter==0 ){
99358
99359
99360
99361
99362
99363
99364
99365
99366
99367
99368
99369
99370
99371
99372
  if( size<p->endpoint.iOffset ){
    FileChunk *pIter = 0;
    if( size==0 ){
      memjrnlFreeChunks(p->pFirst);
      p->pFirst = 0;
    }else{
      i64 iOff = p->nChunkSize;
      for(pIter=p->pFirst; ALWAYS(pIter) && iOff<=size; pIter=pIter->pNext){
        iOff += p->nChunkSize;
      }
      if( ALWAYS(pIter) ){
        memjrnlFreeChunks(pIter->pNext);
        pIter->pNext = 0;
      }
    }







|







99394
99395
99396
99397
99398
99399
99400
99401
99402
99403
99404
99405
99406
99407
99408
  if( size<p->endpoint.iOffset ){
    FileChunk *pIter = 0;
    if( size==0 ){
      memjrnlFreeChunks(p->pFirst);
      p->pFirst = 0;
    }else{
      i64 iOff = p->nChunkSize;
      for(pIter=p->pFirst; ALWAYS(pIter) && iOff<size; pIter=pIter->pNext){
        iOff += p->nChunkSize;
      }
      if( ALWAYS(pIter) ){
        memjrnlFreeChunks(pIter->pNext);
        pIter->pNext = 0;
      }
    }
123461
123462
123463
123464
123465
123466
123467



















123468
123469
123470
123471
123472
123473
123474
    sqlite3ExprDelete(dbMem, pStep->pWhere);
    sqlite3ExprListDelete(dbMem, pStep->pExprList);
    sqlite3SelectDelete(dbMem, pStep->pSelect);
    sqlite3ExprDelete(dbMem, p->pWhen);
    sqlite3DbFree(dbMem, p);
  }
}




















/*
** This function is called to generate code that runs when table pTab is
** being dropped from the database. The SrcList passed as the second argument
** to this function contains a single entry guaranteed to resolve to
** table pTab.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







123497
123498
123499
123500
123501
123502
123503
123504
123505
123506
123507
123508
123509
123510
123511
123512
123513
123514
123515
123516
123517
123518
123519
123520
123521
123522
123523
123524
123525
123526
123527
123528
123529
    sqlite3ExprDelete(dbMem, pStep->pWhere);
    sqlite3ExprListDelete(dbMem, pStep->pExprList);
    sqlite3SelectDelete(dbMem, pStep->pSelect);
    sqlite3ExprDelete(dbMem, p->pWhen);
    sqlite3DbFree(dbMem, p);
  }
}

/*
** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys
** in a particular database.  This needs to happen when the schema
** changes.
*/
SQLITE_PRIVATE void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){
  HashElem *k;
  Hash *pHash = &db->aDb[iDb].pSchema->tblHash;
  for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){
    Table *pTab = sqliteHashData(k);
    FKey *pFKey;
    if( !IsOrdinaryTable(pTab) ) continue;
    for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
      fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0;
      fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0;
    }
  }
}

/*
** This function is called to generate code that runs when table pTab is
** being dropped from the database. The SrcList passed as the second argument
** to this function contains a single entry guaranteed to resolve to
** table pTab.
**
124262
124263
124264
124265
124266
124267
124268
124269
124270
124271
124272
124273
124274
124275
124276
                   (opcode==OP_OpenWrite)?1:0, pTab->zName);
  if( HasRowid(pTab) ){
    sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
    VdbeComment((v, "%s", pTab->zName));
  }else{
    Index *pPk = sqlite3PrimaryKeyIndex(pTab);
    assert( pPk!=0 );
    assert( pPk->tnum==pTab->tnum );
    sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
    sqlite3VdbeSetP4KeyInfo(pParse, pPk);
    VdbeComment((v, "%s", pTab->zName));
  }
}

/*







|







124317
124318
124319
124320
124321
124322
124323
124324
124325
124326
124327
124328
124329
124330
124331
                   (opcode==OP_OpenWrite)?1:0, pTab->zName);
  if( HasRowid(pTab) ){
    sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
    VdbeComment((v, "%s", pTab->zName));
  }else{
    Index *pPk = sqlite3PrimaryKeyIndex(pTab);
    assert( pPk!=0 );
    assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
    sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
    sqlite3VdbeSetP4KeyInfo(pParse, pPk);
    VdbeComment((v, "%s", pTab->zName));
  }
}

/*
126766
126767
126768
126769
126770
126771
126772
126773
126774
126775
126776
126777
126778
126779
126780
    if( aRegIdx[i]==0 ) continue;
    if( pIdx->pPartIdxWhere ){
      sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
      VdbeCoverage(v);
    }
    pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
      assert( pParse->nested==0 );
      pik_flags |= OPFLAG_NCHANGE;
      pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
      if( update_flags==0 ){
        codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
      }
    }
    sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],







<







126821
126822
126823
126824
126825
126826
126827

126828
126829
126830
126831
126832
126833
126834
    if( aRegIdx[i]==0 ) continue;
    if( pIdx->pPartIdxWhere ){
      sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
      VdbeCoverage(v);
    }
    pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){

      pik_flags |= OPFLAG_NCHANGE;
      pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
      if( update_flags==0 ){
        codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
      }
    }
    sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
133181
133182
133183
133184
133185
133186
133187
133188
133189
133190
133191
133192
133193
133194
133195
    sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags);
  }
  if( db->mallocFailed ){
    sParse.rc = SQLITE_NOMEM_BKPT;
    sParse.checkSchema = 0;
  }
  if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){
    if( sParse.checkSchema ){
      schemaIsValid(&sParse);
    }
    if( sParse.pVdbe ){
      sqlite3VdbeFinalize(sParse.pVdbe);
    }
    assert( 0==(*ppStmt) );
    rc = sParse.rc;







|







133235
133236
133237
133238
133239
133240
133241
133242
133243
133244
133245
133246
133247
133248
133249
    sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags);
  }
  if( db->mallocFailed ){
    sParse.rc = SQLITE_NOMEM_BKPT;
    sParse.checkSchema = 0;
  }
  if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){
    if( sParse.checkSchema && db->init.busy==0 ){
      schemaIsValid(&sParse);
    }
    if( sParse.pVdbe ){
      sqlite3VdbeFinalize(sParse.pVdbe);
    }
    assert( 0==(*ppStmt) );
    rc = sParse.rc;
142136
142137
142138
142139
142140
142141
142142
142143
142144
142145
142146
142147
142148
142149
142150
142151
142152
142153
142154
142155


142156
142157
142158
142159
142160
142161
142162
142163
142164
142165
142166
142167
142168
142169
142170
142171
142172
142173

142174
142175
142176
142177
142178
142179
142180
142181
142182
142183
142184
  sFrom.a[0].iCursor = -1;
  sqlite3SelectPrep(pParse, &sSelect, 0);
  if( db->mallocFailed==0 && pParse->nErr==0 ){
    sqlite3GenerateColumnNames(pParse, &sSelect);
  }
  sqlite3ExprListDelete(db, sSelect.pEList);
  pNew = sqlite3ExpandReturning(pParse, pReturning->pReturnEL, pTab);
  if( pNew ){
    NameContext sNC;
    memset(&sNC, 0, sizeof(sNC));
    if( pReturning->nRetCol==0 ){
      pReturning->nRetCol = pNew->nExpr;
      pReturning->iRetCur = pParse->nTab++;
    }
    sNC.pParse = pParse;
    sNC.uNC.iBaseReg = regIn;
    sNC.ncFlags = NC_UBaseReg;
    pParse->eTriggerOp = pTrigger->op;
    pParse->pTriggerTab = pTab;
    if( sqlite3ResolveExprListNames(&sNC, pNew)==SQLITE_OK ){


      int i;
      int nCol = pNew->nExpr;
      int reg = pParse->nMem+1;
      pParse->nMem += nCol+2;
      pReturning->iRetReg = reg;
      for(i=0; i<nCol; i++){
        Expr *pCol = pNew->a[i].pExpr;
        assert( pCol!=0 || pParse->db->mallocFailed );
        if( pCol==0 ) continue;
        sqlite3ExprCodeFactorable(pParse, pCol, reg+i);
        if( sqlite3ExprAffinity(pCol)==SQLITE_AFF_REAL ){
          sqlite3VdbeAddOp1(v, OP_RealAffinity, reg+i);
        }
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, i, reg+i);
      sqlite3VdbeAddOp2(v, OP_NewRowid, pReturning->iRetCur, reg+i+1);
      sqlite3VdbeAddOp3(v, OP_Insert, pReturning->iRetCur, reg+i, reg+i+1);
    }

    sqlite3ExprListDelete(db, pNew);
    pParse->eTriggerOp = 0;
    pParse->pTriggerTab = 0;
  }
}



/*
** Generate VDBE code for the statements inside the body of a single
** trigger.







|











|
>
>







|
<









>
|
|
|
<







142190
142191
142192
142193
142194
142195
142196
142197
142198
142199
142200
142201
142202
142203
142204
142205
142206
142207
142208
142209
142210
142211
142212
142213
142214
142215
142216
142217
142218
142219

142220
142221
142222
142223
142224
142225
142226
142227
142228
142229
142230
142231
142232

142233
142234
142235
142236
142237
142238
142239
  sFrom.a[0].iCursor = -1;
  sqlite3SelectPrep(pParse, &sSelect, 0);
  if( db->mallocFailed==0 && pParse->nErr==0 ){
    sqlite3GenerateColumnNames(pParse, &sSelect);
  }
  sqlite3ExprListDelete(db, sSelect.pEList);
  pNew = sqlite3ExpandReturning(pParse, pReturning->pReturnEL, pTab);
  if( !db->mallocFailed ){
    NameContext sNC;
    memset(&sNC, 0, sizeof(sNC));
    if( pReturning->nRetCol==0 ){
      pReturning->nRetCol = pNew->nExpr;
      pReturning->iRetCur = pParse->nTab++;
    }
    sNC.pParse = pParse;
    sNC.uNC.iBaseReg = regIn;
    sNC.ncFlags = NC_UBaseReg;
    pParse->eTriggerOp = pTrigger->op;
    pParse->pTriggerTab = pTab;
    if( sqlite3ResolveExprListNames(&sNC, pNew)==SQLITE_OK
     && !db->mallocFailed
    ){
      int i;
      int nCol = pNew->nExpr;
      int reg = pParse->nMem+1;
      pParse->nMem += nCol+2;
      pReturning->iRetReg = reg;
      for(i=0; i<nCol; i++){
        Expr *pCol = pNew->a[i].pExpr;
        assert( pCol!=0 ); /* Due to !db->mallocFailed ~9 lines above */

        sqlite3ExprCodeFactorable(pParse, pCol, reg+i);
        if( sqlite3ExprAffinity(pCol)==SQLITE_AFF_REAL ){
          sqlite3VdbeAddOp1(v, OP_RealAffinity, reg+i);
        }
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, i, reg+i);
      sqlite3VdbeAddOp2(v, OP_NewRowid, pReturning->iRetCur, reg+i+1);
      sqlite3VdbeAddOp3(v, OP_Insert, pReturning->iRetCur, reg+i, reg+i+1);
    }
  }
  sqlite3ExprListDelete(db, pNew);
  pParse->eTriggerOp = 0;
  pParse->pTriggerTab = 0;

}



/*
** Generate VDBE code for the statements inside the body of a single
** trigger.
229241
229242
229243
229244
229245
229246
229247
229248
229249
229250
229251
229252
229253
229254
229255

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );

  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
    int iIdx = 0;                 /* Index to search */
    int iPrefixIdx = 0;           /* +1 prefix index */
    if( nToken ) memcpy(&buf.p[1], pToken, nToken);

    /* Figure out which index to search and set iIdx accordingly. If this
    ** is a prefix query for which there is no prefix index, set iIdx to
    ** greater than pConfig->nPrefix to indicate that the query will be
    ** satisfied by scanning multiple terms in the main index.
    **
    ** If the QUERY_TEST_NOIDX flag was specified, then this must be a







|







229296
229297
229298
229299
229300
229301
229302
229303
229304
229305
229306
229307
229308
229309
229310

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );

  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
    int iIdx = 0;                 /* Index to search */
    int iPrefixIdx = 0;           /* +1 prefix index */
    if( nToken>0 ) memcpy(&buf.p[1], pToken, nToken);

    /* Figure out which index to search and set iIdx accordingly. If this
    ** is a prefix query for which there is no prefix index, set iIdx to
    ** greater than pConfig->nPrefix to indicate that the query will be
    ** satisfied by scanning multiple terms in the main index.
    **
    ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
233289
233290
233291
233292
233293
233294
233295
233296
233297
233298
233299
233300
233301
233302
233303
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2021-12-31 22:53:15 e654b57a9fc32021453eed48d1c1bba65c833fb1aac3946567968c877e4cbd10", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){







|







233344
233345
233346
233347
233348
233349
233350
233351
233352
233353
233354
233355
233356
233357
233358
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2022-01-06 17:13:56 2d6a16caa7d28ad5c766036b2eb6c2020683fcc9389b3c7df2013739929dd36f", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){

Changes to extsrc/sqlite3.h.

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.38.0"
#define SQLITE_VERSION_NUMBER 3038000
#define SQLITE_SOURCE_ID      "2021-12-31 22:53:15 e654b57a9fc32021453eed48d1c1bba65c833fb1aac3946567968c877e4cbd10"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.38.0"
#define SQLITE_VERSION_NUMBER 3038000
#define SQLITE_SOURCE_ID      "2022-01-06 17:13:56 2d6a16caa7d28ad5c766036b2eb6c2020683fcc9389b3c7df2013739929dd36f"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros