/* -*- Mode: C; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* The code is modified for use in fossil (then libfossil). The original header comment follows: */ /* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. */ #include #include #include "libfossil.h" #include #if defined(__i386__) || defined(__x86_64__) || defined(_WIN32) # define byteReverse(A,B) #else /* * Convert an array of integers to little-endian. * Note: this code is a no-op on little-endian machines. */ static void byteReverse (unsigned char *buf, unsigned longs){ uint32_t t; do { t = (uint32_t)((unsigned)buf[3]<<8 | buf[2]) << 16 | ((unsigned)buf[1]<<8 | buf[0]); *(uint32_t *)buf = t; buf += 4; } while (--longs); } #endif /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform(uint32_t buf[4], const uint32_t in[16]){ register uint32_t a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } const fsl_md5_cx fsl_md5_cx_empty = fsl_md5_cx_empty_m; /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void fsl_md5_init(fsl_md5_cx *ctx){ *ctx = fsl_md5_cx_empty; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ void fsl_md5_update(fsl_md5_cx *ctx, void const * buf_, fsl_size_t len){ const unsigned char * buf = (const unsigned char *)buf_; uint32_t t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32_t)len << 3)) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if ( t ) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64-t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32_t *)ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32_t *)ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void fsl_md5_final(fsl_md5_cx * ctx, unsigned char * digest){ unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32_t *)ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count-8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ memcpy(&ctx->in[14*sizeof(uint32_t)], ctx->bits, 2*sizeof(uint32_t)); MD5Transform(ctx->buf, (uint32_t *)ctx->in); byteReverse((unsigned char *)ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ } void fsl_md5_digest_to_base16(unsigned char *digest, char *zBuf){ static char const zEncode[] = "0123456789abcdef"; int i, j; for(j=i=0; i<16; i++){ int a = digest[i]; zBuf[j++] = zEncode[(a>>4)&0xf]; zBuf[j++] = zEncode[a & 0xf]; } zBuf[j] = 0; } #if 0 /* The symlink-hashing code here may be needed at some point... */ int fsl_md5sum_file(const char *zFilename, fsl_buffer *pCksum){ if(!zFilename || !pCksum) return FSL_RC_MISUSE; else{ /* Requires v1 code which has not yet been ported in. */ FILE *in; fsl_md5_cx ctx; unsigned char zResult[20]; char zBuf[10240]; if( fsl_wd_islink(zFilename) ){ /* Instead of file content, return md5 of link destination path */ Blob destinationPath; int rc; blob_read_link(&destinationPath, zFilename); rc = sha1sum_blob(&destinationPath, pCksum); blob_reset(&destinationPath); return rc; } in = fossil_fopen(zFilename,"rb"); if( in==0 ){ return 1; } fsl_sha1_init(&ctx); for(;;){ int n; n = fread(zBuf, 1, sizeof(zBuf), in); if( n<=0 ) break; fsl_sha1_update(&ctx, (unsigned char*)zBuf, (unsigned)n); } fsl_fclose(in); blob_zero(pCksum); blob_resize(pCksum, 40); fsl_sha1_final(&ctx, zResult); fsl_sha1_digest_to_base16(zResult, blob_buffer(pCksum)); return 0; } } #endif int fsl_md5sum_buffer(fsl_buffer const *pIn, fsl_buffer *pCksum){ if(!pIn || !pCksum) return FSL_RC_MISUSE; else{ fsl_md5_cx ctx = fsl_md5_cx_empty; unsigned char zResult[20]; int rc; fsl_md5_update(&ctx, pIn->mem, pIn->used); fsl_buffer_reuse(pCksum); rc = fsl_buffer_resize(pCksum, FSL_STRLEN_MD5/*resize() adds 1 for NUL*/); if(!rc){ fsl_md5_final(&ctx, zResult); fsl_md5_digest_to_base16(zResult, fsl_buffer_str(pCksum)); } return rc; } } char *fsl_md5sum_cstr(const char *zIn, fsl_int_t len){ if(!zIn || !len) return NULL; else{ fsl_md5_cx ctx; unsigned char zResult[20]; char * zDigest = (char *)fsl_malloc(FSL_STRLEN_MD5+1); if(!zDigest) return NULL; fsl_md5_init(&ctx); fsl_md5_update(&ctx, zIn, (len<0) ? fsl_strlen(zIn) : (fsl_size_t)len); fsl_md5_final(&ctx, zResult); fsl_md5_digest_to_base16(zResult, zDigest); return zDigest; } } int fsl_md5sum_stream(fsl_input_f src, void * srcState, fsl_buffer *pCksum){ fsl_md5_cx ctx; int rc; unsigned char zResult[20]; enum { BufSize = 1024 * 4 }; unsigned char zBuf[BufSize]; if(!src || !pCksum) return FSL_RC_MISUSE; fsl_md5_init(&ctx); for(;;){ fsl_size_t read = (fsl_size_t)BufSize; rc = src(srcState, zBuf, &read); if(rc) return rc; else if(read) fsl_md5_update(&ctx, (unsigned char*)zBuf, read); if(read < (fsl_size_t)BufSize) break; } fsl_buffer_reuse(pCksum); rc = fsl_buffer_resize(pCksum, FSL_STRLEN_MD5); if(!rc){ fsl_md5_final(&ctx, zResult); fsl_md5_digest_to_base16(zResult, fsl_buffer_str(pCksum)); } return rc; } #if 0 void fsl_md5_to_base16(fsl_md5_cx const * cx, char *zBuf){ static char const zEncode[] = "0123456789abcdef"; int i, j; for(j=i=0; i<16; i++){ int a = digest[i]; zBuf[j++] = zEncode[(a>>4)&0xf]; zBuf[j++] = zEncode[a & 0xf]; } zBuf[j] = 0; } #endif #if 0 /* Add the content of a blob to the incremental MD5 checksum. */ void md5sum_step_blob(Blob *p){ md5sum_step_text(blob_buffer(p), blob_size(p)); } #endif int fsl_md5sum_filename(const char *zFilename, fsl_buffer *pCksum){ if(!zFilename || !pCksum) return FSL_RC_MISUSE; else{ int rc; FILE *in = fsl_fopen(zFilename, "rb"); if(!in) rc = FSL_RC_IO; else{ rc = fsl_md5sum_stream(fsl_input_f_FILE, in, pCksum); fsl_fclose(in); } return rc; } } void fsl_md5_update_buffer(fsl_md5_cx *cx, fsl_buffer const * b){ if(b->used) fsl_md5_update(cx, b->mem, b->used); } void fsl_md5_update_cstr(fsl_md5_cx *cx, char const * str, fsl_int_t len){ if(len<0) len = fsl_strlen(str); if(len>0) fsl_md5_update(cx, str, (fsl_size_t)len); } int fsl_md5_update_stream(fsl_md5_cx *ctx, fsl_input_f src, void * srcState){ int rc; enum { BufSize = 1024 * 4 }; unsigned char zBuf[BufSize]; if(!ctx || !src) return FSL_RC_MISUSE; for(;;){ fsl_size_t read = (fsl_size_t)BufSize; rc = src(srcState, zBuf, &read); if(rc) return rc; else if(read) fsl_md5_update(ctx, (unsigned char*)zBuf, read); if(read < (fsl_size_t)BufSize) break; } return 0; } int fsl_md5_update_filename(fsl_md5_cx *cx, char const * fname){ if(!cx || !fname) return FSL_RC_MISUSE; else{ int rc; FILE *in = fsl_fopen(fname, "rb"); if(in) rc = fsl_errno_to_rc(errno,FSL_RC_IO); else { rc = fsl_md5_update_stream(cx, fsl_input_f_FILE, in); fsl_fclose(in); } return rc; } } #undef F1 #undef F2 #undef F3 #undef F4 #undef MD5STEP #undef byteReverse