Fossil

Check-in [44900415]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite to the latest 3.30.0 alpha version, for testing.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA3-256: 44900415b10f342581193f21e51b08ef3575e7d929f19777a8cc9990f79a58ba
User & Date: drh 2019-09-21 17:50:15.651
Context
2019-09-23
18:25
Change the database fingerprint algorithm slightly so that it is not dependent on the details of floating-point computations, and thus gives the same answer on a native x64 processor as it does under valgrind. Also fix a bug in the RID change event computation so that it works even if files have been added. ... (check-in: 265f8e2d user: drh tags: trunk)
2019-09-21
17:50
Update the built-in SQLite to the latest 3.30.0 alpha version, for testing. ... (check-in: 44900415 user: drh tags: trunk)
2019-09-19
16:33
Updates to the change log. ... (check-in: b6c36e87 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/shell.c.
12129
12130
12131
12132
12133
12134
12135


12136
12137
12138
12139
12140
12141
12142
  ".quit                    Exit this program",
  ".read FILE               Read input from FILE",
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_ENABLE_DBPAGE_VTAB)
  ".recover                 Recover as much data as possible from corrupt db.",
  "   --freelist-corrupt       Assume the freelist is corrupt",
  "   --recovery-db NAME       Store recovery metadata in database file NAME",
  "   --lost-and-found TABLE   Alternative name for the lost-and-found table",


#endif
  ".restore ?DB? FILE       Restore content of DB (default \"main\") from FILE",
  ".save FILE               Write in-memory database into FILE",
  ".scanstats on|off        Turn sqlite3_stmt_scanstatus() metrics on or off",
  ".schema ?PATTERN?        Show the CREATE statements matching PATTERN",
  "     Options:",
  "         --indent            Try to pretty-print the schema",







>
>







12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
  ".quit                    Exit this program",
  ".read FILE               Read input from FILE",
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_ENABLE_DBPAGE_VTAB)
  ".recover                 Recover as much data as possible from corrupt db.",
  "   --freelist-corrupt       Assume the freelist is corrupt",
  "   --recovery-db NAME       Store recovery metadata in database file NAME",
  "   --lost-and-found TABLE   Alternative name for the lost-and-found table",
  "   --no-rowids              Do not attempt to recover rowid values",
  "                            that are not also INTEGER PRIMARY KEYs",
#endif
  ".restore ?DB? FILE       Restore content of DB (default \"main\") from FILE",
  ".save FILE               Write in-memory database into FILE",
  ".scanstats on|off        Turn sqlite3_stmt_scanstatus() metrics on or off",
  ".schema ?PATTERN?        Show the CREATE statements matching PATTERN",
  "     Options:",
  "         --indent            Try to pretty-print the schema",
15133
15134
15135
15136
15137
15138
15139

15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154



15155
15156
15157
15158
15159
15160
15161
  const char *zRecoveryDb = "";   /* Name of "recovery" database */
  const char *zLostAndFound = "lost_and_found";
  int i;
  int nOrphan = -1;
  RecoverTable *pOrphan = 0;

  int bFreelist = 1;              /* 0 if --freelist-corrupt is specified */

  for(i=1; i<nArg; i++){
    char *z = azArg[i];
    int n;
    if( z[0]=='-' && z[1]=='-' ) z++;
    n = strlen30(z);
    if( n<=17 && memcmp("-freelist-corrupt", z, n)==0 ){
      bFreelist = 0;
    }else
    if( n<=12 && memcmp("-recovery-db", z, n)==0 && i<(nArg-1) ){
      i++;
      zRecoveryDb = azArg[i];
    }else
    if( n<=15 && memcmp("-lost-and-found", z, n)==0 && i<(nArg-1) ){
      i++;
      zLostAndFound = azArg[i];



    }
    else{
      utf8_printf(stderr, "unexpected option: %s\n", azArg[i]); 
      showHelp(pState->out, azArg[0]);
      return 1;
    }
  }







>















>
>
>







15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
  const char *zRecoveryDb = "";   /* Name of "recovery" database */
  const char *zLostAndFound = "lost_and_found";
  int i;
  int nOrphan = -1;
  RecoverTable *pOrphan = 0;

  int bFreelist = 1;              /* 0 if --freelist-corrupt is specified */
  int bRowids = 1;                /* 0 if --no-rowids */
  for(i=1; i<nArg; i++){
    char *z = azArg[i];
    int n;
    if( z[0]=='-' && z[1]=='-' ) z++;
    n = strlen30(z);
    if( n<=17 && memcmp("-freelist-corrupt", z, n)==0 ){
      bFreelist = 0;
    }else
    if( n<=12 && memcmp("-recovery-db", z, n)==0 && i<(nArg-1) ){
      i++;
      zRecoveryDb = azArg[i];
    }else
    if( n<=15 && memcmp("-lost-and-found", z, n)==0 && i<(nArg-1) ){
      i++;
      zLostAndFound = azArg[i];
    }else
    if( n<=10 && memcmp("-no-rowids", z, n)==0 ){
      bRowids = 0;
    }
    else{
      utf8_printf(stderr, "unexpected option: %s\n", azArg[i]); 
      showHelp(pState->out, azArg[0]);
      return 1;
    }
  }
15313
15314
15315
15316
15317
15318
15319

15320
15321


15322
15323
15324
15325
15326
15327
15328
  }
  shellFinalize(&rc, pLoop);
  pLoop = 0;

  shellPrepare(pState->db, &rc,
      "SELECT pgno FROM recovery.map WHERE root=?", &pPages
  );

  shellPrepare(pState->db, &rc,
      "SELECT max(field), group_concat(shell_escape_crnl(quote(value)), ', ')"


      ", min(field) "
      "FROM sqlite_dbdata WHERE pgno = ? AND field != ?"
      "GROUP BY cell", &pCells
  );

  /* Loop through each root page. */
  shellPrepare(pState->db, &rc, 







>

|
>
>







15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
  }
  shellFinalize(&rc, pLoop);
  pLoop = 0;

  shellPrepare(pState->db, &rc,
      "SELECT pgno FROM recovery.map WHERE root=?", &pPages
  );

  shellPrepare(pState->db, &rc,
      "SELECT max(field), group_concat(shell_escape_crnl(quote"
      "(case when (? AND field<0) then NULL else value end)"
      "), ', ')"
      ", min(field) "
      "FROM sqlite_dbdata WHERE pgno = ? AND field != ?"
      "GROUP BY cell", &pCells
  );

  /* Loop through each root page. */
  shellPrepare(pState->db, &rc, 
15349
15350
15351
15352
15353
15354
15355





15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
      if( pTab==0 ) break;
    }

    if( 0==sqlite3_stricmp(pTab->zQuoted, "\"sqlite_sequence\"") ){
      raw_printf(pState->out, "DELETE FROM sqlite_sequence;\n");
    }
    sqlite3_bind_int(pPages, 1, iRoot);





    sqlite3_bind_int(pCells, 2, pTab->iPk);

    while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPages) ){
      int iPgno = sqlite3_column_int(pPages, 0);
      sqlite3_bind_int(pCells, 1, iPgno);
      while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pCells) ){
        int nField = sqlite3_column_int(pCells, 0);
        int iMin = sqlite3_column_int(pCells, 2);
        const char *zVal = (const char*)sqlite3_column_text(pCells, 1);

        RecoverTable *pTab2 = pTab;
        if( pTab!=pOrphan && (iMin<0)!=bIntkey ){







>
>
>
>
>
|



|







15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
      if( pTab==0 ) break;
    }

    if( 0==sqlite3_stricmp(pTab->zQuoted, "\"sqlite_sequence\"") ){
      raw_printf(pState->out, "DELETE FROM sqlite_sequence;\n");
    }
    sqlite3_bind_int(pPages, 1, iRoot);
    if( bRowids==0 && pTab->iPk<0 ){
      sqlite3_bind_int(pCells, 1, 1);
    }else{
      sqlite3_bind_int(pCells, 1, 0);
    }
    sqlite3_bind_int(pCells, 3, pTab->iPk);

    while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPages) ){
      int iPgno = sqlite3_column_int(pPages, 0);
      sqlite3_bind_int(pCells, 2, iPgno);
      while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pCells) ){
        int nField = sqlite3_column_int(pCells, 0);
        int iMin = sqlite3_column_int(pCells, 2);
        const char *zVal = (const char*)sqlite3_column_text(pCells, 1);

        RecoverTable *pTab2 = pTab;
        if( pTab!=pOrphan && (iMin<0)!=bIntkey ){
Changes to src/sqlite3.c.
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.30.0"
#define SQLITE_VERSION_NUMBER 3030000
#define SQLITE_SOURCE_ID      "2019-09-03 16:23:41 3044cf6917ea8324175fc91657e9a5978af9748f72e1914bc361753f0b2d897d"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.30.0"
#define SQLITE_VERSION_NUMBER 3030000
#define SQLITE_SOURCE_ID      "2019-09-21 17:31:03 8ea1dc727d391b15d0c4fa858ff68d5b8a63dde46408f24027dac8d28f044cbd"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
5898
5899
5900
5901
5902
5903
5904

5905
5906
5907


5908
5909
5910
5911
5912
5913
5914
** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
** to signal that the function will always return the same result given
** the same inputs within a single SQL statement.  Most SQL functions are
** deterministic.  The built-in [random()] SQL function is an example of a
** function that is not deterministic.  The SQLite query planner is able to
** perform additional optimizations on deterministic functions, so use
** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.

** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
** flag, which if present prevents the function from being invoked from
** within VIEWs or TRIGGERs.


**
** ^(The fifth parameter is an arbitrary pointer.  The implementation of the
** function can gain access to this pointer using [sqlite3_user_data()].)^
**
** ^The sixth, seventh and eighth parameters passed to the three
** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL function or







>


|
>
>







5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
** to signal that the function will always return the same result given
** the same inputs within a single SQL statement.  Most SQL functions are
** deterministic.  The built-in [random()] SQL function is an example of a
** function that is not deterministic.  The SQLite query planner is able to
** perform additional optimizations on deterministic functions, so use
** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
**
** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
** flag, which if present prevents the function from being invoked from
** within VIEWs or TRIGGERs.  For security reasons, the [SQLITE_DIRECTONLY]
** flag is recommended for any application-defined SQL function that has
** side-effects.
**
** ^(The fifth parameter is an arbitrary pointer.  The implementation of the
** function can gain access to this pointer using [sqlite3_user_data()].)^
**
** ^The sixth, seventh and eighth parameters passed to the three
** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL function or
6024
6025
6026
6027
6028
6029
6030
6031













6032
6033
6034

6035
6036
6037
6038
6039
6040
6041
** [sqlite3_create_function_v2()].
**
** The SQLITE_DETERMINISTIC flag means that the new function will always
** maps the same inputs into the same output.  The abs() function is
** deterministic, for example, but randomblob() is not.
**
** The SQLITE_DIRECTONLY flag means that the function may only be invoked
** from top-level SQL, and cannot be used in VIEWs or TRIGGERs.













*/
#define SQLITE_DETERMINISTIC    0x000000800
#define SQLITE_DIRECTONLY       0x000080000


/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue 







|
>
>
>
>
>
>
>
>
>
>
>
>
>



>







6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
** [sqlite3_create_function_v2()].
**
** The SQLITE_DETERMINISTIC flag means that the new function will always
** maps the same inputs into the same output.  The abs() function is
** deterministic, for example, but randomblob() is not.
**
** The SQLITE_DIRECTONLY flag means that the function may only be invoked
** from top-level SQL, and cannot be used in VIEWs or TRIGGERs.  This is
** a security feature which is recommended for all 
** [application-defined SQL functions] that have side-effects.  This flag 
** prevents an attacker from adding triggers and views to a schema then 
** tricking a high-privilege application into causing unintended side-effects
** while performing ordinary queries.
**
** The SQLITE_SUBTYPE flag indicates to SQLite that a function may call
** [sqlite3_value_subtype()] to inspect the sub-types of its arguments.
** Specifying this flag makes no difference for scalar or aggregate user
** functions. However, if it is not specified for a user-defined window
** function, then any sub-types belonging to arguments passed to the window
** function may be discarded before the window function is called (i.e.
** sqlite3_value_subtype() will always return 0).
*/
#define SQLITE_DETERMINISTIC    0x000000800
#define SQLITE_DIRECTONLY       0x000080000
#define SQLITE_SUBTYPE          0x000100000

/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue 
16698
16699
16700
16701
16702
16703
16704

16705
16706
16707
16708
16709
16710
16711
#define SQLITE_FUNC_SLOCHNG  0x2000 /* "Slow Change". Value constant during a
                                    ** single query - might change over time */
#define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */
#define SQLITE_FUNC_OFFSET   0x8000 /* Built-in sqlite_offset() function */
#define SQLITE_FUNC_WINDOW   0x00010000 /* Built-in window-only function */
#define SQLITE_FUNC_INTERNAL 0x00040000 /* For use by NestedParse() only */
#define SQLITE_FUNC_DIRECT   0x00080000 /* Not for use in TRIGGERs or VIEWs */


/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName







>







16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
#define SQLITE_FUNC_SLOCHNG  0x2000 /* "Slow Change". Value constant during a
                                    ** single query - might change over time */
#define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */
#define SQLITE_FUNC_OFFSET   0x8000 /* Built-in sqlite_offset() function */
#define SQLITE_FUNC_WINDOW   0x00010000 /* Built-in window-only function */
#define SQLITE_FUNC_INTERNAL 0x00040000 /* For use by NestedParse() only */
#define SQLITE_FUNC_DIRECT   0x00080000 /* Not for use in TRIGGERs or VIEWs */
#define SQLITE_FUNC_SUBTYPE  0x00100000 /* Result likely to have sub-type */

/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629


18630
18631
18632
18633
18634
18635
18636
  Expr *pStart;           /* Expression for "<expr> PRECEDING" */
  Expr *pEnd;             /* Expression for "<expr> FOLLOWING" */
  Window **ppThis;        /* Pointer to this object in Select.pWin list */
  Window *pNextWin;       /* Next window function belonging to this SELECT */
  Expr *pFilter;          /* The FILTER expression */
  FuncDef *pFunc;         /* The function */
  int iEphCsr;            /* Partition buffer or Peer buffer */
  int regAccum;
  int regResult;
  int csrApp;             /* Function cursor (used by min/max) */
  int regApp;             /* Function register (also used by min/max) */
  int regPart;            /* Array of registers for PARTITION BY values */
  Expr *pOwner;           /* Expression object this window is attached to */
  int nBufferCol;         /* Number of columns in buffer table */
  int iArgCol;            /* Offset of first argument for this function */
  int regOne;             /* Register containing constant value 1 */
  int regStartRowid;
  int regEndRowid;


};

#ifndef SQLITE_OMIT_WINDOWFUNC
SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3*, Window*);
SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window*);
SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p);
SQLITE_PRIVATE Window *sqlite3WindowAlloc(Parse*, int, int, Expr*, int , Expr*, u8);







|
|









>
>







18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
  Expr *pStart;           /* Expression for "<expr> PRECEDING" */
  Expr *pEnd;             /* Expression for "<expr> FOLLOWING" */
  Window **ppThis;        /* Pointer to this object in Select.pWin list */
  Window *pNextWin;       /* Next window function belonging to this SELECT */
  Expr *pFilter;          /* The FILTER expression */
  FuncDef *pFunc;         /* The function */
  int iEphCsr;            /* Partition buffer or Peer buffer */
  int regAccum;           /* Accumulator */
  int regResult;          /* Interim result */
  int csrApp;             /* Function cursor (used by min/max) */
  int regApp;             /* Function register (also used by min/max) */
  int regPart;            /* Array of registers for PARTITION BY values */
  Expr *pOwner;           /* Expression object this window is attached to */
  int nBufferCol;         /* Number of columns in buffer table */
  int iArgCol;            /* Offset of first argument for this function */
  int regOne;             /* Register containing constant value 1 */
  int regStartRowid;
  int regEndRowid;
  u8 bExprArgs;           /* Defer evaluation of window function arguments
                          ** due to the SQLITE_SUBTYPE flag */
};

#ifndef SQLITE_OMIT_WINDOWFUNC
SQLITE_PRIVATE void sqlite3WindowDelete(sqlite3*, Window*);
SQLITE_PRIVATE void sqlite3WindowUnlinkFromSelect(Window*);
SQLITE_PRIVATE void sqlite3WindowListDelete(sqlite3 *db, Window *p);
SQLITE_PRIVATE Window *sqlite3WindowAlloc(Parse*, int, int, Expr*, int , Expr*, u8);
29212
29213
29214
29215
29216
29217
29218




29219


29220
29221
29222
29223
29224
29225
29226
    case TK_SPAN: {
      sqlite3TreeViewLine(pView, "SPAN %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }

    case TK_COLLATE: {




      sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);


      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }

    case TK_AGG_FUNCTION:
    case TK_FUNCTION: {
      ExprList *pFarg;       /* List of function arguments */







>
>
>
>
|
>
>







29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
    case TK_SPAN: {
      sqlite3TreeViewLine(pView, "SPAN %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }

    case TK_COLLATE: {
      /* COLLATE operators without the EP_Collate flag are intended to
      ** emulate collation associated with a table column.  Explicit
      ** COLLATE operators that appear in the original SQL always have
      ** the EP_Collate bit set */
      sqlite3TreeViewLine(pView, "%sCOLLATE %Q%s",
        !ExprHasProperty(pExpr, EP_Collate) ? "SOFT-" : "",
        pExpr->u.zToken, zFlgs);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }

    case TK_AGG_FUNCTION:
    case TK_FUNCTION: {
      ExprList *pFarg;       /* List of function arguments */
74841
74842
74843
74844
74845
74846
74847

74848





74849
74850
74851
74852
74853
74854
74855
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
  if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){

    pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);





    bPreserve = 0;
  }else{
    if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
    pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
  }
  if( pMem->zMalloc==0 ){
    sqlite3VdbeMemSetNull(pMem);







>
|
>
>
>
>
>







74867
74868
74869
74870
74871
74872
74873
74874
74875
74876
74877
74878
74879
74880
74881
74882
74883
74884
74885
74886
74887
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
  if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
    if( pMem->db ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
    }else{
      pMem->zMalloc = sqlite3Realloc(pMem->z, n);
      if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
      pMem->z = pMem->zMalloc;
    }
    bPreserve = 0;
  }else{
    if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
    pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
  }
  if( pMem->zMalloc==0 ){
    sqlite3VdbeMemSetNull(pMem);
84277
84278
84279
84280
84281
84282
84283

84284
84285
84286
84287
84288
84289
84290
    }else if( f & MEM_Ephem ){
      c = 'e';
      assert( (f & (MEM_Static|MEM_Dyn))==0 );
    }else{
      c = 's';
    }
    *(zCsr++) = c;

    sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
    zCsr += sqlite3Strlen30(zCsr);
    for(i=0; i<25 && i<pMem->n; i++){
      sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
      zCsr += sqlite3Strlen30(zCsr);
    }
    *zCsr++ = '|';







>







84309
84310
84311
84312
84313
84314
84315
84316
84317
84318
84319
84320
84321
84322
84323
    }else if( f & MEM_Ephem ){
      c = 'e';
      assert( (f & (MEM_Static|MEM_Dyn))==0 );
    }else{
      c = 's';
    }
    *(zCsr++) = c;
    *(zCsr++) = 'x';
    sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
    zCsr += sqlite3Strlen30(zCsr);
    for(i=0; i<25 && i<pMem->n; i++){
      sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
      zCsr += sqlite3Strlen30(zCsr);
    }
    *zCsr++ = '|';
85025
85026
85027
85028
85029
85030
85031
85032
85033
85034
85035
85036
85037
85038
85039
** into a String opcode before it is executed for the first time.  During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: {         /* same as TK_STRING, out2 */
  assert( pOp->p4.z!=0 );
  pOut = out2Prerelease(p, pOp);
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
    if( rc ) goto too_big;







<







85058
85059
85060
85061
85062
85063
85064

85065
85066
85067
85068
85069
85070
85071
** into a String opcode before it is executed for the first time.  During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: {         /* same as TK_STRING, out2 */
  assert( pOp->p4.z!=0 );
  pOut = out2Prerelease(p, pOp);

  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
    if( rc ) goto too_big;
85049
85050
85051
85052
85053
85054
85055

85056
85057
85058
85059
85060
85061
85062
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
  }
#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  assert( rc==SQLITE_OK );
  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 P2 P3 P4 P5
** Synopsis: r[P2]='P4' (len=P1)
**







>







85081
85082
85083
85084
85085
85086
85087
85088
85089
85090
85091
85092
85093
85094
85095
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
  }
#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  pOp->opcode = OP_String;
  assert( rc==SQLITE_OK );
  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 P2 P3 P4 P5
** Synopsis: r[P2]='P4' (len=P1)
**
100315
100316
100317
100318
100319
100320
100321

100322
100323
100324
100325
100326
100327
100328
    sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
  }
  if( addrOnce ){
    sqlite3VdbeJumpHere(v, addrOnce);
    /* Subroutine return */
    sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
    sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);

  }
}
#endif /* SQLITE_OMIT_SUBQUERY */

/*
** Generate code for scalar subqueries used as a subquery expression
** or EXISTS operator:







>







100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
    sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
  }
  if( addrOnce ){
    sqlite3VdbeJumpHere(v, addrOnce);
    /* Subroutine return */
    sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
    sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
    sqlite3ClearTempRegCache(pParse);
  }
}
#endif /* SQLITE_OMIT_SUBQUERY */

/*
** Generate code for scalar subqueries used as a subquery expression
** or EXISTS operator:
100425
100426
100427
100428
100429
100430
100431

100432
100433
100434
100435
100436
100437
100438
  ExprSetVVAProperty(pExpr, EP_NoReduce);
  if( addrOnce ){
    sqlite3VdbeJumpHere(v, addrOnce);

    /* Subroutine return */
    sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
    sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);

  }

  return rReg;
}
#endif /* SQLITE_OMIT_SUBQUERY */

#ifndef SQLITE_OMIT_SUBQUERY







>







100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
  ExprSetVVAProperty(pExpr, EP_NoReduce);
  if( addrOnce ){
    sqlite3VdbeJumpHere(v, addrOnce);

    /* Subroutine return */
    sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
    sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
    sqlite3ClearTempRegCache(pParse);
  }

  return rReg;
}
#endif /* SQLITE_OMIT_SUBQUERY */

#ifndef SQLITE_OMIT_SUBQUERY
103056
103057
103058
103059
103060
103061
103062





103063
103064
103065
103066
103067
103068
103069
    pParse->nRangeReg = nReg;
    pParse->iRangeReg = iReg;
  }
}

/*
** Mark all temporary registers as being unavailable for reuse.





*/
SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse *pParse){
  pParse->nTempReg = 0;
  pParse->nRangeReg = 0;
}

/*







>
>
>
>
>







103091
103092
103093
103094
103095
103096
103097
103098
103099
103100
103101
103102
103103
103104
103105
103106
103107
103108
103109
    pParse->nRangeReg = nReg;
    pParse->iRangeReg = iReg;
  }
}

/*
** Mark all temporary registers as being unavailable for reuse.
**
** Always invoke this procedure after coding a subroutine or co-routine
** that might be invoked from other parts of the code, to ensure that
** the sub/co-routine does not use registers in common with the code that
** invokes the sub/co-routine.
*/
SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse *pParse){
  pParse->nTempReg = 0;
  pParse->nRangeReg = 0;
}

/*
114047
114048
114049
114050
114051
114052
114053


114054
114055
114056
114057
114058
114059
114060
114061
114062
114063
114064
114065
114066
114067
114068
114069










114070
114071
114072
114073
114074
114075
114076
114077
114078
114079
114080
114081
114082
114083
114084







114085
114086
114087
114088
114089
114090
114091
  const unsigned char *zNeedle;
  int nHaystack;
  int nNeedle;
  int typeHaystack, typeNeedle;
  int N = 1;
  int isText;
  unsigned char firstChar;



  UNUSED_PARAMETER(argc);
  typeHaystack = sqlite3_value_type(argv[0]);
  typeNeedle = sqlite3_value_type(argv[1]);
  if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
  nHaystack = sqlite3_value_bytes(argv[0]);
  nNeedle = sqlite3_value_bytes(argv[1]);
  if( nNeedle>0 ){
    if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
      zHaystack = sqlite3_value_blob(argv[0]);
      zNeedle = sqlite3_value_blob(argv[1]);
      isText = 0;
    }else{
      zHaystack = sqlite3_value_text(argv[0]);
      zNeedle = sqlite3_value_text(argv[1]);
      isText = 1;










    }
    if( zNeedle==0 || (nHaystack && zHaystack==0) ) return;
    firstChar = zNeedle[0];
    while( nNeedle<=nHaystack
       && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
    ){
      N++;
      do{
        nHaystack--;
        zHaystack++;
      }while( isText && (zHaystack[0]&0xc0)==0x80 );
    }
    if( nNeedle>nHaystack ) N = 0;
  }
  sqlite3_result_int(context, N);







}

/*
** Implementation of the printf() function.
*/
static void printfFunc(
  sqlite3_context *context,







>
>












|



>
>
>
>
>
>
>
>
>
>

|













>
>
>
>
>
>
>







114087
114088
114089
114090
114091
114092
114093
114094
114095
114096
114097
114098
114099
114100
114101
114102
114103
114104
114105
114106
114107
114108
114109
114110
114111
114112
114113
114114
114115
114116
114117
114118
114119
114120
114121
114122
114123
114124
114125
114126
114127
114128
114129
114130
114131
114132
114133
114134
114135
114136
114137
114138
114139
114140
114141
114142
114143
114144
114145
114146
114147
114148
114149
114150
  const unsigned char *zNeedle;
  int nHaystack;
  int nNeedle;
  int typeHaystack, typeNeedle;
  int N = 1;
  int isText;
  unsigned char firstChar;
  sqlite3_value *pC1 = 0;
  sqlite3_value *pC2 = 0;

  UNUSED_PARAMETER(argc);
  typeHaystack = sqlite3_value_type(argv[0]);
  typeNeedle = sqlite3_value_type(argv[1]);
  if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
  nHaystack = sqlite3_value_bytes(argv[0]);
  nNeedle = sqlite3_value_bytes(argv[1]);
  if( nNeedle>0 ){
    if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
      zHaystack = sqlite3_value_blob(argv[0]);
      zNeedle = sqlite3_value_blob(argv[1]);
      isText = 0;
    }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
      zHaystack = sqlite3_value_text(argv[0]);
      zNeedle = sqlite3_value_text(argv[1]);
      isText = 1;
    }else{
      pC1 = sqlite3_value_dup(argv[0]);
      zHaystack = sqlite3_value_text(pC1);
      if( zHaystack==0 ) goto endInstrOOM;
      nHaystack = sqlite3_value_bytes(pC1);
      pC2 = sqlite3_value_dup(argv[1]);
      zNeedle = sqlite3_value_text(pC2);
      if( zNeedle==0 ) goto endInstrOOM;
      nNeedle = sqlite3_value_bytes(pC2);
      isText = 1;
    }
    if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
    firstChar = zNeedle[0];
    while( nNeedle<=nHaystack
       && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
    ){
      N++;
      do{
        nHaystack--;
        zHaystack++;
      }while( isText && (zHaystack[0]&0xc0)==0x80 );
    }
    if( nNeedle>nHaystack ) N = 0;
  }
  sqlite3_result_int(context, N);
endInstr:
  sqlite3_value_free(pC1);
  sqlite3_value_free(pC2);
  return;
endInstrOOM:
  sqlite3_result_error_nomem(context);
  goto endInstr;
}

/*
** Implementation of the printf() function.
*/
static void printfFunc(
  sqlite3_context *context,
128981
128982
128983
128984
128985
128986
128987












128988
128989
128990
128991
128992
128993
128994
        }
        if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
          pNew->iRightJoinTable = pExpr->iRightJoinTable;
          ExprSetProperty(pNew, EP_FromJoin);
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;












      }
    }
  }else{
    if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
      pExpr->iTable = pSubst->iNewTable;
    }
    pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);







>
>
>
>
>
>
>
>
>
>
>
>







129040
129041
129042
129043
129044
129045
129046
129047
129048
129049
129050
129051
129052
129053
129054
129055
129056
129057
129058
129059
129060
129061
129062
129063
129064
129065
        }
        if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
          pNew->iRightJoinTable = pExpr->iRightJoinTable;
          ExprSetProperty(pNew, EP_FromJoin);
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;

        /* Ensure that the expression now has an implicit collation sequence,
        ** just as it did when it was a column of a view or sub-query. */
        if( pExpr ){
          if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
            CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
            pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 
                (pColl ? pColl->zName : "BINARY")
            );
          }
          ExprClearProperty(pExpr, EP_Collate);
        }
      }
    }
  }else{
    if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
      pExpr->iTable = pSubst->iNewTable;
    }
    pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
130847
130848
130849
130850
130851
130852
130853













130854
130855
130856
130857
130858
130859
130860
    int addrNext = 0;
    int regAgg;
    ExprList *pList = pF->pExpr->x.pList;
    assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
    assert( !IsWindowFunc(pF->pExpr) );
    if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
      Expr *pFilter = pF->pExpr->y.pWin->pFilter;













      addrNext = sqlite3VdbeMakeLabel(pParse);
      sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
    }
    if( pList ){
      nArg = pList->nExpr;
      regAgg = sqlite3GetTempRange(pParse, nArg);
      sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);







>
>
>
>
>
>
>
>
>
>
>
>
>







130918
130919
130920
130921
130922
130923
130924
130925
130926
130927
130928
130929
130930
130931
130932
130933
130934
130935
130936
130937
130938
130939
130940
130941
130942
130943
130944
    int addrNext = 0;
    int regAgg;
    ExprList *pList = pF->pExpr->x.pList;
    assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
    assert( !IsWindowFunc(pF->pExpr) );
    if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
      Expr *pFilter = pF->pExpr->y.pWin->pFilter;
      if( pAggInfo->nAccumulator 
       && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 
      ){
        if( regHit==0 ) regHit = ++pParse->nMem;
        /* If this is the first row of the group (regAcc==0), clear the
        ** "magnet" register regHit so that the accumulator registers
        ** are populated if the FILTER clause jumps over the the 
        ** invocation of min() or max() altogether. Or, if this is not
        ** the first row (regAcc==1), set the magnet register so that the
        ** accumulators are not populated unless the min()/max() is invoked and
        ** indicates that they should be.  */
        sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
      }
      addrNext = sqlite3VdbeMakeLabel(pParse);
      sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
    }
    if( pList ){
      nArg = pList->nExpr;
      regAgg = sqlite3GetTempRange(pParse, nArg);
      sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
130897
130898
130899
130900
130901
130902
130903

130904
130905
130906
130907
130908
130909
130910
  }
  if( regHit ){
    addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
  }
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
  }

  pAggInfo->directMode = 0;
  if( addrHitTest ){
    sqlite3VdbeJumpHere(v, addrHitTest);
  }
}

/*







>







130981
130982
130983
130984
130985
130986
130987
130988
130989
130990
130991
130992
130993
130994
130995
  }
  if( regHit ){
    addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
  }
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
  }

  pAggInfo->directMode = 0;
  if( addrHitTest ){
    sqlite3VdbeJumpHere(v, addrHitTest);
  }
}

/*
131700
131701
131702
131703
131704
131705
131706
























131707
131708
131709
131710
131711
131712
131713
131714
131715
131716
131717
131718
131719
131720
131721
131722
131723
131724
131725
131726
131727
131728
131729
131730
        pItem->u.x.iAlias = 0;
      }
      for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
        pItem->u.x.iAlias = 0;
      }
      assert( 66==sqlite3LogEst(100) );
      if( p->nSelectRow>66 ) p->nSelectRow = 66;
























    }else{
      assert( 0==sqlite3LogEst(1) );
      p->nSelectRow = 0;
    }

    /* If there is both a GROUP BY and an ORDER BY clause and they are
    ** identical, then it may be possible to disable the ORDER BY clause 
    ** on the grounds that the GROUP BY will cause elements to come out 
    ** in the correct order. It also may not - the GROUP BY might use a
    ** database index that causes rows to be grouped together as required
    ** but not actually sorted. Either way, record the fact that the
    ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
    ** variable.  */
    if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
      orderByGrp = 1;
    }
 
    /* Create a label to jump to when we want to abort the query */
    addrEnd = sqlite3VdbeMakeLabel(pParse);

    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
    ** SELECT statement.
    */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





<
<
<
<
<
<
<
<
<
<
<
<







131785
131786
131787
131788
131789
131790
131791
131792
131793
131794
131795
131796
131797
131798
131799
131800
131801
131802
131803
131804
131805
131806
131807
131808
131809
131810
131811
131812
131813
131814
131815
131816
131817
131818
131819
131820












131821
131822
131823
131824
131825
131826
131827
        pItem->u.x.iAlias = 0;
      }
      for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
        pItem->u.x.iAlias = 0;
      }
      assert( 66==sqlite3LogEst(100) );
      if( p->nSelectRow>66 ) p->nSelectRow = 66;

      /* If there is both a GROUP BY and an ORDER BY clause and they are
      ** identical, then it may be possible to disable the ORDER BY clause 
      ** on the grounds that the GROUP BY will cause elements to come out 
      ** in the correct order. It also may not - the GROUP BY might use a
      ** database index that causes rows to be grouped together as required
      ** but not actually sorted. Either way, record the fact that the
      ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
      ** variable.  */
      if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
        int ii;
        /* The GROUP BY processing doesn't care whether rows are delivered in
        ** ASC or DESC order - only that each group is returned contiguously.
        ** So set the ASC/DESC flags in the GROUP BY to match those in the 
        ** ORDER BY to maximize the chances of rows being delivered in an 
        ** order that makes the ORDER BY redundant.  */
        for(ii=0; ii<pGroupBy->nExpr; ii++){
          u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
          pGroupBy->a[ii].sortFlags = sortFlags;
        }
        if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
          orderByGrp = 1;
        }
      }
    }else{
      assert( 0==sqlite3LogEst(1) );
      p->nSelectRow = 0;
    }













    /* Create a label to jump to when we want to abort the query */
    addrEnd = sqlite3VdbeMakeLabel(pParse);

    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
    ** SELECT statement.
    */
132072
132073
132074
132075
132076
132077
132078
132079
132080
132081

132082



132083
132084
132085

132086
132087
132088
132089
132090
132091
132092
        sqlite3VdbeAddOp1(v, OP_Close, iCsr);
        explainSimpleCount(pParse, pTab, pBest);
      }else
#endif /* SQLITE_OMIT_BTREECOUNT */
      {
        int regAcc = 0;           /* "populate accumulators" flag */

        /* If there are accumulator registers but no min() or max() functions,
        ** allocate register regAcc. Register regAcc will contain 0 the first
        ** time the inner loop runs, and 1 thereafter. The code generated

        ** by updateAccumulator() only updates the accumulator registers if



        ** regAcc contains 0.  */
        if( sAggInfo.nAccumulator ){
          for(i=0; i<sAggInfo.nFunc; i++){

            if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
          }
          if( i==sAggInfo.nFunc ){
            regAcc = ++pParse->nMem;
            sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
          }
        }







|
|
|
>
|
>
>
>
|


>







132169
132170
132171
132172
132173
132174
132175
132176
132177
132178
132179
132180
132181
132182
132183
132184
132185
132186
132187
132188
132189
132190
132191
132192
132193
132194
        sqlite3VdbeAddOp1(v, OP_Close, iCsr);
        explainSimpleCount(pParse, pTab, pBest);
      }else
#endif /* SQLITE_OMIT_BTREECOUNT */
      {
        int regAcc = 0;           /* "populate accumulators" flag */

        /* If there are accumulator registers but no min() or max() functions
        ** without FILTER clauses, allocate register regAcc. Register regAcc
        ** will contain 0 the first time the inner loop runs, and 1 thereafter.
        ** The code generated by updateAccumulator() uses this to ensure
        ** that the accumulator registers are (a) updated only once if
        ** there are no min() or max functions or (b) always updated for the
        ** first row visited by the aggregate, so that they are updated at
        ** least once even if the FILTER clause means the min() or max() 
        ** function visits zero rows.  */
        if( sAggInfo.nAccumulator ){
          for(i=0; i<sAggInfo.nFunc; i++){
            if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue;
            if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
          }
          if( i==sAggInfo.nFunc ){
            regAcc = ++pParse->nMem;
            sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
          }
        }
139776
139777
139778
139779
139780
139781
139782

139783
139784
139785
139786
139787
139788
139789
139790
139791



139792
139793
139794

139795
139796
139797
139798
139799
139800
139801
        **
        ** Getting this right has been a persistent source of bugs in the
        ** LIKE optimization.  See, for example:
        **    2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
        **    2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
        **    2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
        **    2019-06-14 https://sqlite.org/src/info/ce8717f0885af975

        */
        if( pLeft->op!=TK_COLUMN 
         || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 
         || IsVirtual(pLeft->y.pTab)  /* Value might be numeric */
        ){
          int isNum;
          double rDummy;
          isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
          if( isNum<=0 ){



            zNew[iTo-1]++;
            isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
            zNew[iTo-1]--;

          }
          if( isNum>0 ){
            sqlite3ExprDelete(db, pPrefix);
            sqlite3ValueFree(pVal);
            return 0;
          }
        }







>









>
>
>
|
|
|
>







139878
139879
139880
139881
139882
139883
139884
139885
139886
139887
139888
139889
139890
139891
139892
139893
139894
139895
139896
139897
139898
139899
139900
139901
139902
139903
139904
139905
139906
139907
139908
        **
        ** Getting this right has been a persistent source of bugs in the
        ** LIKE optimization.  See, for example:
        **    2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
        **    2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
        **    2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
        **    2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
        **    2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
        */
        if( pLeft->op!=TK_COLUMN 
         || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 
         || IsVirtual(pLeft->y.pTab)  /* Value might be numeric */
        ){
          int isNum;
          double rDummy;
          isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
          if( isNum<=0 ){
            if( iTo==1 && zNew[0]=='-' ){
              isNum = +1;
            }else{
              zNew[iTo-1]++;
              isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
              zNew[iTo-1]--;
            }
          }
          if( isNum>0 ){
            sqlite3ExprDelete(db, pPrefix);
            sqlite3ValueFree(pVal);
            return 0;
          }
        }
143382
143383
143384
143385
143386
143387
143388
143389
143390
143391
143392
143393
143394
143395
143396
static void whereLoopOutputAdjust(
  WhereClause *pWC,      /* The WHERE clause */
  WhereLoop *pLoop,      /* The loop to adjust downward */
  LogEst nRow            /* Number of rows in the entire table */
){
  WhereTerm *pTerm, *pX;
  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
  int i, j, k;
  LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */

  assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
    assert( pTerm!=0 );
    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;







|







143489
143490
143491
143492
143493
143494
143495
143496
143497
143498
143499
143500
143501
143502
143503
static void whereLoopOutputAdjust(
  WhereClause *pWC,      /* The WHERE clause */
  WhereLoop *pLoop,      /* The loop to adjust downward */
  LogEst nRow            /* Number of rows in the entire table */
){
  WhereTerm *pTerm, *pX;
  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
  int i, j;
  LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */

  assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
    assert( pTerm!=0 );
    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
143408
143409
143410
143411
143412
143413
143414

143415
143416
143417
143418
143419
143420
143421
        pLoop->nOut += pTerm->truthProb;
      }else{
        /* In the absence of explicit truth probabilities, use heuristics to
        ** guess a reasonable truth probability. */
        pLoop->nOut--;
        if( pTerm->eOperator&(WO_EQ|WO_IS) ){
          Expr *pRight = pTerm->pExpr->pRight;

          testcase( pTerm->pExpr->op==TK_IS );
          if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
            k = 10;
          }else{
            k = 20;
          }
          if( iReduce<k ) iReduce = k;







>







143515
143516
143517
143518
143519
143520
143521
143522
143523
143524
143525
143526
143527
143528
143529
        pLoop->nOut += pTerm->truthProb;
      }else{
        /* In the absence of explicit truth probabilities, use heuristics to
        ** guess a reasonable truth probability. */
        pLoop->nOut--;
        if( pTerm->eOperator&(WO_EQ|WO_IS) ){
          Expr *pRight = pTerm->pExpr->pRight;
          int k = 0;
          testcase( pTerm->pExpr->op==TK_IS );
          if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
            k = 10;
          }else{
            k = 20;
          }
          if( iReduce<k ) iReduce = k;
147491
147492
147493
147494
147495
147496
147497



147498



147499

147500
147501
147502
147503
147504
147505
147506
    pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);

    /* Append the arguments passed to each window function to the
    ** sub-select expression list. Also allocate two registers for each
    ** window function - one for the accumulator, another for interim
    ** results.  */
    for(pWin=pMWin; pWin; pWin=pWin->pNextWin){



      pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);



      pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList, 0);

      if( pWin->pFilter ){
        Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
        pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
      }
      pWin->regAccum = ++pParse->nMem;
      pWin->regResult = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);







>
>
>
|
>
>
>
|
>







147599
147600
147601
147602
147603
147604
147605
147606
147607
147608
147609
147610
147611
147612
147613
147614
147615
147616
147617
147618
147619
147620
147621
    pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);

    /* Append the arguments passed to each window function to the
    ** sub-select expression list. Also allocate two registers for each
    ** window function - one for the accumulator, another for interim
    ** results.  */
    for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
      ExprList *pArgs = pWin->pOwner->x.pList;
      if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
        selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
        pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
        pWin->bExprArgs = 1;
      }else{
        pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
        pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
      }
      if( pWin->pFilter ){
        Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
        pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
      }
      pWin->regAccum = ++pParse->nMem;
      pWin->regResult = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
147958
147959
147960
147961
147962
147963
147964
147965
147966
147967
147968
147969
147970
147971
147972
  int reg                         /* Array of registers */
){
  Vdbe *v = sqlite3GetVdbe(pParse);
  Window *pWin;
  for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
    FuncDef *pFunc = pWin->pFunc;
    int regArg;
    int nArg = windowArgCount(pWin);
    int i;

    assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );

    for(i=0; i<nArg; i++){
      if( i!=1 || pFunc->zName!=nth_valueName ){
        sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);







|







148073
148074
148075
148076
148077
148078
148079
148080
148081
148082
148083
148084
148085
148086
148087
  int reg                         /* Array of registers */
){
  Vdbe *v = sqlite3GetVdbe(pParse);
  Window *pWin;
  for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
    FuncDef *pFunc = pWin->pFunc;
    int regArg;
    int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
    int i;

    assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );

    for(i=0; i<nArg; i++){
      if( i!=1 || pFunc->zName!=nth_valueName ){
        sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
148000
148001
148002
148003
148004
148005
148006
148007
148008
148009
148010
148011
148012
148013















148014
148015
148016
148017
148018
148019
148020
148021
148022
148023
148024



148025
148026
148027
148028
148029
148030
148031
      );
      assert( bInverse==0 || bInverse==1 );
      sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
    }else if( pFunc->xSFunc!=noopStepFunc ){
      int addrIf = 0;
      if( pWin->pFilter ){
        int regTmp;
        assert( nArg==0 || nArg==pWin->pOwner->x.pList->nExpr );
        assert( nArg || pWin->pOwner->x.pList==0 );
        regTmp = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
        addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
        VdbeCoverage(v);
        sqlite3ReleaseTempReg(pParse, regTmp);















      }
      if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
        CollSeq *pColl;
        assert( nArg>0 );
        pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
      }
      sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 
                        bInverse, regArg, pWin->regAccum);
      sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
      sqlite3VdbeChangeP5(v, (u8)nArg);



      if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
    }
  }
}

typedef struct WindowCodeArg WindowCodeArg;
typedef struct WindowCsrAndReg WindowCsrAndReg;







|
|





>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











>
>
>







148115
148116
148117
148118
148119
148120
148121
148122
148123
148124
148125
148126
148127
148128
148129
148130
148131
148132
148133
148134
148135
148136
148137
148138
148139
148140
148141
148142
148143
148144
148145
148146
148147
148148
148149
148150
148151
148152
148153
148154
148155
148156
148157
148158
148159
148160
148161
148162
148163
148164
      );
      assert( bInverse==0 || bInverse==1 );
      sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
    }else if( pFunc->xSFunc!=noopStepFunc ){
      int addrIf = 0;
      if( pWin->pFilter ){
        int regTmp;
        assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
        assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
        regTmp = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
        addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
        VdbeCoverage(v);
        sqlite3ReleaseTempReg(pParse, regTmp);
      }
      if( pWin->bExprArgs ){
        int iStart = sqlite3VdbeCurrentAddr(v);
        VdbeOp *pOp, *pEnd;

        nArg = pWin->pOwner->x.pList->nExpr;
        regArg = sqlite3GetTempRange(pParse, nArg);
        sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);

        pEnd = sqlite3VdbeGetOp(v, -1);
        for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
          if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
            pOp->p1 = csr;
          }
        }
      }
      if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
        CollSeq *pColl;
        assert( nArg>0 );
        pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
      }
      sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 
                        bInverse, regArg, pWin->regAccum);
      sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
      sqlite3VdbeChangeP5(v, (u8)nArg);
      if( pWin->bExprArgs ){
        sqlite3ReleaseTempRange(pParse, regArg, nArg);
      }
      if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
    }
  }
}

typedef struct WindowCodeArg WindowCodeArg;
typedef struct WindowCsrAndReg WindowCsrAndReg;
148716
148717
148718
148719
148720
148721
148722

148723
148724
148725
148726
148727
148728
148729
148730
148731
148732
148733
148734

148735
148736
148737
148738
148739
148740
148741
*/
SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
  Window *pNew = 0;
  if( ALWAYS(p) ){
    pNew = sqlite3DbMallocZero(db, sizeof(Window));
    if( pNew ){
      pNew->zName = sqlite3DbStrDup(db, p->zName);

      pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
      pNew->pFunc = p->pFunc;
      pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
      pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
      pNew->eFrmType = p->eFrmType;
      pNew->eEnd = p->eEnd;
      pNew->eStart = p->eStart;
      pNew->eExclude = p->eExclude;
      pNew->regResult = p->regResult;
      pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
      pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
      pNew->pOwner = pOwner;

    }
  }
  return pNew;
}

/*
** Return a copy of the linked list of Window objects passed as the







>












>







148849
148850
148851
148852
148853
148854
148855
148856
148857
148858
148859
148860
148861
148862
148863
148864
148865
148866
148867
148868
148869
148870
148871
148872
148873
148874
148875
148876
*/
SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
  Window *pNew = 0;
  if( ALWAYS(p) ){
    pNew = sqlite3DbMallocZero(db, sizeof(Window));
    if( pNew ){
      pNew->zName = sqlite3DbStrDup(db, p->zName);
      pNew->zBase = sqlite3DbStrDup(db, p->zBase);
      pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
      pNew->pFunc = p->pFunc;
      pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
      pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
      pNew->eFrmType = p->eFrmType;
      pNew->eEnd = p->eEnd;
      pNew->eStart = p->eStart;
      pNew->eExclude = p->eExclude;
      pNew->regResult = p->regResult;
      pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
      pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
      pNew->pOwner = pOwner;
      pNew->bImplicitFrame = p->bImplicitFrame;
    }
  }
  return pNew;
}

/*
** Return a copy of the linked list of Window objects passed as the
149271
149272
149273
149274
149275
149276
149277
149278
149279
149280
149281
149282
149283
149284
149285
    windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE ? 3 : 0));
  }
  if( regEnd ){
    sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
    windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE ? 3 : 0));
  }

  if( pMWin->eStart==pMWin->eEnd && regStart ){
    int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
    int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
    VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
    VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
    windowAggFinal(&s, 0);
    sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
    VdbeCoverageNeverTaken(v);







|







149406
149407
149408
149409
149410
149411
149412
149413
149414
149415
149416
149417
149418
149419
149420
    windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE ? 3 : 0));
  }
  if( regEnd ){
    sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
    windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE ? 3 : 0));
  }

  if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
    int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
    int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
    VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
    VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
    windowAggFinal(&s, 0);
    sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
    VdbeCoverageNeverTaken(v);
157732
157733
157734
157735
157736
157737
157738
157739
157740
157741
157742
157743
157744
157745
157746
   || (255<(nName = sqlite3Strlen30( zFunctionName)))
  ){
    return SQLITE_MISUSE_BKPT;
  }

  assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
  assert( SQLITE_FUNC_DIRECT==SQLITE_DIRECTONLY );
  extraFlags = enc &  (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY);
  enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY);
  
#ifndef SQLITE_OMIT_UTF16
  /* If SQLITE_UTF16 is specified as the encoding type, transform this
  ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
  ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
  **







|







157867
157868
157869
157870
157871
157872
157873
157874
157875
157876
157877
157878
157879
157880
157881
   || (255<(nName = sqlite3Strlen30( zFunctionName)))
  ){
    return SQLITE_MISUSE_BKPT;
  }

  assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC );
  assert( SQLITE_FUNC_DIRECT==SQLITE_DIRECTONLY );
  extraFlags = enc &  (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY|SQLITE_SUBTYPE);
  enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY);
  
#ifndef SQLITE_OMIT_UTF16
  /* If SQLITE_UTF16 is specified as the encoding type, transform this
  ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
  ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
  **
164200
164201
164202
164203
164204
164205
164206

164207
164208
164209
164210
164211
164212
164213
164214
  sqlite3_int64 iWrite;
  if( bDescIdx==0 || *pbFirst==0 ){
    iWrite = iVal - *piPrev;
  }else{
    iWrite = *piPrev - iVal;
  }
  assert( *pbFirst || *piPrev==0 );

  assert( *pbFirst==0 || iWrite>0 );
  *pp += sqlite3Fts3PutVarint(*pp, iWrite);
  *piPrev = iVal;
  *pbFirst = 1;
}


/*







>
|







164335
164336
164337
164338
164339
164340
164341
164342
164343
164344
164345
164346
164347
164348
164349
164350
  sqlite3_int64 iWrite;
  if( bDescIdx==0 || *pbFirst==0 ){
    iWrite = iVal - *piPrev;
  }else{
    iWrite = *piPrev - iVal;
  }
  assert( *pbFirst || *piPrev==0 );
  assert_fts3_nc( *pbFirst==0 || iWrite>0 );
  assert( *pbFirst==0 || iWrite>=0 );
  *pp += sqlite3Fts3PutVarint(*pp, iWrite);
  *piPrev = iVal;
  *pbFirst = 1;
}


/*
164306
164307
164308
164309
164310
164311
164312


164313
164314
164315
164316
164317
164318
164319
      fts3PoslistCopy(&p, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
    }else{
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
      fts3PoslistCopy(&p, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }


  }

  if( rc!=SQLITE_OK ){
    sqlite3_free(aOut);
    p = aOut = 0;
  }else{
    assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 );







>
>







164442
164443
164444
164445
164446
164447
164448
164449
164450
164451
164452
164453
164454
164455
164456
164457
      fts3PoslistCopy(&p, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
    }else{
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
      fts3PoslistCopy(&p, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
    
    assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) );
  }

  if( rc!=SQLITE_OK ){
    sqlite3_free(aOut);
    p = aOut = 0;
  }else{
    assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 );
181912
181913
181914
181915
181916
181917
181918
181919
181920
181921
181922
181923
181924
181925
181926
  JsonString *pStr;
  UNUSED_PARAM(argc);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '[');
    }else{
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    jsonAppendValue(pStr, argv[0]);
  }
}
static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){







|







182050
182051
182052
182053
182054
182055
182056
182057
182058
182059
182060
182061
182062
182063
182064
  JsonString *pStr;
  UNUSED_PARAM(argc);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '[');
    }else if( pStr->nUsed>1 ){
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    jsonAppendValue(pStr, argv[0]);
  }
}
static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){
181960
181961
181962
181963
181964
181965
181966
181967
181968

181969

181970
181971
181972
181973
181974
181975
181976
181977
181978
181979
181980
181981



181982
181983
181984
181985



181986
181987
181988
181989
181990
181991
181992
** text through that comma.
*/
static void jsonGroupInverse(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  int i;
  int inStr = 0;

  char *z;

  JsonString *pStr;
  UNUSED_PARAM(argc);
  UNUSED_PARAM(argv);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
#ifdef NEVER
  /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will
  ** always have been called to initalize it */
  if( NEVER(!pStr) ) return;
#endif
  z = pStr->zBuf;
  for(i=1; z[i]!=',' || inStr; i++){
    assert( i<pStr->nUsed );



    if( z[i]=='"' ){
      inStr = !inStr;
    }else if( z[i]=='\\' ){
      i++;



    }
  }
  pStr->nUsed -= i;      
  memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1);
}
#else
# define jsonGroupInverse 0







|

>

>










|
|
>
>
>
|

|

>
>
>







182098
182099
182100
182101
182102
182103
182104
182105
182106
182107
182108
182109
182110
182111
182112
182113
182114
182115
182116
182117
182118
182119
182120
182121
182122
182123
182124
182125
182126
182127
182128
182129
182130
182131
182132
182133
182134
182135
182136
182137
182138
** text through that comma.
*/
static void jsonGroupInverse(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  unsigned int i;
  int inStr = 0;
  int nNest = 0;
  char *z;
  char c;
  JsonString *pStr;
  UNUSED_PARAM(argc);
  UNUSED_PARAM(argv);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
#ifdef NEVER
  /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will
  ** always have been called to initalize it */
  if( NEVER(!pStr) ) return;
#endif
  z = pStr->zBuf;
  for(i=1; (c = z[i])!=',' || inStr || nNest; i++){
    if( i>=pStr->nUsed ){
      pStr->nUsed = 1;
      return;
    }
    if( c=='"' ){
      inStr = !inStr;
    }else if( c=='\\' ){
      i++;
    }else if( !inStr ){
      if( c=='{' || c=='[' ) nNest++;
      if( c=='}' || c==']' ) nNest--;
    }
  }
  pStr->nUsed -= i;      
  memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1);
}
#else
# define jsonGroupInverse 0
182008
182009
182010
182011
182012
182013
182014
182015
182016
182017
182018
182019
182020
182021
182022
  u32 n;
  UNUSED_PARAM(argc);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '{');
    }else{
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    z = (const char*)sqlite3_value_text(argv[0]);
    n = (u32)sqlite3_value_bytes(argv[0]);
    jsonAppendString(pStr, z, n);
    jsonAppendChar(pStr, ':');







|







182154
182155
182156
182157
182158
182159
182160
182161
182162
182163
182164
182165
182166
182167
182168
  u32 n;
  UNUSED_PARAM(argc);
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '{');
    }else if( pStr->nUsed>1 ){
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    z = (const char*)sqlite3_value_text(argv[0]);
    n = (u32)sqlite3_value_bytes(argv[0]);
    jsonAppendString(pStr, z, n);
    jsonAppendChar(pStr, ':');
182596
182597
182598
182599
182600
182601
182602
182603
182604
182605
182606
182607
182608
182609
182610
182611
182612
182613
182614
182615
182616
182617
  } aMod[] = {
    { "json_each",            &jsonEachModule               },
    { "json_tree",            &jsonTreeModule               },
  };
#endif
  for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
                                 SQLITE_UTF8 | SQLITE_DETERMINISTIC, 
                                 (void*)&aFunc[i].flag,
                                 aFunc[i].xFunc, 0, 0);
  }
#ifndef SQLITE_OMIT_WINDOWFUNC
  for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_window_function(db, aAgg[i].zName, aAgg[i].nArg,
                                 SQLITE_UTF8 | SQLITE_DETERMINISTIC, 0,
                                 aAgg[i].xStep, aAgg[i].xFinal,
                                 aAgg[i].xValue, jsonGroupInverse, 0);
  }
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0);







|






|







182742
182743
182744
182745
182746
182747
182748
182749
182750
182751
182752
182753
182754
182755
182756
182757
182758
182759
182760
182761
182762
182763
  } aMod[] = {
    { "json_each",            &jsonEachModule               },
    { "json_tree",            &jsonTreeModule               },
  };
#endif
  for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
                                 SQLITE_UTF8 | SQLITE_DETERMINISTIC,
                                 (void*)&aFunc[i].flag,
                                 aFunc[i].xFunc, 0, 0);
  }
#ifndef SQLITE_OMIT_WINDOWFUNC
  for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_window_function(db, aAgg[i].zName, aAgg[i].nArg,
                SQLITE_SUBTYPE | SQLITE_UTF8 | SQLITE_DETERMINISTIC, 0,
                                 aAgg[i].xStep, aAgg[i].xFinal,
                                 aAgg[i].xValue, jsonGroupInverse, 0);
  }
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0);
203605
203606
203607
203608
203609
203610
203611

203612
203613
203614
203615
203616
203617
203618
*/
static int sqlite3Fts5ExprFirst(Fts5Expr*, Fts5Index *pIdx, i64 iMin, int bDesc);
static int sqlite3Fts5ExprNext(Fts5Expr*, i64 iMax);
static int sqlite3Fts5ExprEof(Fts5Expr*);
static i64 sqlite3Fts5ExprRowid(Fts5Expr*);

static void sqlite3Fts5ExprFree(Fts5Expr*);


/* Called during startup to register a UDF with SQLite */
static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);

static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);







>







203751
203752
203753
203754
203755
203756
203757
203758
203759
203760
203761
203762
203763
203764
203765
*/
static int sqlite3Fts5ExprFirst(Fts5Expr*, Fts5Index *pIdx, i64 iMin, int bDesc);
static int sqlite3Fts5ExprNext(Fts5Expr*, i64 iMax);
static int sqlite3Fts5ExprEof(Fts5Expr*);
static i64 sqlite3Fts5ExprRowid(Fts5Expr*);

static void sqlite3Fts5ExprFree(Fts5Expr*);
static int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2);

/* Called during startup to register a UDF with SQLite */
static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);

static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);
207012
207013
207014
207015
207016
207017
207018
207019
207020
207021
207022
207023
207024
207025
207026
  );

  assert( zSql || rc==SQLITE_NOMEM );
  if( zSql ){
    rc = sqlite3_declare_vtab(pConfig->db, zSql);
    sqlite3_free(zSql);
  }
  
  return rc;
}

/*
** Tokenize the text passed via the second and third arguments.
**
** The callback is invoked once for each token in the input text. The







|







207159
207160
207161
207162
207163
207164
207165
207166
207167
207168
207169
207170
207171
207172
207173
  );

  assert( zSql || rc==SQLITE_NOMEM );
  if( zSql ){
    rc = sqlite3_declare_vtab(pConfig->db, zSql);
    sqlite3_free(zSql);
  }
 
  return rc;
}

/*
** Tokenize the text passed via the second and third arguments.
**
** The callback is invoked once for each token in the input text. The
207599
207600
207601
207602
207603
207604
207605




































207606
207607
207608
207609
207610
207611
207612
static void sqlite3Fts5ExprFree(Fts5Expr *p){
  if( p ){
    sqlite3Fts5ParseNodeFree(p->pRoot);
    sqlite3_free(p->apExprPhrase);
    sqlite3_free(p);
  }
}





































/*
** Argument pTerm must be a synonym iterator. Return the current rowid
** that it points to.
*/
static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
  i64 iRet = 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







207746
207747
207748
207749
207750
207751
207752
207753
207754
207755
207756
207757
207758
207759
207760
207761
207762
207763
207764
207765
207766
207767
207768
207769
207770
207771
207772
207773
207774
207775
207776
207777
207778
207779
207780
207781
207782
207783
207784
207785
207786
207787
207788
207789
207790
207791
207792
207793
207794
207795
static void sqlite3Fts5ExprFree(Fts5Expr *p){
  if( p ){
    sqlite3Fts5ParseNodeFree(p->pRoot);
    sqlite3_free(p->apExprPhrase);
    sqlite3_free(p);
  }
}

static int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2){
  Fts5Parse sParse;
  memset(&sParse, 0, sizeof(sParse));

  if( *pp1 ){
    Fts5Expr *p1 = *pp1;
    int nPhrase = p1->nPhrase + p2->nPhrase;

    p1->pRoot = sqlite3Fts5ParseNode(&sParse, FTS5_AND, p1->pRoot, p2->pRoot,0);
    p2->pRoot = 0;

    if( sParse.rc==SQLITE_OK ){
      Fts5ExprPhrase **ap = (Fts5ExprPhrase**)sqlite3_realloc(
          p1->apExprPhrase, nPhrase * sizeof(Fts5ExprPhrase*)
      );
      if( ap==0 ){
        sParse.rc = SQLITE_NOMEM;
      }else{
        int i;
        memmove(&ap[p2->nPhrase], ap, p1->nPhrase*sizeof(Fts5ExprPhrase*));
        for(i=0; i<p2->nPhrase; i++){
          ap[i] = p2->apExprPhrase[i];
        }
        p1->nPhrase = nPhrase;
        p1->apExprPhrase = ap;
      }
    }
    sqlite3_free(p2->apExprPhrase);
    sqlite3_free(p2);
  }else{
    *pp1 = p2;
  }

  return sParse.rc;
}

/*
** Argument pTerm must be a synonym iterator. Return the current rowid
** that it points to.
*/
static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
  i64 iRet = 0;
211419
211420
211421
211422
211423
211424
211425
211426
211427
211428
211429
211430
211431
211432
211433
static void fts5DataRelease(Fts5Data *pData){
  sqlite3_free(pData);
}

static Fts5Data *fts5LeafRead(Fts5Index *p, i64 iRowid){
  Fts5Data *pRet = fts5DataRead(p, iRowid);
  if( pRet ){
    if( pRet->szLeaf>pRet->nn ){
      p->rc = FTS5_CORRUPT;
      fts5DataRelease(pRet);
      pRet = 0;
    }
  }
  return pRet;
}







|







211602
211603
211604
211605
211606
211607
211608
211609
211610
211611
211612
211613
211614
211615
211616
static void fts5DataRelease(Fts5Data *pData){
  sqlite3_free(pData);
}

static Fts5Data *fts5LeafRead(Fts5Index *p, i64 iRowid){
  Fts5Data *pRet = fts5DataRead(p, iRowid);
  if( pRet ){
    if( pRet->nn<4 || pRet->szLeaf>pRet->nn ){
      p->rc = FTS5_CORRUPT;
      fts5DataRelease(pRet);
      pRet = 0;
    }
  }
  return pRet;
}
217763
217764
217765
217766
217767
217768
217769
217770
217771

217772
217773
217774
217775
217776
217777
217778
217779





















217780
217781
217782
217783
217784
217785
217786
#endif
}

/*
** Implementation of the xBestIndex method for FTS5 tables. Within the 
** WHERE constraint, it searches for the following:
**
**   1. A MATCH constraint against the special column.
**   2. A MATCH constraint against the "rank" column.

**   3. An == constraint against the rowid column.
**   4. A < or <= constraint against the rowid column.
**   5. A > or >= constraint against the rowid column.
**
** Within the ORDER BY, either:
**
**   5. ORDER BY rank [ASC|DESC]
**   6. ORDER BY rowid [ASC|DESC]





















**
** Costs are assigned as follows:
**
**  a) If an unusable MATCH operator is present in the WHERE clause, the
**     cost is unconditionally set to 1e50 (a really big number).
**
**  a) If a MATCH operator is present, the cost depends on the other







|

>
|
|
|

|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







217946
217947
217948
217949
217950
217951
217952
217953
217954
217955
217956
217957
217958
217959
217960
217961
217962
217963
217964
217965
217966
217967
217968
217969
217970
217971
217972
217973
217974
217975
217976
217977
217978
217979
217980
217981
217982
217983
217984
217985
217986
217987
217988
217989
217990
217991
#endif
}

/*
** Implementation of the xBestIndex method for FTS5 tables. Within the 
** WHERE constraint, it searches for the following:
**
**   1. A MATCH constraint against the table column.
**   2. A MATCH constraint against the "rank" column.
**   3. A MATCH constraint against some other column.
**   4. An == constraint against the rowid column.
**   5. A < or <= constraint against the rowid column.
**   6. A > or >= constraint against the rowid column.
**
** Within the ORDER BY, the following are supported:
**
**   5. ORDER BY rank [ASC|DESC]
**   6. ORDER BY rowid [ASC|DESC]
**
** Information for the xFilter call is passed via both the idxNum and 
** idxStr variables. Specifically, idxNum is a bitmask of the following
** flags used to encode the ORDER BY clause:
**
**     FTS5_BI_ORDER_RANK
**     FTS5_BI_ORDER_ROWID
**     FTS5_BI_ORDER_DESC
**
** idxStr is used to encode data from the WHERE clause. For each argument
** passed to the xFilter method, the following is appended to idxStr:
**
**   Match against table column:            "m"
**   Match against rank column:             "r"
**   Match against other column:            "<column-number>"
**   Equality constraint against the rowid: "="
**   A < or <= against the rowid:           "<"
**   A > or >= against the rowid:           ">"
**
** This function ensures that there is at most one "r" or "=". And that if
** there exists an "=" then there is no "<" or ">".
**
** Costs are assigned as follows:
**
**  a) If an unusable MATCH operator is present in the WHERE clause, the
**     cost is unconditionally set to 1e50 (a really big number).
**
**  a) If a MATCH operator is present, the cost depends on the other
217801
217802
217803
217804
217805
217806
217807
217808
217809
217810
217811
217812
217813
217814
217815
217816
217817
217818
217819
217820
217821
217822
217823
217824
217825
217826
217827
217828
217829
217830
217831
217832


217833
217834
217835
217836
217837
217838
217839
217840
217841
217842
217843
217844
217845
217846
217847




217848
217849
217850
217851
217852
217853
217854
217855
217856
217857
217858
217859
217860
217861
217862
217863


217864












217865






217866






217867

217868
217869
217870





217871



217872


217873
217874
217875
217876

217877
217878
217879
217880
217881
217882
217883
217884
217885
217886
217887
217888
217889
217890
217891
217892
217893
217894
217895
217896
217897
217898
217899
217900
217901
217902
217903
217904
217905
217906
217907
217908
217909
217910
217911
217912
217913
217914
217915
217916
217917
217918
217919
217920
217921
** Costs are not modified by the ORDER BY clause.
*/
static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  Fts5Table *pTab = (Fts5Table*)pVTab;
  Fts5Config *pConfig = pTab->pConfig;
  const int nCol = pConfig->nCol;
  int idxFlags = 0;               /* Parameter passed through to xFilter() */
  int bHasMatch;
  int iNext;
  int i;

  struct Constraint {
    int op;                       /* Mask against sqlite3_index_constraint.op */
    int fts5op;                   /* FTS5 mask for idxFlags */
    int iCol;                     /* 0==rowid, 1==tbl, 2==rank */
    int omit;                     /* True to omit this if found */
    int iConsIndex;               /* Index in pInfo->aConstraint[] */
  } aConstraint[] = {
    {SQLITE_INDEX_CONSTRAINT_MATCH|SQLITE_INDEX_CONSTRAINT_EQ, 
                                    FTS5_BI_MATCH,    1, 1, -1},
    {SQLITE_INDEX_CONSTRAINT_MATCH|SQLITE_INDEX_CONSTRAINT_EQ, 
                                    FTS5_BI_RANK,     2, 1, -1},
    {SQLITE_INDEX_CONSTRAINT_EQ,    FTS5_BI_ROWID_EQ, 0, 0, -1},
    {SQLITE_INDEX_CONSTRAINT_LT|SQLITE_INDEX_CONSTRAINT_LE, 
                                    FTS5_BI_ROWID_LE, 0, 0, -1},
    {SQLITE_INDEX_CONSTRAINT_GT|SQLITE_INDEX_CONSTRAINT_GE, 
                                    FTS5_BI_ROWID_GE, 0, 0, -1},
  };

  int aColMap[3];
  aColMap[0] = -1;
  aColMap[1] = nCol;


  aColMap[2] = nCol+1;

  assert( SQLITE_INDEX_CONSTRAINT_EQ<SQLITE_INDEX_CONSTRAINT_MATCH );
  assert( SQLITE_INDEX_CONSTRAINT_GT<SQLITE_INDEX_CONSTRAINT_MATCH );
  assert( SQLITE_INDEX_CONSTRAINT_LE<SQLITE_INDEX_CONSTRAINT_MATCH );
  assert( SQLITE_INDEX_CONSTRAINT_GE<SQLITE_INDEX_CONSTRAINT_MATCH );
  assert( SQLITE_INDEX_CONSTRAINT_LE<SQLITE_INDEX_CONSTRAINT_MATCH );

  if( pConfig->bLock ){
    pTab->base.zErrMsg = sqlite3_mprintf(
        "recursively defined fts5 content table"
    );
    return SQLITE_ERROR;
  }





  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int iCol = p->iColumn;

    if( (p->op==SQLITE_INDEX_CONSTRAINT_MATCH && iCol>=0 && iCol<=nCol)
     || (p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol==nCol)
    ){
      /* A MATCH operator or equivalent */
      if( p->usable ){
        idxFlags = (idxFlags & 0xFFFF) | FTS5_BI_MATCH | (iCol << 16);
        aConstraint[0].iConsIndex = i;
      }else{
        /* As there exists an unusable MATCH constraint this is an 
        ** unusable plan. Set a prohibitively high cost. */
        pInfo->estimatedCost = 1e50;


        return SQLITE_OK;












      }






    }else if( p->op<=SQLITE_INDEX_CONSTRAINT_MATCH ){






      int j;

      for(j=1; j<ArraySize(aConstraint); j++){
        struct Constraint *pC = &aConstraint[j];
        if( iCol==aColMap[pC->iCol] && (p->op & pC->op) && p->usable ){





          pC->iConsIndex = i;



          idxFlags |= pC->fts5op;


        }
      }
    }
  }


  /* Set idxFlags flags for the ORDER BY clause */
  if( pInfo->nOrderBy==1 ){
    int iSort = pInfo->aOrderBy[0].iColumn;
    if( iSort==(pConfig->nCol+1) && BitFlagTest(idxFlags, FTS5_BI_MATCH) ){
      idxFlags |= FTS5_BI_ORDER_RANK;
    }else if( iSort==-1 ){
      idxFlags |= FTS5_BI_ORDER_ROWID;
    }
    if( BitFlagTest(idxFlags, FTS5_BI_ORDER_RANK|FTS5_BI_ORDER_ROWID) ){
      pInfo->orderByConsumed = 1;
      if( pInfo->aOrderBy[0].desc ){
        idxFlags |= FTS5_BI_ORDER_DESC;
      }
    }
  }

  /* Calculate the estimated cost based on the flags set in idxFlags. */
  bHasMatch = BitFlagTest(idxFlags, FTS5_BI_MATCH);
  if( BitFlagTest(idxFlags, FTS5_BI_ROWID_EQ) ){
    pInfo->estimatedCost = bHasMatch ? 100.0 : 10.0;
    if( bHasMatch==0 ) fts5SetUniqueFlag(pInfo);
  }else if( BitFlagAllTest(idxFlags, FTS5_BI_ROWID_LE|FTS5_BI_ROWID_GE) ){
    pInfo->estimatedCost = bHasMatch ? 500.0 : 250000.0;
  }else if( BitFlagTest(idxFlags, FTS5_BI_ROWID_LE|FTS5_BI_ROWID_GE) ){
    pInfo->estimatedCost = bHasMatch ? 750.0 : 750000.0;
  }else{
    pInfo->estimatedCost = bHasMatch ? 1000.0 : 1000000.0;
  }

  /* Assign argvIndex values to each constraint in use. */
  iNext = 1;
  for(i=0; i<ArraySize(aConstraint); i++){
    struct Constraint *pC = &aConstraint[i];
    if( pC->iConsIndex>=0 ){
      pInfo->aConstraintUsage[pC->iConsIndex].argvIndex = iNext++;
      pInfo->aConstraintUsage[pC->iConsIndex].omit = (unsigned char)pC->omit;
    }
  }

  pInfo->idxNum = idxFlags;
  return SQLITE_OK;
}

static int fts5NewTransaction(Fts5FullTable *pTab){







<
<


|
<
<
|
<
|
<
<
<
<
<
<
<
<
<
<
<

|
|
|
>
>
|














>
>
>
>
|



<
|
|


|
<
<
<



>
>

>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
|
>
|
|
|
>
>
>
>
>
|
>
>
>
|
>
>




>




|













<
|
|
|
|
|
|
|

|
<
<
<
<
<
<
<
<
<
<







218006
218007
218008
218009
218010
218011
218012


218013
218014
218015


218016

218017











218018
218019
218020
218021
218022
218023
218024
218025
218026
218027
218028
218029
218030
218031
218032
218033
218034
218035
218036
218037
218038
218039
218040
218041
218042
218043
218044
218045
218046

218047
218048
218049
218050
218051



218052
218053
218054
218055
218056
218057
218058
218059
218060
218061
218062
218063
218064
218065
218066
218067
218068
218069
218070
218071
218072
218073
218074
218075
218076
218077
218078
218079
218080
218081
218082
218083
218084
218085
218086
218087
218088
218089
218090
218091
218092
218093
218094
218095
218096
218097
218098
218099
218100
218101
218102
218103
218104
218105
218106
218107
218108
218109
218110
218111
218112
218113
218114
218115
218116
218117
218118
218119
218120
218121
218122
218123

218124
218125
218126
218127
218128
218129
218130
218131
218132










218133
218134
218135
218136
218137
218138
218139
** Costs are not modified by the ORDER BY clause.
*/
static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  Fts5Table *pTab = (Fts5Table*)pVTab;
  Fts5Config *pConfig = pTab->pConfig;
  const int nCol = pConfig->nCol;
  int idxFlags = 0;               /* Parameter passed through to xFilter() */


  int i;

  char *idxStr;


  int iIdxStr = 0;

  int iCons = 0;












  int bSeenEq = 0;
  int bSeenGt = 0;
  int bSeenLt = 0;
  int bSeenMatch = 0;
  int bSeenRank = 0;


  assert( SQLITE_INDEX_CONSTRAINT_EQ<SQLITE_INDEX_CONSTRAINT_MATCH );
  assert( SQLITE_INDEX_CONSTRAINT_GT<SQLITE_INDEX_CONSTRAINT_MATCH );
  assert( SQLITE_INDEX_CONSTRAINT_LE<SQLITE_INDEX_CONSTRAINT_MATCH );
  assert( SQLITE_INDEX_CONSTRAINT_GE<SQLITE_INDEX_CONSTRAINT_MATCH );
  assert( SQLITE_INDEX_CONSTRAINT_LE<SQLITE_INDEX_CONSTRAINT_MATCH );

  if( pConfig->bLock ){
    pTab->base.zErrMsg = sqlite3_mprintf(
        "recursively defined fts5 content table"
    );
    return SQLITE_ERROR;
  }

  idxStr = (char*)sqlite3_malloc(pInfo->nConstraint * 6 + 1);
  if( idxStr==0 ) return SQLITE_NOMEM;
  pInfo->idxStr = idxStr;
  pInfo->needToFreeIdxStr = 1;

  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int iCol = p->iColumn;

    if( p->op==SQLITE_INDEX_CONSTRAINT_MATCH
     || (p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol>=nCol)
    ){
      /* A MATCH operator or equivalent */
      if( p->usable==0 || iCol<0 ){



        /* As there exists an unusable MATCH constraint this is an 
        ** unusable plan. Set a prohibitively high cost. */
        pInfo->estimatedCost = 1e50;
        assert( iIdxStr < pInfo->nConstraint*6 + 1 );
        idxStr[iIdxStr] = 0;
        return SQLITE_OK;
      }else{
        if( iCol==nCol+1 ){
          if( bSeenRank ) continue;
          idxStr[iIdxStr++] = 'r';
          bSeenRank = 1;
        }else{
          bSeenMatch = 1;
          idxStr[iIdxStr++] = 'm';
          if( iCol<nCol ){
            sqlite3_snprintf(6, &idxStr[iIdxStr], "%d", iCol);
            idxStr += strlen(&idxStr[iIdxStr]);
            assert( idxStr[iIdxStr]=='\0' );
          }
        }
        pInfo->aConstraintUsage[i].argvIndex = ++iCons;
        pInfo->aConstraintUsage[i].omit = 1;
      }
    }
    else if( p->usable && bSeenEq==0 
      && p->op==SQLITE_INDEX_CONSTRAINT_EQ && iCol<0 
    ){
      idxStr[iIdxStr++] = '=';
      bSeenEq = 1;
      pInfo->aConstraintUsage[i].argvIndex = ++iCons;
    }
  }

  if( bSeenEq==0 ){
    for(i=0; i<pInfo->nConstraint; i++){
      struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
      if( p->iColumn<0 && p->usable ){
        int op = p->op;
        if( op==SQLITE_INDEX_CONSTRAINT_LT || op==SQLITE_INDEX_CONSTRAINT_LE ){
          if( bSeenLt ) continue;
          idxStr[iIdxStr++] = '<';
          pInfo->aConstraintUsage[i].argvIndex = ++iCons;
          bSeenLt = 1;
        }else
        if( op==SQLITE_INDEX_CONSTRAINT_GT || op==SQLITE_INDEX_CONSTRAINT_GE ){
          if( bSeenGt ) continue;
          idxStr[iIdxStr++] = '>';
          pInfo->aConstraintUsage[i].argvIndex = ++iCons;
          bSeenGt = 1;
        }
      }
    }
  }
  idxStr[iIdxStr] = '\0';

  /* Set idxFlags flags for the ORDER BY clause */
  if( pInfo->nOrderBy==1 ){
    int iSort = pInfo->aOrderBy[0].iColumn;
    if( iSort==(pConfig->nCol+1) && bSeenMatch ){
      idxFlags |= FTS5_BI_ORDER_RANK;
    }else if( iSort==-1 ){
      idxFlags |= FTS5_BI_ORDER_ROWID;
    }
    if( BitFlagTest(idxFlags, FTS5_BI_ORDER_RANK|FTS5_BI_ORDER_ROWID) ){
      pInfo->orderByConsumed = 1;
      if( pInfo->aOrderBy[0].desc ){
        idxFlags |= FTS5_BI_ORDER_DESC;
      }
    }
  }

  /* Calculate the estimated cost based on the flags set in idxFlags. */

  if( bSeenEq ){
    pInfo->estimatedCost = bSeenMatch ? 100.0 : 10.0;
    if( bSeenMatch==0 ) fts5SetUniqueFlag(pInfo);
  }else if( bSeenLt && bSeenGt ){
    pInfo->estimatedCost = bSeenMatch ? 500.0 : 250000.0;
  }else if( bSeenLt || bSeenGt ){
    pInfo->estimatedCost = bSeenMatch ? 750.0 : 750000.0;
  }else{
    pInfo->estimatedCost = bSeenMatch ? 1000.0 : 1000000.0;










  }

  pInfo->idxNum = idxFlags;
  return SQLITE_OK;
}

static int fts5NewTransaction(Fts5FullTable *pTab){
218430
218431
218432
218433
218434
218435
218436
218437
218438
218439
218440
218441
218442
218443
218444
218445
218446
218447
218448
218449
218450
218451
218452
218453
218454
218455
218456
218457
218458
218459
218460
218461
218462
218463
218464
218465
218466
218467
218468
218469

218470
218471
218472
218473
218474
218475
218476
218477
218478
218479
218480

218481
218482

218483

218484





218485

218486





























218487
218488
218489
218490
218491
218492
218493
**   1. Full-text search using a MATCH operator.
**   2. A by-rowid lookup.
**   3. A full-table scan.
*/
static int fts5FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *zUnused,            /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5FullTable *pTab = (Fts5FullTable*)(pCursor->pVtab);
  Fts5Config *pConfig = pTab->p.pConfig;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc = SQLITE_OK;             /* Error code */
  int iVal = 0;                   /* Counter for apVal[] */
  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */
  sqlite3_value *pMatch = 0;      /* <tbl> MATCH ? expression (or NULL) */
  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */
  int iCol;                       /* Column on LHS of MATCH operator */
  char **pzErrmsg = pConfig->pzErrmsg;

  UNUSED_PARAM(zUnused);
  UNUSED_PARAM(nVal);

  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);
    memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
  }

  assert( pCsr->pStmt==0 );
  assert( pCsr->pExpr==0 );
  assert( pCsr->csrflags==0 );
  assert( pCsr->pRank==0 );
  assert( pCsr->zRank==0 );
  assert( pCsr->zRankArgs==0 );


  assert( pzErrmsg==0 || pzErrmsg==&pTab->p.base.zErrMsg );
  pConfig->pzErrmsg = &pTab->p.base.zErrMsg;

  /* Decode the arguments passed through to this function.
  **
  ** Note: The following set of if(...) statements must be in the same
  ** order as the corresponding entries in the struct at the top of
  ** fts5BestIndexMethod().  */
  if( BitFlagTest(idxNum, FTS5_BI_MATCH) ) pMatch = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_RANK) ) pRank = apVal[iVal++];

  if( BitFlagTest(idxNum, FTS5_BI_ROWID_EQ) ) pRowidEq = apVal[iVal++];
  if( BitFlagTest(idxNum, FTS5_BI_ROWID_LE) ) pRowidLe = apVal[iVal++];

  if( BitFlagTest(idxNum, FTS5_BI_ROWID_GE) ) pRowidGe = apVal[iVal++];

  iCol = (idxNum>>16);





  assert( iCol>=0 && iCol<=pConfig->nCol );

  assert( iVal==nVal );





























  bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
  pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);

  /* Set the cursor upper and lower rowid limits. Only some strategies 
  ** actually use them. This is ok, as the xBestIndex() method leaves the
  ** sqlite3_index_constraint.omit flag clear for range constraints
  ** on the rowid field.  */







|







<


<






|
|
|












>




|
<
|
|
|
<
|
>
|
|
>
|
>
|
>
>
>
>
>
|
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







218648
218649
218650
218651
218652
218653
218654
218655
218656
218657
218658
218659
218660
218661
218662

218663
218664

218665
218666
218667
218668
218669
218670
218671
218672
218673
218674
218675
218676
218677
218678
218679
218680
218681
218682
218683
218684
218685
218686
218687
218688
218689
218690
218691

218692
218693
218694

218695
218696
218697
218698
218699
218700
218701
218702
218703
218704
218705
218706
218707
218708
218709
218710
218711
218712
218713
218714
218715
218716
218717
218718
218719
218720
218721
218722
218723
218724
218725
218726
218727
218728
218729
218730
218731
218732
218733
218734
218735
218736
218737
218738
218739
218740
218741
218742
218743
218744
218745
218746
**   1. Full-text search using a MATCH operator.
**   2. A by-rowid lookup.
**   3. A full-table scan.
*/
static int fts5FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5FullTable *pTab = (Fts5FullTable*)(pCursor->pVtab);
  Fts5Config *pConfig = pTab->p.pConfig;
  Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
  int rc = SQLITE_OK;             /* Error code */

  int bDesc;                      /* True if ORDER BY [rank|rowid] DESC */
  int bOrderByRank;               /* True if ORDER BY rank */

  sqlite3_value *pRank = 0;       /* rank MATCH ? expression (or NULL) */
  sqlite3_value *pRowidEq = 0;    /* rowid = ? expression (or NULL) */
  sqlite3_value *pRowidLe = 0;    /* rowid <= ? expression (or NULL) */
  sqlite3_value *pRowidGe = 0;    /* rowid >= ? expression (or NULL) */
  int iCol;                       /* Column on LHS of MATCH operator */
  char **pzErrmsg = pConfig->pzErrmsg;
  int i;
  int iIdxStr = 0;
  Fts5Expr *pExpr = 0;

  if( pCsr->ePlan ){
    fts5FreeCursorComponents(pCsr);
    memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
  }

  assert( pCsr->pStmt==0 );
  assert( pCsr->pExpr==0 );
  assert( pCsr->csrflags==0 );
  assert( pCsr->pRank==0 );
  assert( pCsr->zRank==0 );
  assert( pCsr->zRankArgs==0 );
  assert( pTab->pSortCsr==0 || nVal==0 );

  assert( pzErrmsg==0 || pzErrmsg==&pTab->p.base.zErrMsg );
  pConfig->pzErrmsg = &pTab->p.base.zErrMsg;

  /* Decode the arguments passed through to this function. */

  for(i=0; i<nVal; i++){
    switch( idxStr[iIdxStr++] ){
      case 'r':

        pRank = apVal[i];
        break;
      case 'm': {
        const char *zText = (const char*)sqlite3_value_text(apVal[i]);
        if( zText==0 ) zText = "";

        if( idxStr[iIdxStr]>='0' && idxStr[iIdxStr]<='9' ){
          iCol = 0;
          do{
            iCol = iCol*10 + (idxStr[iIdxStr]-'0');
            iIdxStr++;
          }while( idxStr[iIdxStr]>='0' && idxStr[iIdxStr]<='9' );
        }else{
          iCol = pConfig->nCol;
        }

        if( zText[0]=='*' ){
          /* The user has issued a query of the form "MATCH '*...'". This
          ** indicates that the MATCH expression is not a full text query,
          ** but a request for an internal parameter.  */
          rc = fts5SpecialMatch(pTab, pCsr, &zText[1]);
          goto filter_out;
        }else{
          char **pzErr = &pTab->p.base.zErrMsg;
          rc = sqlite3Fts5ExprNew(pConfig, iCol, zText, &pExpr, pzErr);
          if( rc==SQLITE_OK ){
            rc = sqlite3Fts5ExprAnd(&pCsr->pExpr, pExpr);
            pExpr = 0;
          }
          if( rc!=SQLITE_OK ) goto filter_out;
        }

        break;
      }
      case '=':
        pRowidEq = apVal[i];
        break;
      case '<':
        pRowidLe = apVal[i];
        break;
      default: assert( idxStr[iIdxStr-1]=='>' );
        pRowidGe = apVal[i];
        break;
    }
  }
  bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
  pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);

  /* Set the cursor upper and lower rowid limits. Only some strategies 
  ** actually use them. This is ok, as the xBestIndex() method leaves the
  ** sqlite3_index_constraint.omit flag clear for range constraints
  ** on the rowid field.  */
218506
218507
218508
218509
218510
218511
218512
218513
218514
218515
218516
218517
218518
218519
218520
218521
218522
218523
218524
218525
218526
218527
218528
218529
218530
218531
218532
218533
218534
218535
218536
218537
218538
218539
218540
218541
218542
218543
218544
218545
218546
218547
218548
218549
218550
218551
218552
218553
218554
218555
218556
218557
218558
218559
218560
218561
218562
218563
218564
218565
218566
218567
218568
218569
218570
218571
218572
218573


218574
218575
218576
218577
218578
218579
218580
    /* If pSortCsr is non-NULL, then this call is being made as part of 
    ** processing for a "... MATCH <expr> ORDER BY rank" query (ePlan is
    ** set to FTS5_PLAN_SORTED_MATCH). pSortCsr is the cursor that will
    ** return results to the user for this query. The current cursor 
    ** (pCursor) is used to execute the query issued by function 
    ** fts5CursorFirstSorted() above.  */
    assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
    assert( nVal==0 && pMatch==0 && bOrderByRank==0 && bDesc==0 );
    assert( pCsr->iLastRowid==LARGEST_INT64 );
    assert( pCsr->iFirstRowid==SMALLEST_INT64 );
    if( pTab->pSortCsr->bDesc ){
      pCsr->iLastRowid = pTab->pSortCsr->iFirstRowid;
      pCsr->iFirstRowid = pTab->pSortCsr->iLastRowid;
    }else{
      pCsr->iLastRowid = pTab->pSortCsr->iLastRowid;
      pCsr->iFirstRowid = pTab->pSortCsr->iFirstRowid;
    }
    pCsr->ePlan = FTS5_PLAN_SOURCE;
    pCsr->pExpr = pTab->pSortCsr->pExpr;
    rc = fts5CursorFirst(pTab, pCsr, bDesc);
  }else if( pMatch ){
    const char *zExpr = (const char*)sqlite3_value_text(apVal[0]);
    if( zExpr==0 ) zExpr = "";

    rc = fts5CursorParseRank(pConfig, pCsr, pRank);
    if( rc==SQLITE_OK ){
      if( zExpr[0]=='*' ){
        /* The user has issued a query of the form "MATCH '*...'". This
        ** indicates that the MATCH expression is not a full text query,
        ** but a request for an internal parameter.  */
        rc = fts5SpecialMatch(pTab, pCsr, &zExpr[1]);
      }else{
        char **pzErr = &pTab->p.base.zErrMsg;
        rc = sqlite3Fts5ExprNew(pConfig, iCol, zExpr, &pCsr->pExpr, pzErr);
        if( rc==SQLITE_OK ){
          if( bOrderByRank ){
            pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
            rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
          }else{
            pCsr->ePlan = FTS5_PLAN_MATCH;
            rc = fts5CursorFirst(pTab, pCsr, bDesc);
          }
        }
      }
    }
  }else if( pConfig->zContent==0 ){
    *pConfig->pzErrmsg = sqlite3_mprintf(
        "%s: table does not support scanning", pConfig->zName
    );
    rc = SQLITE_ERROR;
  }else{
    /* This is either a full-table scan (ePlan==FTS5_PLAN_SCAN) or a lookup
    ** by rowid (ePlan==FTS5_PLAN_ROWID).  */
    pCsr->ePlan = (pRowidEq ? FTS5_PLAN_ROWID : FTS5_PLAN_SCAN);
    rc = sqlite3Fts5StorageStmt(
        pTab->pStorage, fts5StmtType(pCsr), &pCsr->pStmt, &pTab->p.base.zErrMsg
    );
    if( rc==SQLITE_OK ){
      if( pCsr->ePlan==FTS5_PLAN_ROWID ){
        sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
      }else{
        sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iFirstRowid);
        sqlite3_bind_int64(pCsr->pStmt, 2, pCsr->iLastRowid);
      }
      rc = fts5NextMethod(pCursor);
    }
  }



  pConfig->pzErrmsg = pzErrmsg;
  return rc;
}

/* 
** This is the xEof method of the virtual table. SQLite calls this 
** routine to find out if it has reached the end of a result set.







|












|
<
<
<


<
<
<
<
<
<
<
<
<
|
|
|
|
|
|
<
<
















|








>
>







218759
218760
218761
218762
218763
218764
218765
218766
218767
218768
218769
218770
218771
218772
218773
218774
218775
218776
218777
218778
218779



218780
218781









218782
218783
218784
218785
218786
218787


218788
218789
218790
218791
218792
218793
218794
218795
218796
218797
218798
218799
218800
218801
218802
218803
218804
218805
218806
218807
218808
218809
218810
218811
218812
218813
218814
218815
218816
218817
218818
218819
218820
218821
    /* If pSortCsr is non-NULL, then this call is being made as part of 
    ** processing for a "... MATCH <expr> ORDER BY rank" query (ePlan is
    ** set to FTS5_PLAN_SORTED_MATCH). pSortCsr is the cursor that will
    ** return results to the user for this query. The current cursor 
    ** (pCursor) is used to execute the query issued by function 
    ** fts5CursorFirstSorted() above.  */
    assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
    assert( nVal==0 && bOrderByRank==0 && bDesc==0 );
    assert( pCsr->iLastRowid==LARGEST_INT64 );
    assert( pCsr->iFirstRowid==SMALLEST_INT64 );
    if( pTab->pSortCsr->bDesc ){
      pCsr->iLastRowid = pTab->pSortCsr->iFirstRowid;
      pCsr->iFirstRowid = pTab->pSortCsr->iLastRowid;
    }else{
      pCsr->iLastRowid = pTab->pSortCsr->iLastRowid;
      pCsr->iFirstRowid = pTab->pSortCsr->iFirstRowid;
    }
    pCsr->ePlan = FTS5_PLAN_SOURCE;
    pCsr->pExpr = pTab->pSortCsr->pExpr;
    rc = fts5CursorFirst(pTab, pCsr, bDesc);
  }else if( pCsr->pExpr ){



    rc = fts5CursorParseRank(pConfig, pCsr, pRank);
    if( rc==SQLITE_OK ){









      if( bOrderByRank ){
        pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
        rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
      }else{
        pCsr->ePlan = FTS5_PLAN_MATCH;
        rc = fts5CursorFirst(pTab, pCsr, bDesc);


      }
    }
  }else if( pConfig->zContent==0 ){
    *pConfig->pzErrmsg = sqlite3_mprintf(
        "%s: table does not support scanning", pConfig->zName
    );
    rc = SQLITE_ERROR;
  }else{
    /* This is either a full-table scan (ePlan==FTS5_PLAN_SCAN) or a lookup
    ** by rowid (ePlan==FTS5_PLAN_ROWID).  */
    pCsr->ePlan = (pRowidEq ? FTS5_PLAN_ROWID : FTS5_PLAN_SCAN);
    rc = sqlite3Fts5StorageStmt(
        pTab->pStorage, fts5StmtType(pCsr), &pCsr->pStmt, &pTab->p.base.zErrMsg
    );
    if( rc==SQLITE_OK ){
      if( pCsr->ePlan==FTS5_PLAN_ROWID ){
        sqlite3_bind_value(pCsr->pStmt, 1, pRowidEq);
      }else{
        sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iFirstRowid);
        sqlite3_bind_int64(pCsr->pStmt, 2, pCsr->iLastRowid);
      }
      rc = fts5NextMethod(pCursor);
    }
  }

 filter_out:
  sqlite3Fts5ExprFree(pExpr);
  pConfig->pzErrmsg = pzErrmsg;
  return rc;
}

/* 
** This is the xEof method of the virtual table. SQLite calls this 
** routine to find out if it has reached the end of a result set.
219953
219954
219955
219956
219957
219958
219959
219960
219961
219962
219963
219964
219965
219966
219967
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2019-09-03 16:23:41 3044cf6917ea8324175fc91657e9a5978af9748f72e1914bc361753f0b2d897d", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){







|







220194
220195
220196
220197
220198
220199
220200
220201
220202
220203
220204
220205
220206
220207
220208
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2019-09-21 17:31:03 8ea1dc727d391b15d0c4fa858ff68d5b8a63dde46408f24027dac8d28f044cbd", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){
224721
224722
224723
224724
224725
224726
224727
224728
224729
224730
224731
224732
224733
224734
#endif
  return rc;
}
#endif /* SQLITE_CORE */
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */

/************** End of stmt.c ************************************************/
#if __LINE__!=224728
#undef SQLITE_SOURCE_ID
#define SQLITE_SOURCE_ID      "2019-09-03 16:23:41 3044cf6917ea8324175fc91657e9a5978af9748f72e1914bc361753f0b2dalt2"
#endif
/* Return the source-id for this library */
SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
/************************** End of sqlite3.c ******************************/







|

|




224962
224963
224964
224965
224966
224967
224968
224969
224970
224971
224972
224973
224974
224975
#endif
  return rc;
}
#endif /* SQLITE_CORE */
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */

/************** End of stmt.c ************************************************/
#if __LINE__!=224969
#undef SQLITE_SOURCE_ID
#define SQLITE_SOURCE_ID      "2019-09-21 17:31:03 8ea1dc727d391b15d0c4fa858ff68d5b8a63dde46408f24027dac8d28f04alt2"
#endif
/* Return the source-id for this library */
SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
/************************** End of sqlite3.c ******************************/
Changes to src/sqlite3.h.
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.30.0"
#define SQLITE_VERSION_NUMBER 3030000
#define SQLITE_SOURCE_ID      "2019-09-03 16:23:41 3044cf6917ea8324175fc91657e9a5978af9748f72e1914bc361753f0b2d897d"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.30.0"
#define SQLITE_VERSION_NUMBER 3030000
#define SQLITE_SOURCE_ID      "2019-09-21 17:31:03 8ea1dc727d391b15d0c4fa858ff68d5b8a63dde46408f24027dac8d28f044cbd"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
4856
4857
4858
4859
4860
4861
4862

4863
4864
4865


4866
4867
4868
4869
4870
4871
4872
** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
** to signal that the function will always return the same result given
** the same inputs within a single SQL statement.  Most SQL functions are
** deterministic.  The built-in [random()] SQL function is an example of a
** function that is not deterministic.  The SQLite query planner is able to
** perform additional optimizations on deterministic functions, so use
** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.

** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
** flag, which if present prevents the function from being invoked from
** within VIEWs or TRIGGERs.


**
** ^(The fifth parameter is an arbitrary pointer.  The implementation of the
** function can gain access to this pointer using [sqlite3_user_data()].)^
**
** ^The sixth, seventh and eighth parameters passed to the three
** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL function or







>


|
>
>







4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
** to signal that the function will always return the same result given
** the same inputs within a single SQL statement.  Most SQL functions are
** deterministic.  The built-in [random()] SQL function is an example of a
** function that is not deterministic.  The SQLite query planner is able to
** perform additional optimizations on deterministic functions, so use
** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
**
** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
** flag, which if present prevents the function from being invoked from
** within VIEWs or TRIGGERs.  For security reasons, the [SQLITE_DIRECTONLY]
** flag is recommended for any application-defined SQL function that has
** side-effects.
**
** ^(The fifth parameter is an arbitrary pointer.  The implementation of the
** function can gain access to this pointer using [sqlite3_user_data()].)^
**
** ^The sixth, seventh and eighth parameters passed to the three
** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL function or
4982
4983
4984
4985
4986
4987
4988
4989













4990
4991
4992

4993
4994
4995
4996
4997
4998
4999
** [sqlite3_create_function_v2()].
**
** The SQLITE_DETERMINISTIC flag means that the new function will always
** maps the same inputs into the same output.  The abs() function is
** deterministic, for example, but randomblob() is not.
**
** The SQLITE_DIRECTONLY flag means that the function may only be invoked
** from top-level SQL, and cannot be used in VIEWs or TRIGGERs.













*/
#define SQLITE_DETERMINISTIC    0x000000800
#define SQLITE_DIRECTONLY       0x000080000


/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue 







|
>
>
>
>
>
>
>
>
>
>
>
>
>



>







4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
** [sqlite3_create_function_v2()].
**
** The SQLITE_DETERMINISTIC flag means that the new function will always
** maps the same inputs into the same output.  The abs() function is
** deterministic, for example, but randomblob() is not.
**
** The SQLITE_DIRECTONLY flag means that the function may only be invoked
** from top-level SQL, and cannot be used in VIEWs or TRIGGERs.  This is
** a security feature which is recommended for all 
** [application-defined SQL functions] that have side-effects.  This flag 
** prevents an attacker from adding triggers and views to a schema then 
** tricking a high-privilege application into causing unintended side-effects
** while performing ordinary queries.
**
** The SQLITE_SUBTYPE flag indicates to SQLite that a function may call
** [sqlite3_value_subtype()] to inspect the sub-types of its arguments.
** Specifying this flag makes no difference for scalar or aggregate user
** functions. However, if it is not specified for a user-defined window
** function, then any sub-types belonging to arguments passed to the window
** function may be discarded before the window function is called (i.e.
** sqlite3_value_subtype() will always return 0).
*/
#define SQLITE_DETERMINISTIC    0x000000800
#define SQLITE_DIRECTONLY       0x000080000
#define SQLITE_SUBTYPE          0x000100000

/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue