Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update the built-in SQLite to the latest 3.16.0 alpha for testing. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
814dfd5a9cb4caa6b8c7b62dbecf4039 |
User & Date: | drh 2016-12-08 20:03:09.937 |
Context
2016-12-08
| ||
20:10 | Bring the change log up-to-date with the latest enhancements. ... (check-in: d1a6222e user: drh tags: trunk) | |
20:03 | Update the built-in SQLite to the latest 3.16.0 alpha for testing. ... (check-in: 814dfd5a user: drh tags: trunk) | |
10:25 | Fix warning when compiling with gcc on Windows (Microsoft's fprintf doesn't know %lld) ... (check-in: 68288686 user: jan.nijtmans tags: trunk) | |
Changes
Changes to src/shell.c.
︙ | ︙ | |||
2579 2580 2581 2582 2583 2584 2585 | if( f==0 ){ utf8_printf(stderr, "Error: cannot open \"%s\"\n", zFile); } } return f; } | | | 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 | if( f==0 ){ utf8_printf(stderr, "Error: cannot open \"%s\"\n", zFile); } } return f; } #if !defined(SQLITE_UNTESTABLE) #if !defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_OMIT_FLOATING_POINT) /* ** A routine for handling output from sqlite3_trace(). */ static int sql_trace_callback( unsigned mType, void *pArg, |
︙ | ︙ | |||
3855 3856 3857 3858 3859 3860 3861 | }else if( rc != SQLITE_OK ){ raw_printf(stderr, "Error: querying sqlite_master and sqlite_temp_master\n"); rc = 1; } }else | | | 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 | }else if( rc != SQLITE_OK ){ raw_printf(stderr, "Error: querying sqlite_master and sqlite_temp_master\n"); rc = 1; } }else #ifndef SQLITE_UNTESTABLE if( c=='i' && strncmp(azArg[0], "imposter", n)==0 ){ char *zSql; char *zCollist = 0; sqlite3_stmt *pStmt; int tnum = 0; int i; if( nArg!=3 ){ |
︙ | ︙ | |||
4075 4076 4077 4078 4079 4080 4081 | p->mode = MODE_Quote; }else if( c2=='a' && strncmp(azArg[1],"ascii",n2)==0 ){ p->mode = MODE_Ascii; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Unit); sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Record); }else { raw_printf(stderr, "Error: mode should be one of: " | | | 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 | p->mode = MODE_Quote; }else if( c2=='a' && strncmp(azArg[1],"ascii",n2)==0 ){ p->mode = MODE_Ascii; sqlite3_snprintf(sizeof(p->colSeparator), p->colSeparator, SEP_Unit); sqlite3_snprintf(sizeof(p->rowSeparator), p->rowSeparator, SEP_Record); }else { raw_printf(stderr, "Error: mode should be one of: " "ascii column csv html insert line list quote tabs tcl\n"); rc = 1; } p->cMode = p->mode; }else if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 ){ if( nArg==2 ){ |
︙ | ︙ | |||
4791 4792 4793 4794 4795 4796 4797 | if( nArg>=2 ){ sqlite3_snprintf(sizeof(p->zTestcase), p->zTestcase, "%s", azArg[1]); }else{ sqlite3_snprintf(sizeof(p->zTestcase), p->zTestcase, "?"); } }else | | | 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 | if( nArg>=2 ){ sqlite3_snprintf(sizeof(p->zTestcase), p->zTestcase, "%s", azArg[1]); }else{ sqlite3_snprintf(sizeof(p->zTestcase), p->zTestcase, "?"); } }else #ifndef SQLITE_UNTESTABLE if( c=='t' && n>=8 && strncmp(azArg[0], "testctrl", n)==0 && nArg>=2 ){ static const struct { const char *zCtrlName; /* Name of a test-control option */ int ctrlCode; /* Integer code for that option */ } aCtrl[] = { { "prng_save", SQLITE_TESTCTRL_PRNG_SAVE }, { "prng_restore", SQLITE_TESTCTRL_PRNG_RESTORE }, |
︙ | ︙ | |||
4967 4968 4969 4970 4971 4972 4973 | if( p->traceOut==0 ){ sqlite3_trace_v2(p->db, 0, 0, 0); }else{ sqlite3_trace_v2(p->db, SQLITE_TRACE_STMT, sql_trace_callback,p->traceOut); } #endif }else | | | 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 | if( p->traceOut==0 ){ sqlite3_trace_v2(p->db, 0, 0, 0); }else{ sqlite3_trace_v2(p->db, SQLITE_TRACE_STMT, sql_trace_callback,p->traceOut); } #endif }else #endif /* !defined(SQLITE_UNTESTABLE) */ #if SQLITE_USER_AUTHENTICATION if( c=='u' && strncmp(azArg[0], "user", n)==0 ){ if( nArg<2 ){ raw_printf(stderr, "Usage: .user SUBCOMMAND ...\n"); rc = 1; goto meta_command_exit; |
︙ | ︙ |
Changes to src/sqlite3.c.
︙ | ︙ | |||
379 380 381 382 383 384 385 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.16.0" #define SQLITE_VERSION_NUMBER 3016000 | | | 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.16.0" #define SQLITE_VERSION_NUMBER 3016000 #define SQLITE_SOURCE_ID "2016-12-08 19:04:36 b26df26e184ec6da4b5537526c10f42a293d09b5" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 | ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, ** since the statements themselves do not actually modify the database but ** rather they control the timing of when other statements modify the ** database. ^The [ATTACH] and [DETACH] statements also cause ** sqlite3_stmt_readonly() to return true since, while those statements ** change the configuration of a database connection, they do not make ** changes to the content of the database files on disk. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** | > > > > | 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 | ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, ** since the statements themselves do not actually modify the database but ** rather they control the timing of when other statements modify the ** database. ^The [ATTACH] and [DETACH] statements also cause ** sqlite3_stmt_readonly() to return true since, while those statements ** change the configuration of a database connection, they do not make ** changes to the content of the database files on disk. ** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since ** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and ** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so ** sqlite3_stmt_readonly() returns false for those commands. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** |
︙ | ︙ | |||
8515 8516 8517 8518 8519 8520 8521 | ** called to get back the underlying "errno" that caused the problem, such ** as ENOSPC, EAUTH, EISDIR, and so forth. */ SQLITE_API int sqlite3_system_errno(sqlite3*); /* ** CAPI3REF: Database Snapshot | | | 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 | ** called to get back the underlying "errno" that caused the problem, such ** as ENOSPC, EAUTH, EISDIR, and so forth. */ SQLITE_API int sqlite3_system_errno(sqlite3*); /* ** CAPI3REF: Database Snapshot ** KEYWORDS: {snapshot} {sqlite3_snapshot} ** EXPERIMENTAL ** ** An instance of the snapshot object records the state of a [WAL mode] ** database for some specific point in history. ** ** In [WAL mode], multiple [database connections] that are open on the ** same database file can each be reading a different historical version |
︙ | ︙ | |||
8539 8540 8541 8542 8543 8544 8545 | ** the most recent version. ** ** The constructor for this object is [sqlite3_snapshot_get()]. The ** [sqlite3_snapshot_open()] method causes a fresh read transaction to refer ** to an historical snapshot (if possible). The destructor for ** sqlite3_snapshot objects is [sqlite3_snapshot_free()]. */ | | > > > > > > > > > > > > > | > > > > > > > > > > > > > | < | 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 | ** the most recent version. ** ** The constructor for this object is [sqlite3_snapshot_get()]. The ** [sqlite3_snapshot_open()] method causes a fresh read transaction to refer ** to an historical snapshot (if possible). The destructor for ** sqlite3_snapshot objects is [sqlite3_snapshot_free()]. */ typedef struct sqlite3_snapshot { unsigned char hidden[48]; } sqlite3_snapshot; /* ** CAPI3REF: Record A Database Snapshot ** EXPERIMENTAL ** ** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a ** new [sqlite3_snapshot] object that records the current state of ** schema S in database connection D. ^On success, the ** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly ** created [sqlite3_snapshot] object into *P and returns SQLITE_OK. ** If there is not already a read-transaction open on schema S when ** this function is called, one is opened automatically. ** ** The following must be true for this function to succeed. If any of ** the following statements are false when sqlite3_snapshot_get() is ** called, SQLITE_ERROR is returned. The final value of *P is undefined ** in this case. ** ** <ul> ** <li> The database handle must be in [autocommit mode]. ** ** <li> Schema S of [database connection] D must be a [WAL mode] database. ** ** <li> There must not be a write transaction open on schema S of database ** connection D. ** ** <li> One or more transactions must have been written to the current wal ** file since it was created on disk (by any connection). This means ** that a snapshot cannot be taken on a wal mode database with no wal ** file immediately after it is first opened. At least one transaction ** must be written to it first. ** </ul> ** ** This function may also return SQLITE_NOMEM. If it is called with the ** database handle in autocommit mode but fails for some other reason, ** whether or not a read transaction is opened on schema S is undefined. ** ** The [sqlite3_snapshot] object returned from a successful call to ** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()] ** to avoid a memory leak. ** ** The [sqlite3_snapshot_get()] interface is only available when the ** SQLITE_ENABLE_SNAPSHOT compile-time option is used. |
︙ | ︙ | |||
8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 | ** snapshot, and a positive value if P1 is a newer snapshot than P2. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp( sqlite3_snapshot *p1, sqlite3_snapshot *p2 ); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif | > > > > > > > > > > > > > > > > > > > > > > | 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 | ** snapshot, and a positive value if P1 is a newer snapshot than P2. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp( sqlite3_snapshot *p1, sqlite3_snapshot *p2 ); /* ** CAPI3REF: Recover snapshots from a wal file ** EXPERIMENTAL ** ** If all connections disconnect from a database file but do not perform ** a checkpoint, the existing wal file is opened along with the database ** file the next time the database is opened. At this point it is only ** possible to successfully call sqlite3_snapshot_open() to open the most ** recent snapshot of the database (the one at the head of the wal file), ** even though the wal file may contain other valid snapshots for which ** clients have sqlite3_snapshot handles. ** ** This function attempts to scan the wal file associated with database zDb ** of database handle db and make all valid snapshots available to ** sqlite3_snapshot_open(). It is an error if there is already a read ** transaction open on the database, or if the database is not a wal mode ** database. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif |
︙ | ︙ | |||
12321 12322 12323 12324 12325 12326 12327 | int bias, int seekResult); SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*); | | < > | 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 | int bias, int seekResult); SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor*); SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *); #endif SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask); SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt); |
︙ | ︙ | |||
12516 12517 12518 12519 12520 12521 12522 | /* ** Allowed values of VdbeOp.p4type */ #define P4_NOTUSED 0 /* The P4 parameter is not used */ #define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ #define P4_STATIC (-2) /* Pointer to a static string */ | | | | | | | < | | | | | | | | | 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 | /* ** Allowed values of VdbeOp.p4type */ #define P4_NOTUSED 0 /* The P4 parameter is not used */ #define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ #define P4_STATIC (-2) /* Pointer to a static string */ #define P4_COLLSEQ (-3) /* P4 is a pointer to a CollSeq structure */ #define P4_FUNCDEF (-4) /* P4 is a pointer to a FuncDef structure */ #define P4_KEYINFO (-5) /* P4 is a pointer to a KeyInfo structure */ #define P4_EXPR (-6) /* P4 is a pointer to an Expr tree */ #define P4_MEM (-7) /* P4 is a pointer to a Mem* structure */ #define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */ #define P4_VTAB (-8) /* P4 is a pointer to an sqlite3_vtab structure */ #define P4_REAL (-9) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-10) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-11) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-12) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-13) /* P4 is a pointer to a SubProgram structure */ #define P4_ADVANCE (-14) /* P4 is a pointer to BtreeNext() or BtreePrev() */ #define P4_TABLE (-15) /* P4 is a pointer to a Table structure */ #define P4_FUNCCTX (-16) /* P4 is a pointer to an sqlite3_context object */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 |
︙ | ︙ | |||
12695 12696 12697 12698 12699 12700 12701 | #define OP_NewRowid 114 /* synopsis: r[P2]=rowid */ #define OP_Insert 115 /* synopsis: intkey=r[P3] data=r[P2] */ #define OP_InsertInt 116 /* synopsis: intkey=P3 data=r[P2] */ #define OP_Delete 117 #define OP_ResetCount 118 #define OP_SorterCompare 119 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */ #define OP_SorterData 120 /* synopsis: r[P2]=data */ | < | | | | | | | | | | > < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 | #define OP_NewRowid 114 /* synopsis: r[P2]=rowid */ #define OP_Insert 115 /* synopsis: intkey=r[P3] data=r[P2] */ #define OP_InsertInt 116 /* synopsis: intkey=P3 data=r[P2] */ #define OP_Delete 117 #define OP_ResetCount 118 #define OP_SorterCompare 119 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */ #define OP_SorterData 120 /* synopsis: r[P2]=data */ #define OP_RowData 121 /* synopsis: r[P2]=data */ #define OP_Rowid 122 /* synopsis: r[P2]=rowid */ #define OP_NullRow 123 #define OP_SorterInsert 124 /* synopsis: key=r[P2] */ #define OP_IdxInsert 125 /* synopsis: key=r[P2] */ #define OP_IdxDelete 126 /* synopsis: key=r[P2@P3] */ #define OP_Seek 127 /* synopsis: Move P3 to P1.rowid */ #define OP_IdxRowid 128 /* synopsis: r[P2]=rowid */ #define OP_Destroy 129 #define OP_Clear 130 #define OP_ResetSorter 131 #define OP_Real 132 /* same as TK_FLOAT, synopsis: r[P2]=P4 */ #define OP_CreateIndex 133 /* synopsis: r[P2]=root iDb=P1 */ #define OP_CreateTable 134 /* synopsis: r[P2]=root iDb=P1 */ #define OP_ParseSchema 135 #define OP_LoadAnalysis 136 #define OP_DropTable 137 #define OP_DropIndex 138 #define OP_DropTrigger 139 #define OP_IntegrityCk 140 #define OP_RowSetAdd 141 /* synopsis: rowset(P1)=r[P2] */ #define OP_Param 142 #define OP_FkCounter 143 /* synopsis: fkctr[P1]+=P2 */ #define OP_MemMax 144 /* synopsis: r[P1]=max(r[P1],r[P2]) */ #define OP_OffsetLimit 145 /* synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) */ #define OP_AggStep0 146 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggStep 147 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggFinal 148 /* synopsis: accum=r[P1] N=P2 */ #define OP_Expire 149 #define OP_TableLock 150 /* synopsis: iDb=P1 root=P2 write=P3 */ #define OP_VBegin 151 #define OP_VCreate 152 #define OP_VDestroy 153 #define OP_VOpen 154 #define OP_VColumn 155 /* synopsis: r[P3]=vcolumn(P2) */ #define OP_VRename 156 #define OP_Pagecount 157 #define OP_MaxPgcnt 158 #define OP_CursorHint 159 #define OP_Noop 160 #define OP_Explain 161 /* Properties such as "out2" or "jump" that are specified in ** comments following the "case" for each opcode in the vdbe.c ** are encoded into bitvectors as follows: */ #define OPFLG_JUMP 0x01 /* jump: P2 holds jmp target */ #define OPFLG_IN1 0x02 /* in1: P1 is an input */ |
︙ | ︙ | |||
12764 12765 12766 12767 12768 12769 12770 | /* 64 */ 0x01, 0x01, 0x03, 0x03, 0x03, 0x01, 0x01, 0x01,\ /* 72 */ 0x02, 0x02, 0x08, 0x00, 0x10, 0x10, 0x10, 0x10,\ /* 80 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x10, 0x10, 0x00,\ /* 88 */ 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00,\ /* 96 */ 0x00, 0x10, 0x00, 0x00, 0x10, 0x10, 0x00, 0x00,\ /* 104 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 112 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\ | | | | | | | | 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 | /* 64 */ 0x01, 0x01, 0x03, 0x03, 0x03, 0x01, 0x01, 0x01,\ /* 72 */ 0x02, 0x02, 0x08, 0x00, 0x10, 0x10, 0x10, 0x10,\ /* 80 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x10, 0x10, 0x00,\ /* 88 */ 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00,\ /* 96 */ 0x00, 0x10, 0x00, 0x00, 0x10, 0x10, 0x00, 0x00,\ /* 104 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 112 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 120 */ 0x00, 0x00, 0x10, 0x00, 0x04, 0x04, 0x00, 0x00,\ /* 128 */ 0x10, 0x10, 0x00, 0x00, 0x10, 0x10, 0x10, 0x00,\ /* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x10, 0x00,\ /* 144 */ 0x04, 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 152 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x10, 0x00,\ /* 160 */ 0x00, 0x00,} /* The sqlite3P2Values() routine is able to run faster if it knows ** the value of the largest JUMP opcode. The smaller the maximum ** JUMP opcode the better, so the mkopcodeh.tcl script that ** generated this include file strives to group all JUMP opcodes ** together near the beginning of the list. */ |
︙ | ︙ | |||
12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 | SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2); SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3); SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr); SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op); SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*); SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); | > | 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 | SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2); SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3); SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); SQLITE_PRIVATE int sqlite3VdbeChangeToNoop(Vdbe*, int addr); SQLITE_PRIVATE int sqlite3VdbeDeletePriorOpcode(Vdbe*, u8 op); SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe*, void *pP4, int p4type); SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse*, Index*); SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeReusable(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); |
︙ | ︙ | |||
13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 | SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3*); SQLITE_PRIVATE int sqlite3PagerUseWal(Pager *pPager); # ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot); # endif #else # define sqlite3PagerUseWal(x) 0 #endif #ifdef SQLITE_ENABLE_ZIPVFS SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); | > | 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 | SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3*); SQLITE_PRIVATE int sqlite3PagerUseWal(Pager *pPager); # ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager); # endif #else # define sqlite3PagerUseWal(x) 0 #endif #ifdef SQLITE_ENABLE_ZIPVFS SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); |
︙ | ︙ | |||
14113 14114 14115 14116 14117 14118 14119 | #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ #define SQLITE_AllOpts 0xffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ | < < < < < | 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 | #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ #define SQLITE_CursorHints 0x2000 /* Add OP_CursorHint opcodes */ #define SQLITE_AllOpts 0xffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) /* ** Return true if it OK to factor constant expressions into the initialization ** code. The argument is a Parse object for the code generator. */ #define ConstFactorOk(P) ((P)->okConstFactor) |
︙ | ︙ | |||
15889 15890 15891 15892 15893 15894 15895 | #ifdef SQLITE_VDBE_COVERAGE /* The following callback (if not NULL) is invoked on every VDBE branch ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. */ void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ void *pVdbeBranchArg; /* 1st argument */ #endif | | | 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 | #ifdef SQLITE_VDBE_COVERAGE /* The following callback (if not NULL) is invoked on every VDBE branch ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. */ void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ void *pVdbeBranchArg; /* 1st argument */ #endif #ifndef SQLITE_UNTESTABLE int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ #endif int bLocaltimeFault; /* True to fail localtime() calls */ int iOnceResetThreshold; /* When to reset OP_Once counters */ }; /* |
︙ | ︙ | |||
16093 16094 16095 16096 16097 16098 16099 | SQLITE_PRIVATE int sqlite3MallocSize(void*); SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*); SQLITE_PRIVATE void *sqlite3ScratchMalloc(int); SQLITE_PRIVATE void sqlite3ScratchFree(void*); SQLITE_PRIVATE void *sqlite3PageMalloc(int); SQLITE_PRIVATE void sqlite3PageFree(void*); SQLITE_PRIVATE void sqlite3MemSetDefault(void); | | | 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 | SQLITE_PRIVATE int sqlite3MallocSize(void*); SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*); SQLITE_PRIVATE void *sqlite3ScratchMalloc(int); SQLITE_PRIVATE void sqlite3ScratchFree(void*); SQLITE_PRIVATE void *sqlite3PageMalloc(int); SQLITE_PRIVATE void sqlite3PageFree(void*); SQLITE_PRIVATE void sqlite3MemSetDefault(void); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); #endif SQLITE_PRIVATE int sqlite3HeapNearlyFull(void); /* ** On systems with ample stack space and that support alloca(), make ** use of alloca() to obtain space for large automatic objects. By default, |
︙ | ︙ | |||
16204 16205 16206 16207 16208 16209 16210 | SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse*,int,int); #endif SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); | | | 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 | SQLITE_PRIVATE void sqlite3ClearTempRegCache(Parse*); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3NoTempsInRange(Parse*,int,int); #endif SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*); SQLITE_PRIVATE void sqlite3PExprAddSelect(Parse*, Expr*, Select*); SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32); SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*); SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); SQLITE_PRIVATE ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*); |
︙ | ︙ | |||
16248 16249 16250 16251 16252 16253 16254 | SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,ExprSpan*); SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*); SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); SQLITE_PRIVATE int sqlite3ParseUri(const char*,const char*,unsigned int*, sqlite3_vfs**,char**,char **); SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3*,const char*); | | | | 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 | SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,ExprSpan*); SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*); SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*); SQLITE_PRIVATE int sqlite3ParseUri(const char*,const char*,unsigned int*, sqlite3_vfs**,char**,char **); SQLITE_PRIVATE Btree *sqlite3DbNameToBtree(sqlite3*,const char*); #ifdef SQLITE_UNTESTABLE # define sqlite3FaultSim(X) SQLITE_OK #else SQLITE_PRIVATE int sqlite3FaultSim(int); #endif SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*); SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); #endif SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); SQLITE_PRIVATE void sqlite3RowSetClear(RowSet*); SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64); SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, int iBatch, i64); |
︙ | ︙ | |||
16381 16382 16383 16384 16385 16386 16387 | SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*, int); SQLITE_PRIVATE int sqlite3ExprImpliesExpr(Expr*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx); SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); | | | 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 | SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*, int); SQLITE_PRIVATE int sqlite3ExprImpliesExpr(Expr*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx); SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3PrngSaveState(void); SQLITE_PRIVATE void sqlite3PrngRestoreState(void); #endif SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int); SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); |
︙ | ︙ | |||
16809 16810 16811 16812 16813 16814 16815 | ** Available fault injectors. Should be numbered beginning with 0. */ #define SQLITE_FAULTINJECTOR_MALLOC 0 #define SQLITE_FAULTINJECTOR_COUNT 1 /* ** The interface to the code in fault.c used for identifying "benign" | | | | 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 | ** Available fault injectors. Should be numbered beginning with 0. */ #define SQLITE_FAULTINJECTOR_MALLOC 0 #define SQLITE_FAULTINJECTOR_COUNT 1 /* ** The interface to the code in fault.c used for identifying "benign" ** malloc failures. This is only present if SQLITE_UNTESTABLE ** is not defined. */ #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void); SQLITE_PRIVATE void sqlite3EndBenignMalloc(void); #else #define sqlite3BeginBenignMalloc() #define sqlite3EndBenignMalloc() #endif |
︙ | ︙ | |||
16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 | SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3*); #endif SQLITE_PRIVATE int sqlite3ExprVectorSize(Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprIsVector(Expr *pExpr); SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr*, int); SQLITE_PRIVATE Expr *sqlite3ExprForVectorField(Parse*,Expr*,int); #endif /* SQLITEINT_H */ /************** End of sqliteInt.h *******************************************/ /************** Begin file global.c ******************************************/ /* ** 2008 June 13 | > | 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 | SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3*); #endif SQLITE_PRIVATE int sqlite3ExprVectorSize(Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprIsVector(Expr *pExpr); SQLITE_PRIVATE Expr *sqlite3VectorFieldSubexpr(Expr*, int); SQLITE_PRIVATE Expr *sqlite3ExprForVectorField(Parse*,Expr*,int); SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse*, Expr*); #endif /* SQLITEINT_H */ /************** End of sqliteInt.h *******************************************/ /************** Begin file global.c ******************************************/ /* ** 2008 June 13 |
︙ | ︙ | |||
17169 17170 17171 17172 17173 17174 17175 | 0, /* xSqllog */ 0, /* pSqllogArg */ #endif #ifdef SQLITE_VDBE_COVERAGE 0, /* xVdbeBranch */ 0, /* pVbeBranchArg */ #endif | | | 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 | 0, /* xSqllog */ 0, /* pSqllogArg */ #endif #ifdef SQLITE_VDBE_COVERAGE 0, /* xVdbeBranch */ 0, /* pVbeBranchArg */ #endif #ifndef SQLITE_UNTESTABLE 0, /* xTestCallback */ #endif 0, /* bLocaltimeFault */ 0x7ffffffe /* iOnceResetThreshold */ }; /* |
︙ | ︙ | |||
17465 17466 17467 17468 17469 17470 17471 | #endif #if SQLITE_OMIT_BLOB_LITERAL "OMIT_BLOB_LITERAL", #endif #if SQLITE_OMIT_BTREECOUNT "OMIT_BTREECOUNT", #endif | < < < | 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 | #endif #if SQLITE_OMIT_BLOB_LITERAL "OMIT_BLOB_LITERAL", #endif #if SQLITE_OMIT_BTREECOUNT "OMIT_BTREECOUNT", #endif #if SQLITE_OMIT_CAST "OMIT_CAST", #endif #if SQLITE_OMIT_CHECK "OMIT_CHECK", #endif #if SQLITE_OMIT_COMPLETE |
︙ | ︙ | |||
17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 | "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE), #endif #if SQLITE_TEST "TEST", #endif #if defined(SQLITE_THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), #endif #if SQLITE_USE_ALLOCA "USE_ALLOCA", #endif #if SQLITE_USER_AUTHENTICATION "USER_AUTHENTICATION", #endif | > > > | 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 | "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE), #endif #if SQLITE_TEST "TEST", #endif #if defined(SQLITE_THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), #endif #if SQLITE_UNTESTABLE "UNTESTABLE" #endif #if SQLITE_USE_ALLOCA "USE_ALLOCA", #endif #if SQLITE_USER_AUTHENTICATION "USER_AUTHENTICATION", #endif |
︙ | ︙ | |||
18197 18198 18199 18200 18201 18202 18203 | SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*); SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*); SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem*,u8,u8); | | | 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 | SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*); SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*); SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem*,u8,u8); SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*); SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); SQLITE_PRIVATE const char *sqlite3OpcodeName(int); SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*); |
︙ | ︙ | |||
18666 18667 18668 18669 18670 18671 18672 | #endif /* ** A structure for holding a single date and time. */ typedef struct DateTime DateTime; struct DateTime { | | | | | | > > | | < | | > | 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 | #endif /* ** A structure for holding a single date and time. */ typedef struct DateTime DateTime; struct DateTime { sqlite3_int64 iJD; /* The julian day number times 86400000 */ int Y, M, D; /* Year, month, and day */ int h, m; /* Hour and minutes */ int tz; /* Timezone offset in minutes */ double s; /* Seconds */ char validJD; /* True (1) if iJD is valid */ char rawS; /* Raw numeric value stored in s */ char validYMD; /* True (1) if Y,M,D are valid */ char validHMS; /* True (1) if h,m,s are valid */ char validTZ; /* True (1) if tz is valid */ char tzSet; /* Timezone was set explicitly */ char isError; /* An overflow has occurred */ }; /* ** Convert zDate into one or more integers according to the conversion ** specifier zFormat. ** |
︙ | ︙ | |||
18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 | } ms /= rScale; } }else{ s = 0; } p->validJD = 0; p->validHMS = 1; p->h = h; p->m = m; p->s = s + ms; if( parseTimezone(zDate, p) ) return 1; p->validTZ = (p->tz!=0)?1:0; return 0; } /* ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume ** that the YYYY-MM-DD is according to the Gregorian calendar. ** ** Reference: Meeus page 61 */ static void computeJD(DateTime *p){ int Y, M, D, A, B, X1, X2; if( p->validJD ) return; if( p->validYMD ){ Y = p->Y; M = p->M; D = p->D; }else{ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ M = 1; D = 1; } if( M<=2 ){ Y--; M += 12; } A = Y/100; B = 2 - A + (A/4); | > > > > > > > > > > > > > | 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 | } ms /= rScale; } }else{ s = 0; } p->validJD = 0; p->rawS = 0; p->validHMS = 1; p->h = h; p->m = m; p->s = s + ms; if( parseTimezone(zDate, p) ) return 1; p->validTZ = (p->tz!=0)?1:0; return 0; } /* ** Put the DateTime object into its error state. */ static void datetimeError(DateTime *p){ memset(p, 0, sizeof(*p)); p->isError = 1; } /* ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume ** that the YYYY-MM-DD is according to the Gregorian calendar. ** ** Reference: Meeus page 61 */ static void computeJD(DateTime *p){ int Y, M, D, A, B, X1, X2; if( p->validJD ) return; if( p->validYMD ){ Y = p->Y; M = p->M; D = p->D; }else{ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ M = 1; D = 1; } if( Y<-4713 || Y>9999 || p->rawS ){ datetimeError(p); return; } if( M<=2 ){ Y--; M += 12; } A = Y/100; B = 2 - A + (A/4); |
︙ | ︙ | |||
18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 | if( p->iJD>0 ){ p->validJD = 1; return 0; }else{ return 1; } } /* ** Attempt to parse the given string into a julian day number. Return ** the number of errors. ** ** The following are acceptable forms for the input string: ** | > > > > > > > > > > > > > > > | 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 | if( p->iJD>0 ){ p->validJD = 1; return 0; }else{ return 1; } } /* ** Input "r" is a numeric quantity which might be a julian day number, ** or the number of seconds since 1970. If the value if r is within ** range of a julian day number, install it as such and set validJD. ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. */ static void setRawDateNumber(DateTime *p, double r){ p->s = r; p->rawS = 1; if( r>=0.0 && r<5373484.5 ){ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); p->validJD = 1; } } /* ** Attempt to parse the given string into a julian day number. Return ** the number of errors. ** ** The following are acceptable forms for the input string: ** |
︙ | ︙ | |||
18960 18961 18962 18963 18964 18965 18966 | if( parseYyyyMmDd(zDate,p)==0 ){ return 0; }else if( parseHhMmSs(zDate, p)==0 ){ return 0; }else if( sqlite3StrICmp(zDate,"now")==0){ return setDateTimeToCurrent(context, p); }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ | | < > > > > > > > > > > | 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 | if( parseYyyyMmDd(zDate,p)==0 ){ return 0; }else if( parseHhMmSs(zDate, p)==0 ){ return 0; }else if( sqlite3StrICmp(zDate,"now")==0){ return setDateTimeToCurrent(context, p); }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ setRawDateNumber(p, r); return 0; } return 1; } /* ** Return TRUE if the given julian day number is within range. ** ** The input is the JulianDay times 86400000. */ static int validJulianDay(sqlite3_int64 iJD){ return iJD>=0 && iJD<=464269060799999; } /* ** Compute the Year, Month, and Day from the julian day number. */ static void computeYMD(DateTime *p){ int Z, A, B, C, D, E, X1; if( p->validYMD ) return; if( !p->validJD ){ p->Y = 2000; p->M = 1; p->D = 1; }else{ assert( validJulianDay(p->iJD) ); Z = (int)((p->iJD + 43200000)/86400000); A = (int)((Z - 1867216.25)/36524.25); A = Z + 1 + A - (A/4); B = A + 1524; C = (int)((B - 122.1)/365.25); D = (36525*(C&32767))/100; E = (int)((B-D)/30.6001); |
︙ | ︙ | |||
19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 | p->s = s/1000.0; s = (int)p->s; p->s -= s; p->h = s/3600; s -= p->h*3600; p->m = s/60; p->s += s - p->m*60; p->validHMS = 1; } /* ** Compute both YMD and HMS */ static void computeYMD_HMS(DateTime *p){ | > | 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 | p->s = s/1000.0; s = (int)p->s; p->s -= s; p->h = s/3600; s -= p->h*3600; p->m = s/60; p->s += s - p->m*60; p->rawS = 0; p->validHMS = 1; } /* ** Compute both YMD and HMS */ static void computeYMD_HMS(DateTime *p){ |
︙ | ︙ | |||
19069 19070 19071 19072 19073 19074 19075 | #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S struct tm *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); #endif sqlite3_mutex_enter(mutex); pX = localtime(t); | | | | 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 | #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S struct tm *pX; #if SQLITE_THREADSAFE>0 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); #endif sqlite3_mutex_enter(mutex); pX = localtime(t); #ifndef SQLITE_UNTESTABLE if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; #endif if( pX ) *pTm = *pX; sqlite3_mutex_leave(mutex); rc = pX==0; #else #ifndef SQLITE_UNTESTABLE if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; #endif #if HAVE_LOCALTIME_R rc = localtime_r(t, pTm)==0; #else rc = localtime_s(pTm, t); #endif /* HAVE_LOCALTIME_R */ |
︙ | ︙ | |||
19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 | y.D = sLocal.tm_mday; y.h = sLocal.tm_hour; y.m = sLocal.tm_min; y.s = sLocal.tm_sec; y.validYMD = 1; y.validHMS = 1; y.validJD = 0; y.validTZ = 0; computeJD(&y); *pRc = SQLITE_OK; return y.iJD - x.iJD; } #endif /* SQLITE_OMIT_LOCALTIME */ /* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours | > > > > > > > > > > > > > > > > > > > > > > > > > | 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 | y.D = sLocal.tm_mday; y.h = sLocal.tm_hour; y.m = sLocal.tm_min; y.s = sLocal.tm_sec; y.validYMD = 1; y.validHMS = 1; y.validJD = 0; y.rawS = 0; y.validTZ = 0; y.isError = 0; computeJD(&y); *pRc = SQLITE_OK; return y.iJD - x.iJD; } #endif /* SQLITE_OMIT_LOCALTIME */ /* ** The following table defines various date transformations of the form ** ** 'NNN days' ** ** Where NNN is an arbitrary floating-point number and "days" can be one ** of several units of time. */ static const struct { u8 eType; /* Transformation type code */ u8 nName; /* Length of th name */ char *zName; /* Name of the transformation */ double rLimit; /* Maximum NNN value for this transform */ double rXform; /* Constant used for this transform */ } aXformType[] = { { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) }, { 0, 6, "minute", 7737817680.0, 86400000.0/(24.0*60.0) }, { 0, 4, "hour", 128963628.0, 86400000.0/24.0 }, { 0, 3, "day", 5373485.0, 86400000.0 }, { 1, 5, "month", 176546.0, 30.0*86400000.0 }, { 2, 4, "year", 14713.0, 365.0*86400000.0 }, }; /* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours |
︙ | ︙ | |||
19178 19179 19180 19181 19182 19183 19184 | ** utc ** ** Return 0 on success and 1 if there is any kind of error. If the error ** is in a system call (i.e. localtime()), then an error message is written ** to context pCtx. If the error is an unrecognized modifier, no error is ** written to pCtx. */ | | > > > > > < < < < | < < < | | | | > | > > > | | > | | 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 | ** utc ** ** Return 0 on success and 1 if there is any kind of error. If the error ** is in a system call (i.e. localtime()), then an error message is written ** to context pCtx. If the error is an unrecognized modifier, no error is ** written to pCtx. */ static int parseModifier( sqlite3_context *pCtx, /* Function context */ const char *z, /* The text of the modifier */ int n, /* Length of zMod in bytes */ DateTime *p /* The date/time value to be modified */ ){ int rc = 1; double r; switch(sqlite3UpperToLower[(u8)z[0]] ){ #ifndef SQLITE_OMIT_LOCALTIME case 'l': { /* localtime ** ** Assuming the current time value is UTC (a.k.a. GMT), shift it to ** show local time. */ if( sqlite3_stricmp(z, "localtime")==0 ){ computeJD(p); p->iJD += localtimeOffset(p, pCtx, &rc); clearYMD_HMS_TZ(p); } break; } #endif case 'u': { /* ** unixepoch ** ** Treat the current value of p->s as the number of ** seconds since 1970. Convert to a real julian day number. */ if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ r = p->s*1000.0 + 210866760000000.0; if( r>=0.0 && r<464269060800000.0 ){ clearYMD_HMS_TZ(p); p->iJD = (sqlite3_int64)r; p->validJD = 1; p->rawS = 0; rc = 0; } } #ifndef SQLITE_OMIT_LOCALTIME else if( sqlite3_stricmp(z, "utc")==0 ){ if( p->tzSet==0 ){ sqlite3_int64 c1; computeJD(p); c1 = localtimeOffset(p, pCtx, &rc); if( rc==SQLITE_OK ){ p->iJD -= c1; clearYMD_HMS_TZ(p); |
︙ | ︙ | |||
19243 19244 19245 19246 19247 19248 19249 | /* ** weekday N ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ | | | 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 | /* ** weekday N ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ if( sqlite3_strnicmp(z, "weekday ", 8)==0 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) && (n=(int)r)==r && n>=0 && r<7 ){ sqlite3_int64 Z; computeYMD_HMS(p); p->validTZ = 0; p->validJD = 0; computeJD(p); |
︙ | ︙ | |||
19266 19267 19268 19269 19270 19271 19272 | case 's': { /* ** start of TTTTT ** ** Move the date backwards to the beginning of the current day, ** or month or year. */ | | | | | > | 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 | case 's': { /* ** start of TTTTT ** ** Move the date backwards to the beginning of the current day, ** or month or year. */ if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; z += 9; computeYMD(p); p->validHMS = 1; p->h = p->m = 0; p->s = 0.0; p->validTZ = 0; p->validJD = 0; if( sqlite3_stricmp(z,"month")==0 ){ p->D = 1; rc = 0; }else if( sqlite3_stricmp(z,"year")==0 ){ computeYMD(p); p->M = 1; p->D = 1; rc = 0; }else if( sqlite3_stricmp(z,"day")==0 ){ rc = 0; } break; } case '+': case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { double rRounder; int i; for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ rc = 1; break; } if( z[n]==':' ){ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the |
︙ | ︙ | |||
19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 | if( z[0]=='-' ) tx.iJD = -tx.iJD; computeJD(p); clearYMD_HMS_TZ(p); p->iJD += tx.iJD; rc = 0; break; } z += n; while( sqlite3Isspace(*z) ) z++; n = sqlite3Strlen30(z); if( n>10 || n<3 ) break; | > > > | | > | | < | | | < < | | | | | | | | < | | < | < > | | | | > > > > | < | > > < < | 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 | if( z[0]=='-' ) tx.iJD = -tx.iJD; computeJD(p); clearYMD_HMS_TZ(p); p->iJD += tx.iJD; rc = 0; break; } /* If control reaches this point, it means the transformation is ** one of the forms like "+NNN days". */ z += n; while( sqlite3Isspace(*z) ) z++; n = sqlite3Strlen30(z); if( n>10 || n<3 ) break; if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; computeJD(p); rc = 1; rRounder = r<0 ? -0.5 : +0.5; for(i=0; i<ArraySize(aXformType); i++){ if( aXformType[i].nName==n && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit ){ switch( aXformType[i].eType ){ case 1: { /* Special processing to add months */ int x; computeYMD_HMS(p); p->M += (int)r; x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; p->validJD = 0; r -= (int)r; break; } case 2: { /* Special processing to add years */ int y = (int)r; computeYMD_HMS(p); p->Y += y; p->validJD = 0; r -= (int)r; break; } } computeJD(p); p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder); rc = 0; break; } } clearYMD_HMS_TZ(p); break; } default: { break; } |
︙ | ︙ | |||
19394 19395 19396 19397 19398 19399 19400 | */ static int isDate( sqlite3_context *context, int argc, sqlite3_value **argv, DateTime *p ){ | | | < > | > > | 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 | */ static int isDate( sqlite3_context *context, int argc, sqlite3_value **argv, DateTime *p ){ int i, n; const unsigned char *z; int eType; memset(p, 0, sizeof(*p)); if( argc==0 ){ return setDateTimeToCurrent(context, p); } if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT || eType==SQLITE_INTEGER ){ setRawDateNumber(p, sqlite3_value_double(argv[0])); }else{ z = sqlite3_value_text(argv[0]); if( !z || parseDateOrTime(context, (char*)z, p) ){ return 1; } } for(i=1; i<argc; i++){ z = sqlite3_value_text(argv[i]); n = sqlite3_value_bytes(argv[i]); if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1; } computeJD(p); if( p->isError || !validJulianDay(p->iJD) ) return 1; return 0; } /* ** The following routines implement the various date and time functions ** of SQLite. |
︙ | ︙ | |||
20212 20213 20214 20215 20216 20217 20218 | ** is completely recoverable simply by not carrying out the resize. The ** hash table will continue to function normally. So a malloc failure ** during a hash table resize is a benign fault. */ /* #include "sqliteInt.h" */ | | | 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 | ** is completely recoverable simply by not carrying out the resize. The ** hash table will continue to function normally. So a malloc failure ** during a hash table resize is a benign fault. */ /* #include "sqliteInt.h" */ #ifndef SQLITE_UNTESTABLE /* ** Global variables. */ typedef struct BenignMallocHooks BenignMallocHooks; static SQLITE_WSD struct BenignMallocHooks { void (*xBenignBegin)(void); |
︙ | ︙ | |||
20270 20271 20272 20273 20274 20275 20276 | SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){ wsdHooksInit; if( wsdHooks.xBenignEnd ){ wsdHooks.xBenignEnd(); } } | | | 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 | SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){ wsdHooksInit; if( wsdHooks.xBenignEnd ){ wsdHooks.xBenignEnd(); } } #endif /* #ifndef SQLITE_UNTESTABLE */ /************** End of fault.c ***********************************************/ /************** Begin file mem0.c ********************************************/ /* ** 2008 October 28 ** ** The author disclaims copyright to this source code. In place of |
︙ | ︙ | |||
25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 | /* ** Finish off a string by making sure it is zero-terminated. ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ assert( (p->zText==p->zBase)==!isMalloced(p) ); p->zText[p->nChar] = 0; if( p->mxAlloc>0 && !isMalloced(p) ){ | > > > > > > > > > > > < < < < < | < | 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 | /* ** Finish off a string by making sure it is zero-terminated. ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ assert( p->mxAlloc>0 && !isMalloced(p) ); p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); if( p->zText ){ memcpy(p->zText, p->zBase, p->nChar+1); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ setStrAccumError(p, STRACCUM_NOMEM); } return p->zText; } SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ assert( (p->zText==p->zBase)==!isMalloced(p) ); p->zText[p->nChar] = 0; if( p->mxAlloc>0 && !isMalloced(p) ){ return strAccumFinishRealloc(p); } } return p->zText; } /* ** Reset an StrAccum string. Reclaim all malloced memory. |
︙ | ︙ | |||
25748 25749 25750 25751 25752 25753 25754 | (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); sqlite3VXPrintf(&acc, zFormat, ap); | > | | 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 | (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); sqlite3VXPrintf(&acc, zFormat, ap); zBuf[acc.nChar] = 0; return zBuf; } SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ char *z; va_list ap; va_start(ap,zFormat); z = sqlite3_vsnprintf(n, zBuf, zFormat, ap); va_end(ap); |
︙ | ︙ | |||
26457 26458 26459 26460 26461 26462 26463 | wsdPrng.s[wsdPrng.j] = t; t += wsdPrng.s[wsdPrng.i]; *(zBuf++) = wsdPrng.s[t]; }while( --N ); sqlite3_mutex_leave(mutex); } | | | 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 | wsdPrng.s[wsdPrng.j] = t; t += wsdPrng.s[wsdPrng.i]; *(zBuf++) = wsdPrng.s[t]; }while( --N ); sqlite3_mutex_leave(mutex); } #ifndef SQLITE_UNTESTABLE /* ** For testing purposes, we sometimes want to preserve the state of ** PRNG and restore the PRNG to its saved state at a later time, or ** to reset the PRNG to its initial state. These routines accomplish ** those tasks. ** ** The sqlite3_test_control() interface calls these routines to |
︙ | ︙ | |||
26482 26483 26484 26485 26486 26487 26488 | SQLITE_PRIVATE void sqlite3PrngRestoreState(void){ memcpy( &GLOBAL(struct sqlite3PrngType, sqlite3Prng), &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), sizeof(sqlite3Prng) ); } | | | 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 | SQLITE_PRIVATE void sqlite3PrngRestoreState(void){ memcpy( &GLOBAL(struct sqlite3PrngType, sqlite3Prng), &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng), sizeof(sqlite3Prng) ); } #endif /* SQLITE_UNTESTABLE */ /************** End of random.c **********************************************/ /************** Begin file threads.c *****************************************/ /* ** 2012 July 21 ** ** The author disclaims copyright to this source code. In place of |
︙ | ︙ | |||
27340 27341 27342 27343 27344 27345 27346 | ** ** The intent of the integer argument is to let the fault simulator know ** which of multiple sqlite3FaultSim() calls has been hit. ** ** Return whatever integer value the test callback returns, or return ** SQLITE_OK if no test callback is installed. */ | | | 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 | ** ** The intent of the integer argument is to let the fault simulator know ** which of multiple sqlite3FaultSim() calls has been hit. ** ** Return whatever integer value the test callback returns, or return ** SQLITE_OK if no test callback is installed. */ #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE int sqlite3FaultSim(int iTest){ int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; return xCallback ? xCallback(iTest) : SQLITE_OK; } #endif #ifndef SQLITE_OMIT_FLOATING_POINT |
︙ | ︙ | |||
29161 29162 29163 29164 29165 29166 29167 | /* 114 */ "NewRowid" OpHelp("r[P2]=rowid"), /* 115 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"), /* 116 */ "InsertInt" OpHelp("intkey=P3 data=r[P2]"), /* 117 */ "Delete" OpHelp(""), /* 118 */ "ResetCount" OpHelp(""), /* 119 */ "SorterCompare" OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"), /* 120 */ "SorterData" OpHelp("r[P2]=data"), | < | | | | | | | | | | > < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 | /* 114 */ "NewRowid" OpHelp("r[P2]=rowid"), /* 115 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"), /* 116 */ "InsertInt" OpHelp("intkey=P3 data=r[P2]"), /* 117 */ "Delete" OpHelp(""), /* 118 */ "ResetCount" OpHelp(""), /* 119 */ "SorterCompare" OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"), /* 120 */ "SorterData" OpHelp("r[P2]=data"), /* 121 */ "RowData" OpHelp("r[P2]=data"), /* 122 */ "Rowid" OpHelp("r[P2]=rowid"), /* 123 */ "NullRow" OpHelp(""), /* 124 */ "SorterInsert" OpHelp("key=r[P2]"), /* 125 */ "IdxInsert" OpHelp("key=r[P2]"), /* 126 */ "IdxDelete" OpHelp("key=r[P2@P3]"), /* 127 */ "Seek" OpHelp("Move P3 to P1.rowid"), /* 128 */ "IdxRowid" OpHelp("r[P2]=rowid"), /* 129 */ "Destroy" OpHelp(""), /* 130 */ "Clear" OpHelp(""), /* 131 */ "ResetSorter" OpHelp(""), /* 132 */ "Real" OpHelp("r[P2]=P4"), /* 133 */ "CreateIndex" OpHelp("r[P2]=root iDb=P1"), /* 134 */ "CreateTable" OpHelp("r[P2]=root iDb=P1"), /* 135 */ "ParseSchema" OpHelp(""), /* 136 */ "LoadAnalysis" OpHelp(""), /* 137 */ "DropTable" OpHelp(""), /* 138 */ "DropIndex" OpHelp(""), /* 139 */ "DropTrigger" OpHelp(""), /* 140 */ "IntegrityCk" OpHelp(""), /* 141 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"), /* 142 */ "Param" OpHelp(""), /* 143 */ "FkCounter" OpHelp("fkctr[P1]+=P2"), /* 144 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), /* 145 */ "OffsetLimit" OpHelp("if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)"), /* 146 */ "AggStep0" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 147 */ "AggStep" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 148 */ "AggFinal" OpHelp("accum=r[P1] N=P2"), /* 149 */ "Expire" OpHelp(""), /* 150 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"), /* 151 */ "VBegin" OpHelp(""), /* 152 */ "VCreate" OpHelp(""), /* 153 */ "VDestroy" OpHelp(""), /* 154 */ "VOpen" OpHelp(""), /* 155 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"), /* 156 */ "VRename" OpHelp(""), /* 157 */ "Pagecount" OpHelp(""), /* 158 */ "MaxPgcnt" OpHelp(""), /* 159 */ "CursorHint" OpHelp(""), /* 160 */ "Noop" OpHelp(""), /* 161 */ "Explain" OpHelp(""), }; return azName[i]; } #endif /************** End of opcodes.c *********************************************/ /************** Begin file os_unix.c *****************************************/ |
︙ | ︙ | |||
30471 30472 30473 30474 30475 30476 30477 | ** to locate a particular unixInodeInfo object. */ struct unixFileId { dev_t dev; /* Device number */ #if OS_VXWORKS struct vxworksFileId *pId; /* Unique file ID for vxworks. */ #else | > > > > > > > | | 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 | ** to locate a particular unixInodeInfo object. */ struct unixFileId { dev_t dev; /* Device number */ #if OS_VXWORKS struct vxworksFileId *pId; /* Unique file ID for vxworks. */ #else /* We are told that some versions of Android contain a bug that ** sizes ino_t at only 32-bits instead of 64-bits. (See ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c) ** To work around this, always allocate 64-bits for the inode number. ** On small machines that only have 32-bit inodes, this wastes 4 bytes, ** but that should not be a big deal. */ /* WAS: ino_t ino; */ u64 ino; /* Inode number */ #endif }; /* ** An instance of the following structure is allocated for each open ** inode. Or, on LinuxThreads, there is one of these structures for ** each inode opened by each thread. |
︙ | ︙ | |||
30716 30717 30718 30719 30720 30721 30722 | #endif memset(&fileId, 0, sizeof(fileId)); fileId.dev = statbuf.st_dev; #if OS_VXWORKS fileId.pId = pFile->pId; #else | | | 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 | #endif memset(&fileId, 0, sizeof(fileId)); fileId.dev = statbuf.st_dev; #if OS_VXWORKS fileId.pId = pFile->pId; #else fileId.ino = (u64)statbuf.st_ino; #endif pInode = inodeList; while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ pInode = pInode->pNext; } if( pInode==0 ){ pInode = sqlite3_malloc64( sizeof(*pInode) ); |
︙ | ︙ | |||
30750 30751 30752 30753 30754 30755 30756 | */ static int fileHasMoved(unixFile *pFile){ #if OS_VXWORKS return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId; #else struct stat buf; return pFile->pInode!=0 && | | > | 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 | */ static int fileHasMoved(unixFile *pFile){ #if OS_VXWORKS return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId; #else struct stat buf; return pFile->pInode!=0 && (osStat(pFile->zPath, &buf)!=0 || (u64)buf.st_ino!=pFile->pInode->fileId.ino); #endif } /* ** Check a unixFile that is a database. Verify the following: ** |
︙ | ︙ | |||
34922 34923 34924 34925 34926 34927 34928 | ** not searching for a reusable file descriptor are not dire. */ if( 0==osStat(zPath, &sStat) ){ unixInodeInfo *pInode; unixEnterMutex(); pInode = inodeList; while( pInode && (pInode->fileId.dev!=sStat.st_dev | | | 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 | ** not searching for a reusable file descriptor are not dire. */ if( 0==osStat(zPath, &sStat) ){ unixInodeInfo *pInode; unixEnterMutex(); pInode = inodeList; while( pInode && (pInode->fileId.dev!=sStat.st_dev || pInode->fileId.ino!=(u64)sStat.st_ino) ){ pInode = pInode->pNext; } if( pInode ){ UnixUnusedFd **pp; for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); pUnused = *pp; if( pUnused ){ |
︙ | ︙ | |||
43483 43484 43485 43486 43487 43488 43489 | ** Return the value of the iSize parameter specified when Bitvec *p ** was created. */ SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){ return p->iSize; } | | | 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 | ** Return the value of the iSize parameter specified when Bitvec *p ** was created. */ SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){ return p->iSize; } #ifndef SQLITE_UNTESTABLE /* ** Let V[] be an array of unsigned characters sufficient to hold ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. ** Then the following macros can be used to set, clear, or test ** individual bits within V. */ #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) |
︙ | ︙ | |||
43598 43599 43600 43601 43602 43603 43604 | /* Free allocated structure */ bitvec_end: sqlite3_free(pTmpSpace); sqlite3_free(pV); sqlite3BitvecDestroy(pBitvec); return rc; } | | | 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 | /* Free allocated structure */ bitvec_end: sqlite3_free(pTmpSpace); sqlite3_free(pV); sqlite3BitvecDestroy(pBitvec); return rc; } #endif /* SQLITE_UNTESTABLE */ /************** End of bitvec.c **********************************************/ /************** Begin file pcache.c ******************************************/ /* ** 2008 August 05 ** ** The author disclaims copyright to this source code. In place of |
︙ | ︙ | |||
46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 46408 46409 | ** WAL module is using shared-memory, return false. */ SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal); #ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot); #endif #ifdef SQLITE_ENABLE_ZIPVFS /* If the WAL file is not empty, return the number of bytes of content ** stored in each frame (i.e. the db page-size when the WAL was created). */ SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal); | > | 46529 46530 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540 46541 46542 46543 | ** WAL module is using shared-memory, return false. */ SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal); #ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal); #endif #ifdef SQLITE_ENABLE_ZIPVFS /* If the WAL file is not empty, return the number of bytes of content ** stored in each frame (i.e. the db page-size when the WAL was created). */ SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal); |
︙ | ︙ | |||
53797 53798 53799 53800 53801 53802 53803 53804 53805 53806 53807 53808 53809 53810 | if( pPager->pWal ){ sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); }else{ rc = SQLITE_ERROR; } return rc; } #endif /* SQLITE_ENABLE_SNAPSHOT */ #endif /* !SQLITE_OMIT_WAL */ #ifdef SQLITE_ENABLE_ZIPVFS /* ** A read-lock must be held on the pager when this function is called. If ** the pager is in WAL mode and the WAL file currently contains one or more | > > > > > > > > > > > > > > | 53931 53932 53933 53934 53935 53936 53937 53938 53939 53940 53941 53942 53943 53944 53945 53946 53947 53948 53949 53950 53951 53952 53953 53954 53955 53956 53957 53958 | if( pPager->pWal ){ sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); }else{ rc = SQLITE_ERROR; } return rc; } /* ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this ** is not a WAL database, return an error. */ SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager){ int rc; if( pPager->pWal ){ rc = sqlite3WalSnapshotRecover(pPager->pWal); }else{ rc = SQLITE_ERROR; } return rc; } #endif /* SQLITE_ENABLE_SNAPSHOT */ #endif /* !SQLITE_OMIT_WAL */ #ifdef SQLITE_ENABLE_ZIPVFS /* ** A read-lock must be held on the pager when this function is called. If ** the pager is in WAL mode and the WAL file currently contains one or more |
︙ | ︙ | |||
56199 56200 56201 56202 56203 56204 56205 56206 56207 56208 56209 56210 56211 56212 | }else{ assert( mxReadMark<=pWal->hdr.mxFrame ); pWal->readLock = (i16)mxI; } return rc; } /* ** Begin a read transaction on the database. ** ** This routine used to be called sqlite3OpenSnapshot() and with good reason: ** it takes a snapshot of the state of the WAL and wal-index for the current ** instant in time. The current thread will continue to use this snapshot. ** Other threads might append new content to the WAL and wal-index but | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 56347 56348 56349 56350 56351 56352 56353 56354 56355 56356 56357 56358 56359 56360 56361 56362 56363 56364 56365 56366 56367 56368 56369 56370 56371 56372 56373 56374 56375 56376 56377 56378 56379 56380 56381 56382 56383 56384 56385 56386 56387 56388 56389 56390 56391 56392 56393 56394 56395 56396 56397 56398 56399 56400 56401 56402 56403 56404 56405 56406 56407 56408 56409 56410 56411 56412 56413 56414 56415 56416 56417 56418 56419 56420 56421 56422 56423 56424 56425 56426 56427 56428 56429 56430 56431 56432 56433 56434 56435 56436 56437 56438 | }else{ assert( mxReadMark<=pWal->hdr.mxFrame ); pWal->readLock = (i16)mxI; } return rc; } #ifdef SQLITE_ENABLE_SNAPSHOT /* ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted ** variable so that older snapshots can be accessed. To do this, loop ** through all wal frames from nBackfillAttempted to (nBackfill+1), ** comparing their content to the corresponding page with the database ** file, if any. Set nBackfillAttempted to the frame number of the ** first frame for which the wal file content matches the db file. ** ** This is only really safe if the file-system is such that any page ** writes made by earlier checkpointers were atomic operations, which ** is not always true. It is also possible that nBackfillAttempted ** may be left set to a value larger than expected, if a wal frame ** contains content that duplicate of an earlier version of the same ** page. ** ** SQLITE_OK is returned if successful, or an SQLite error code if an ** error occurs. It is not an error if nBackfillAttempted cannot be ** decreased at all. */ SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal){ int rc; assert( pWal->readLock>=0 ); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); int szPage = (int)pWal->szPage; i64 szDb; /* Size of db file in bytes */ rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); if( rc==SQLITE_OK ){ void *pBuf1 = sqlite3_malloc(szPage); void *pBuf2 = sqlite3_malloc(szPage); if( pBuf1==0 || pBuf2==0 ){ rc = SQLITE_NOMEM; }else{ u32 i = pInfo->nBackfillAttempted; for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){ volatile ht_slot *dummy; volatile u32 *aPgno; /* Array of page numbers */ u32 iZero; /* Frame corresponding to aPgno[0] */ u32 pgno; /* Page number in db file */ i64 iDbOff; /* Offset of db file entry */ i64 iWalOff; /* Offset of wal file entry */ rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero); if( rc!=SQLITE_OK ) break; pgno = aPgno[i-iZero]; iDbOff = (i64)(pgno-1) * szPage; if( iDbOff+szPage<=szDb ){ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); if( rc==SQLITE_OK ){ rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); } if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ break; } } pInfo->nBackfillAttempted = i-1; } } sqlite3_free(pBuf1); sqlite3_free(pBuf2); } walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); } return rc; } #endif /* SQLITE_ENABLE_SNAPSHOT */ /* ** Begin a read transaction on the database. ** ** This routine used to be called sqlite3OpenSnapshot() and with good reason: ** it takes a snapshot of the state of the WAL and wal-index for the current ** instant in time. The current thread will continue to use this snapshot. ** Other threads might append new content to the WAL and wal-index but |
︙ | ︙ | |||
56261 56262 56263 56264 56265 56266 56267 | /* It is possible that there is a checkpointer thread running ** concurrent with this code. If this is the case, it may be that the ** checkpointer has already determined that it will checkpoint ** snapshot X, where X is later in the wal file than pSnapshot, but ** has not yet set the pInfo->nBackfillAttempted variable to indicate ** its intent. To avoid the race condition this leads to, ensure that ** there is no checkpointer process by taking a shared CKPT lock | | > > > > | 56487 56488 56489 56490 56491 56492 56493 56494 56495 56496 56497 56498 56499 56500 56501 56502 56503 56504 56505 | /* It is possible that there is a checkpointer thread running ** concurrent with this code. If this is the case, it may be that the ** checkpointer has already determined that it will checkpoint ** snapshot X, where X is later in the wal file than pSnapshot, but ** has not yet set the pInfo->nBackfillAttempted variable to indicate ** its intent. To avoid the race condition this leads to, ensure that ** there is no checkpointer process by taking a shared CKPT lock ** before checking pInfo->nBackfillAttempted. ** ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing ** this already? */ rc = walLockShared(pWal, WAL_CKPT_LOCK); if( rc==SQLITE_OK ){ /* Check that the wal file has not been wrapped. Assuming that it has ** not, also check that no checkpointer has attempted to checkpoint any ** frames beyond pSnapshot->mxFrame. If either of these conditions are ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr |
︙ | ︙ | |||
57213 57214 57215 57216 57217 57218 57219 57220 57221 57222 57223 57224 57225 57226 57227 57228 57229 | /* Create a snapshot object. The content of a snapshot is opaque to ** every other subsystem, so the WAL module can put whatever it needs ** in the object. */ SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ int rc = SQLITE_OK; WalIndexHdr *pRet; assert( pWal->readLock>=0 && pWal->writeLock==0 ); pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); if( pRet==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); *ppSnapshot = (sqlite3_snapshot*)pRet; } | > > > > > | 57443 57444 57445 57446 57447 57448 57449 57450 57451 57452 57453 57454 57455 57456 57457 57458 57459 57460 57461 57462 57463 57464 | /* Create a snapshot object. The content of a snapshot is opaque to ** every other subsystem, so the WAL module can put whatever it needs ** in the object. */ SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ int rc = SQLITE_OK; WalIndexHdr *pRet; static const u32 aZero[4] = { 0, 0, 0, 0 }; assert( pWal->readLock>=0 && pWal->writeLock==0 ); if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ *ppSnapshot = 0; return SQLITE_ERROR; } pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); if( pRet==0 ){ rc = SQLITE_NOMEM_BKPT; }else{ memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); *ppSnapshot = (sqlite3_snapshot*)pRet; } |
︙ | ︙ | |||
58920 58921 58922 58923 58924 58925 58926 | pCur->nKey = sqlite3BtreeIntegerKey(pCur); }else{ /* For an index btree, save the complete key content */ void *pKey; pCur->nKey = sqlite3BtreePayloadSize(pCur); pKey = sqlite3Malloc( pCur->nKey ); if( pKey ){ | | | 59155 59156 59157 59158 59159 59160 59161 59162 59163 59164 59165 59166 59167 59168 59169 | pCur->nKey = sqlite3BtreeIntegerKey(pCur); }else{ /* For an index btree, save the complete key content */ void *pKey; pCur->nKey = sqlite3BtreePayloadSize(pCur); pKey = sqlite3Malloc( pCur->nKey ); if( pKey ){ rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); if( rc==SQLITE_OK ){ pCur->pKey = pKey; }else{ sqlite3_free(pKey); } }else{ rc = SQLITE_NOMEM_BKPT; |
︙ | ︙ | |||
62939 62940 62941 62942 62943 62944 62945 | if( rc==SQLITE_OK && amt>0 ){ return SQLITE_CORRUPT_BKPT; } return rc; } /* | | | > > > > | | > | | < < < < < < < < < | < < < < > | 63174 63175 63176 63177 63178 63179 63180 63181 63182 63183 63184 63185 63186 63187 63188 63189 63190 63191 63192 63193 63194 63195 63196 63197 63198 63199 63200 63201 63202 63203 63204 63205 63206 63207 63208 63209 63210 63211 63212 63213 63214 63215 63216 63217 63218 63219 63220 63221 63222 63223 63224 63225 63226 63227 | if( rc==SQLITE_OK && amt>0 ){ return SQLITE_CORRUPT_BKPT; } return rc; } /* ** Read part of the payload for the row at which that cursor pCur is currently ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer ** begins at "offset". ** ** pCur can be pointing to either a table or an index b-tree. ** If pointing to a table btree, then the content section is read. If ** pCur is pointing to an index b-tree then the key section is read. ** ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the ** cursor might be invalid or might need to be restored before being read. ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); } #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ int rc; if ( pCur->eState==CURSOR_INVALID ){ return SQLITE_ABORT; } assert( cursorOwnsBtShared(pCur) ); rc = restoreCursorPosition(pCur); if( rc==SQLITE_OK ){ assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); rc = accessPayload(pCur, offset, amt, pBuf, 0); } return rc; } #endif /* SQLITE_OMIT_INCRBLOB */ /* ** Return a pointer to payload information from the entry that the ** pCur cursor is pointing to. The pointer is to the beginning of ** the key if index btrees (pPage->intKey==0) and is the data for ** table btrees (pPage->intKey==1). The number of bytes of available ** key/data is written into *pAmt. If *pAmt==0, then the value |
︙ | ︙ | |||
69750 69751 69752 69753 69754 69755 69756 | } return SQLITE_OK; } /* ** Move data out of a btree key or data field and into a Mem structure. | | < | < < | < < < < | | 69978 69979 69980 69981 69982 69983 69984 69985 69986 69987 69988 69989 69990 69991 69992 69993 69994 69995 69996 69997 69998 69999 70000 70001 70002 70003 70004 70005 70006 70007 70008 70009 70010 70011 70012 70013 70014 70015 70016 70017 70018 70019 70020 70021 70022 70023 70024 70025 70026 70027 70028 70029 70030 70031 70032 70033 70034 70035 70036 70037 70038 70039 70040 70041 70042 70043 70044 70045 70046 70047 70048 70049 70050 | } return SQLITE_OK; } /* ** Move data out of a btree key or data field and into a Mem structure. ** The data is payload from the entry that pCur is currently pointing ** to. offset and amt determine what portion of the data or key to retrieve. ** The result is written into the pMem element. ** ** The pMem object must have been initialized. This routine will use ** pMem->zMalloc to hold the content from the btree, if possible. New ** pMem->zMalloc space will be allocated if necessary. The calling routine ** is responsible for making sure that the pMem object is eventually ** destroyed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ static SQLITE_NOINLINE int vdbeMemFromBtreeResize( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ int rc; pMem->flags = MEM_Null; if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); if( rc==SQLITE_OK ){ pMem->z[amt] = 0; pMem->z[amt+1] = 0; pMem->flags = MEM_Blob|MEM_Term; pMem->n = (int)amt; }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } SQLITE_PRIVATE int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ char *zData; /* Data from the btree layer */ u32 available = 0; /* Number of bytes available on the local btree page */ int rc = SQLITE_OK; /* Return code */ assert( sqlite3BtreeCursorIsValid(pCur) ); assert( !VdbeMemDynamic(pMem) ); /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() ** that both the BtShared and database handle mutexes are held. */ assert( (pMem->flags & MEM_RowSet)==0 ); zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); assert( zData!=0 ); if( offset+amt<=available ){ pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; pMem->n = (int)amt; }else{ rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); } return rc; } /* ** The pVal argument is known to be a value other than NULL. |
︙ | ︙ | |||
70845 70846 70847 70848 70849 70850 70851 | int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); | > > | > > | 71066 71067 71068 71069 71070 71071 71072 71073 71074 71075 71076 71077 71078 71079 71080 71081 71082 71083 71084 | int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); if( p->db->mallocFailed==0 ){ VdbeOp *pOp = &p->aOp[addr]; pOp->p4type = P4_INT32; pOp->p4.i = p4; } return addr; } /* Insert the end of a co-routine */ SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); |
︙ | ︙ | |||
71356 71357 71358 71359 71360 71361 71362 | } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { sqlite3ExprDelete(db, (Expr*)p4); break; } #endif | < < < < | 71581 71582 71583 71584 71585 71586 71587 71588 71589 71590 71591 71592 71593 71594 | } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { sqlite3ExprDelete(db, (Expr*)p4); break; } #endif case P4_FUNCDEF: { freeEphemeralFunction(db, (FuncDef*)p4); break; } case P4_MEM: { if( db->pnBytesFreed==0 ){ sqlite3ValueFree((sqlite3_value*)p4); |
︙ | ︙ | |||
71503 71504 71505 71506 71507 71508 71509 71510 71511 71512 71513 71514 71515 71516 71517 71518 | }else if( zP4!=0 ){ assert( n<0 ); pOp->p4.p = (void*)zP4; pOp->p4type = (signed char)n; if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); } } /* ** Set the P4 on the most recently added opcode to the KeyInfo for the ** index given. */ SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ Vdbe *v = pParse->pVdbe; assert( v!=0 ); assert( pIdx!=0 ); | > > > > > > > > > > > > > > > > > > > > > > > > > > | | | 71724 71725 71726 71727 71728 71729 71730 71731 71732 71733 71734 71735 71736 71737 71738 71739 71740 71741 71742 71743 71744 71745 71746 71747 71748 71749 71750 71751 71752 71753 71754 71755 71756 71757 71758 71759 71760 71761 71762 71763 71764 71765 71766 71767 71768 71769 71770 71771 71772 71773 71774 | }else if( zP4!=0 ){ assert( n<0 ); pOp->p4.p = (void*)zP4; pOp->p4type = (signed char)n; if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); } } /* ** Change the P4 operand of the most recently coded instruction ** to the value defined by the arguments. This is a high-speed ** version of sqlite3VdbeChangeP4(). ** ** The P4 operand must not have been previously defined. And the new ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of ** those cases. */ SQLITE_PRIVATE void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ VdbeOp *pOp; assert( n!=P4_INT32 && n!=P4_VTAB ); assert( n<=0 ); if( p->db->mallocFailed ){ freeP4(p->db, n, pP4); }else{ assert( pP4!=0 ); assert( p->nOp>0 ); pOp = &p->aOp[p->nOp-1]; assert( pOp->p4type==P4_NOTUSED ); pOp->p4type = n; pOp->p4.p = pP4; } } /* ** Set the P4 on the most recently added opcode to the KeyInfo for the ** index given. */ SQLITE_PRIVATE void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ Vdbe *v = pParse->pVdbe; KeyInfo *pKeyInfo; assert( v!=0 ); assert( pIdx!=0 ); pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); } #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS /* ** Change the comment on the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens |
︙ | ︙ | |||
71803 71804 71805 71806 71807 71808 71809 | break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } | | | 72050 72051 72052 72053 72054 72055 72056 72057 72058 72059 72060 72061 72062 72063 72064 | break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) case P4_FUNCCTX: { FuncDef *pDef = pOp->p4.pCtx->pFunc; sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } #endif case P4_INT64: { |
︙ | ︙ | |||
74897 74898 74899 74900 74901 74902 74903 | */ assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ sqlite3VdbeMemInit(&m, db, 0); | | | 75144 75145 75146 75147 75148 75149 75150 75151 75152 75153 75154 75155 75156 75157 75158 | */ assert( sqlite3BtreeCursorIsValid(pCur) ); nCellKey = sqlite3BtreePayloadSize(pCur); assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); /* Read in the complete content of the index entry */ sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); if( rc ){ return rc; } /* The index entry must begin with a header size */ (void)getVarint32((u8*)m.z, szHdr); testcase( szHdr==3 ); |
︙ | ︙ | |||
74977 74978 74979 74980 74981 74982 74983 | /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } sqlite3VdbeMemInit(&m, db, 0); | | | 75224 75225 75226 75227 75228 75229 75230 75231 75232 75233 75234 75235 75236 75237 75238 | /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } sqlite3VdbeMemInit(&m, db, 0); rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); if( rc ){ return rc; } *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); sqlite3VdbeMemRelease(&m); return SQLITE_OK; } |
︙ | ︙ | |||
76866 76867 76868 76869 76870 76871 76872 | if( p->pUnpacked==0 ){ u32 nRec; u8 *aRec; nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); aRec = sqlite3DbMallocRaw(db, nRec); if( !aRec ) goto preupdate_old_out; | | | 77113 77114 77115 77116 77117 77118 77119 77120 77121 77122 77123 77124 77125 77126 77127 | if( p->pUnpacked==0 ){ u32 nRec; u8 *aRec; nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); aRec = sqlite3DbMallocRaw(db, nRec); if( !aRec ) goto preupdate_old_out; rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); if( rc==SQLITE_OK ){ p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); if( !p->pUnpacked ) rc = SQLITE_NOMEM; } if( rc!=SQLITE_OK ){ sqlite3DbFree(db, aRec); goto preupdate_old_out; |
︙ | ︙ | |||
77383 77384 77385 77386 77387 77388 77389 | SQLITE_API int sqlite3_found_count = 0; #endif /* ** Test a register to see if it exceeds the current maximum blob size. ** If it does, record the new maximum blob size. */ | | | 77630 77631 77632 77633 77634 77635 77636 77637 77638 77639 77640 77641 77642 77643 77644 | SQLITE_API int sqlite3_found_count = 0; #endif /* ** Test a register to see if it exceeds the current maximum blob size. ** If it does, record the new maximum blob size. */ #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) #else # define UPDATE_MAX_BLOBSIZE(P) #endif /* ** Invoke the VDBE coverage callback, if that callback is defined. This |
︙ | ︙ | |||
79831 79832 79833 79834 79835 79836 79837 | assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pC!=0 ); assert( p2<pC->nField ); aOffset = pC->aOffset; assert( pC->eCurType!=CURTYPE_VTAB ); assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); assert( pC->eCurType!=CURTYPE_SORTER ); | < > | 80078 80079 80080 80081 80082 80083 80084 80085 80086 80087 80088 80089 80090 80091 80092 80093 80094 80095 80096 80097 80098 80099 80100 80101 80102 80103 80104 80105 80106 80107 | assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pC!=0 ); assert( p2<pC->nField ); aOffset = pC->aOffset; assert( pC->eCurType!=CURTYPE_VTAB ); assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); assert( pC->eCurType!=CURTYPE_SORTER ); if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ if( pC->nullRow ){ if( pC->eCurType==CURTYPE_PSEUDO ){ assert( pC->uc.pseudoTableReg>0 ); pReg = &aMem[pC->uc.pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = avail = pReg->n; pC->aRow = (u8*)pReg->z; }else{ sqlite3VdbeMemSetNull(pDest); goto op_column_out; } }else{ pCrsr = pC->uc.pCursor; assert( pC->eCurType==CURTYPE_BTREE ); assert( pCrsr ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail); assert( avail<=65536 ); /* Maximum page size is 64KiB */ if( pC->payloadSize <= (u32)avail ){ |
︙ | ︙ | |||
79910 79911 79912 79913 79914 79915 79916 | /* If there is more header available for parsing in the record, try ** to extract additional fields up through the p2+1-th field */ if( pC->iHdrOffset<aOffset[0] ){ /* Make sure zData points to enough of the record to cover the header. */ if( pC->aRow==0 ){ memset(&sMem, 0, sizeof(sMem)); | | | 80157 80158 80159 80160 80161 80162 80163 80164 80165 80166 80167 80168 80169 80170 80171 | /* If there is more header available for parsing in the record, try ** to extract additional fields up through the p2+1-th field */ if( pC->iHdrOffset<aOffset[0] ){ /* Make sure zData points to enough of the record to cover the header. */ if( pC->aRow==0 ){ memset(&sMem, 0, sizeof(sMem)); rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); if( rc!=SQLITE_OK ) goto abort_due_to_error; zData = (u8*)sMem.z; }else{ zData = pC->aRow; } /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ |
︙ | ︙ | |||
80023 80024 80025 80026 80027 80028 80029 | ** 2. the length(X) function if X is a blob, and ** 3. if the content length is zero. ** So we might as well use bogus content rather than reading ** content from disk. */ static u8 aZero[8]; /* This is the bogus content */ sqlite3VdbeSerialGet(aZero, t, pDest); }else{ | | < | 80270 80271 80272 80273 80274 80275 80276 80277 80278 80279 80280 80281 80282 80283 80284 | ** 2. the length(X) function if X is a blob, and ** 3. if the content length is zero. ** So we might as well use bogus content rather than reading ** content from disk. */ static u8 aZero[8]; /* This is the bogus content */ sqlite3VdbeSerialGet(aZero, t, pDest); }else{ rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); if( rc!=SQLITE_OK ) goto abort_due_to_error; sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); pDest->flags &= ~MEM_Ephem; } } op_column_out: |
︙ | ︙ | |||
82000 82001 82002 82003 82004 82005 82006 | p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; break; } /* Opcode: RowData P1 P2 * * * ** Synopsis: r[P2]=data ** | | > < < < < < < | < < | < < < < | | 82246 82247 82248 82249 82250 82251 82252 82253 82254 82255 82256 82257 82258 82259 82260 82261 82262 82263 82264 82265 82266 82267 82268 82269 82270 82271 82272 82273 82274 82275 82276 82277 82278 82279 82280 82281 82282 82283 82284 82285 82286 82287 82288 82289 | p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; break; } /* Opcode: RowData P1 P2 * * * ** Synopsis: r[P2]=data ** ** Write into register P2 the complete row content for the row at ** which cursor P1 is currently pointing. ** There is no interpretation of the data. ** It is just copied onto the P2 register exactly as ** it is found in the database file. ** ** If cursor P1 is an index, then the content is the key of the row. ** If cursor P2 is a table, then the content extracted is the data. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ case OP_RowData: { VdbeCursor *pC; BtCursor *pCrsr; u32 n; pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( isSorter(pC)==0 ); assert( pC->nullRow==0 ); assert( pC->uc.pCursor!=0 ); pCrsr = pC->uc.pCursor; /* The OP_RowData opcodes always follow OP_NotExists or ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions ** that might invalidate the cursor. ** If this where not the case, on of the following assert()s ** would fail. Should this ever change (because of changes in the code ** generator) then the fix would be to insert a call to ** sqlite3VdbeCursorMoveto(). */ |
︙ | ︙ | |||
82065 82066 82067 82068 82069 82070 82071 | } testcase( n==0 ); if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ goto no_mem; } pOut->n = n; MemSetTypeFlag(pOut, MEM_Blob); | < | < < < | 82300 82301 82302 82303 82304 82305 82306 82307 82308 82309 82310 82311 82312 82313 82314 | } testcase( n==0 ); if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ goto no_mem; } pOut->n = n; MemSetTypeFlag(pOut, MEM_Blob); rc = sqlite3BtreePayload(pCrsr, 0, n, pOut->z); if( rc ) goto abort_due_to_error; pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ UPDATE_MAX_BLOBSIZE(pOut); REGISTER_TRACE(pOp->p2, pOut); break; } |
︙ | ︙ | |||
83399 83400 83401 83402 83403 83404 83405 | } break; } /* Opcode: DecrJumpZero P1 P2 * * * ** Synopsis: if (--r[P1])==0 goto P2 ** | | | | | 83630 83631 83632 83633 83634 83635 83636 83637 83638 83639 83640 83641 83642 83643 83644 83645 83646 83647 83648 83649 83650 | } break; } /* Opcode: DecrJumpZero P1 P2 * * * ** Synopsis: if (--r[P1])==0 goto P2 ** ** Register P1 must hold an integer. Decrement the value in P1 ** and jump to P2 if the new value is exactly zero. */ case OP_DecrJumpZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ) goto jump_to_p2; break; } /* Opcode: AggStep0 * P2 P3 P4 P5 |
︙ | ︙ | |||
84852 84853 84854 84855 84856 84857 84858 | return rc; } /* ** Read data from a blob handle. */ SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){ | | | 85083 85084 85085 85086 85087 85088 85089 85090 85091 85092 85093 85094 85095 85096 85097 | return rc; } /* ** Read data from a blob handle. */ SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){ return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreePayloadChecked); } /* ** Write data to a blob handle. */ SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){ return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData); |
︙ | ︙ | |||
90233 90234 90235 90236 90237 90238 90239 | ** sqlite3ExprDelete() specifically skips the recursive delete of ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector ** can be attached to pRight to cause this node to take ownership of ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes ** with the same pLeft pointer to the pVector, but only one of them ** will own the pVector. */ | | | 90464 90465 90466 90467 90468 90469 90470 90471 90472 90473 90474 90475 90476 90477 90478 | ** sqlite3ExprDelete() specifically skips the recursive delete of ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector ** can be attached to pRight to cause this node to take ownership of ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes ** with the same pLeft pointer to the pVector, but only one of them ** will own the pVector. */ pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); if( pRet ){ pRet->iColumn = iField; pRet->pLeft = pVector; } assert( pRet==0 || pRet->iTable==0 ); }else{ if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; |
︙ | ︙ | |||
90625 90626 90627 90628 90629 90630 90631 | ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, ** free the subtrees and return NULL. */ SQLITE_PRIVATE Expr *sqlite3PExpr( Parse *pParse, /* Parsing context */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ | | < > > > | > > | 90856 90857 90858 90859 90860 90861 90862 90863 90864 90865 90866 90867 90868 90869 90870 90871 90872 90873 90874 90875 90876 90877 90878 90879 90880 90881 90882 | ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, ** free the subtrees and return NULL. */ SQLITE_PRIVATE Expr *sqlite3PExpr( Parse *pParse, /* Parsing context */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ Expr *pRight /* Right operand */ ){ Expr *p; if( op==TK_AND && pParse->nErr==0 ){ /* Take advantage of short-circuit false optimization for AND */ p = sqlite3ExprAnd(pParse->db, pLeft, pRight); }else{ p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); if( p ){ memset(p, 0, sizeof(Expr)); p->op = op & TKFLG_MASK; p->iAgg = -1; } sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); } if( p ) { sqlite3ExprCheckHeight(pParse, p->nHeight); } return p; } |
︙ | ︙ | |||
92156 92157 92158 92159 92160 92161 92162 92163 92164 92165 92166 92167 92168 92169 | ** "sub-select returns N columns - expected M" */ SQLITE_PRIVATE void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ const char *zFmt = "sub-select returns %d columns - expected %d"; sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); } #endif /* ** Generate code for scalar subqueries used as a subquery expression, EXISTS, ** or IN operators. Examples: ** ** (SELECT a FROM b) -- subquery ** EXISTS (SELECT a FROM b) -- EXISTS subquery | > > > > > > > > > > > > > > > > > > > > > > | 92391 92392 92393 92394 92395 92396 92397 92398 92399 92400 92401 92402 92403 92404 92405 92406 92407 92408 92409 92410 92411 92412 92413 92414 92415 92416 92417 92418 92419 92420 92421 92422 92423 92424 92425 92426 | ** "sub-select returns N columns - expected M" */ SQLITE_PRIVATE void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ const char *zFmt = "sub-select returns %d columns - expected %d"; sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); } #endif /* ** Expression pExpr is a vector that has been used in a context where ** it is not permitted. If pExpr is a sub-select vector, this routine ** loads the Parse object with a message of the form: ** ** "sub-select returns N columns - expected 1" ** ** Or, if it is a regular scalar vector: ** ** "row value misused" */ SQLITE_PRIVATE void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ #ifndef SQLITE_OMIT_SUBQUERY if( pExpr->flags & EP_xIsSelect ){ sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); }else #endif { sqlite3ErrorMsg(pParse, "row value misused"); } } /* ** Generate code for scalar subqueries used as a subquery expression, EXISTS, ** or IN operators. Examples: ** ** (SELECT a FROM b) -- subquery ** EXISTS (SELECT a FROM b) -- EXISTS subquery |
︙ | ︙ | |||
92439 92440 92441 92442 92443 92444 92445 | int nVector = sqlite3ExprVectorSize(pIn->pLeft); if( (pIn->flags & EP_xIsSelect) ){ if( nVector!=pIn->x.pSelect->pEList->nExpr ){ sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); return 1; } }else if( nVector!=1 ){ | < < < | < | 92696 92697 92698 92699 92700 92701 92702 92703 92704 92705 92706 92707 92708 92709 92710 | int nVector = sqlite3ExprVectorSize(pIn->pLeft); if( (pIn->flags & EP_xIsSelect) ){ if( nVector!=pIn->x.pSelect->pEList->nExpr ){ sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); return 1; } }else if( nVector!=1 ){ sqlite3VectorErrorMsg(pParse, pIn->pLeft); return 1; } return 0; } #endif #ifndef SQLITE_OMIT_SUBQUERY |
︙ | ︙ | |||
92748 92749 92750 92751 92752 92753 92754 | sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3DecOrHexToI64(z, &value); | | < < < | > > > | 93001 93002 93003 93004 93005 93006 93007 93008 93009 93010 93011 93012 93013 93014 93015 93016 93017 93018 93019 93020 93021 93022 93023 93024 93025 93026 93027 93028 93029 93030 | sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3DecOrHexToI64(z, &value); if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){ #ifdef SQLITE_OMIT_FLOATING_POINT sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); #else #ifndef SQLITE_OMIT_HEX_INTEGER if( sqlite3_strnicmp(z,"0x",2)==0 ){ sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); }else #endif { codeReal(v, z, negFlag, iMem); } #endif }else{ if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); } } } /* ** Erase column-cache entry number i */ |
︙ | ︙ | |||
93102 93103 93104 93105 93106 93107 93108 | if( p->op==TK_SELECT ){ iResult = sqlite3CodeSubselect(pParse, p, 0, 0); }else{ int i; iResult = pParse->nMem+1; pParse->nMem += nResult; for(i=0; i<nResult; i++){ | | | 93355 93356 93357 93358 93359 93360 93361 93362 93363 93364 93365 93366 93367 93368 93369 | if( p->op==TK_SELECT ){ iResult = sqlite3CodeSubselect(pParse, p, 0, 0); }else{ int i; iResult = pParse->nMem+1; pParse->nMem += nResult; for(i=0; i<nResult; i++){ sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); } } } return iResult; } |
︙ | ︙ | |||
93216 93217 93218 93219 93220 93221 93222 | assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); if( pExpr->u.zToken[1]!=0 ){ assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); | | | 93469 93470 93471 93472 93473 93474 93475 93476 93477 93478 93479 93480 93481 93482 93483 | assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); if( pExpr->u.zToken[1]!=0 ){ assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); sqlite3VdbeAppendP4(v, pParse->azVar[pExpr->iColumn-1], P4_STATIC); } return target; } case TK_REGISTER: { return pExpr->iTable; } #ifndef SQLITE_OMIT_CAST |
︙ | ︙ | |||
93973 93974 93975 93976 93977 93978 93979 93980 93981 93982 93983 93984 93985 93986 | compRight.op = TK_LE; compRight.pLeft = &exprX; compRight.pRight = pExpr->x.pList->a[1].pExpr; exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); if( xJump ){ xJump(pParse, &exprAnd, dest, jumpIfNull); }else{ exprX.flags |= EP_FromJoin; sqlite3ExprCodeTarget(pParse, &exprAnd, dest); } sqlite3ReleaseTempReg(pParse, regFree1); /* Ensure adequate test coverage */ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); | > > > > > | 94226 94227 94228 94229 94230 94231 94232 94233 94234 94235 94236 94237 94238 94239 94240 94241 94242 94243 94244 | compRight.op = TK_LE; compRight.pLeft = &exprX; compRight.pRight = pExpr->x.pList->a[1].pExpr; exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); if( xJump ){ xJump(pParse, &exprAnd, dest, jumpIfNull); }else{ /* Mark the expression is being from the ON or USING clause of a join ** so that the sqlite3ExprCodeTarget() routine will not attempt to move ** it into the Parse.pConstExpr list. We should use a new bit for this, ** for clarity, but we are out of bits in the Expr.flags field so we ** have to reuse the EP_FromJoin bit. Bummer. */ exprX.flags |= EP_FromJoin; sqlite3ExprCodeTarget(pParse, &exprAnd, dest); } sqlite3ReleaseTempReg(pParse, regFree1); /* Ensure adequate test coverage */ testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); |
︙ | ︙ | |||
103463 103464 103465 103466 103467 103468 103469 | ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 ** becomes: ** DELETE FROM table_a WHERE rowid IN ( ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 ** ); */ | | | | | 103721 103722 103723 103724 103725 103726 103727 103728 103729 103730 103731 103732 103733 103734 103735 103736 103737 103738 103739 103740 103741 103742 103743 103744 103745 103746 103747 103748 103749 103750 103751 103752 103753 103754 103755 | ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 ** becomes: ** DELETE FROM table_a WHERE rowid IN ( ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1 ** ); */ pSelectRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0); if( pSelectRowid == 0 ) goto limit_where_cleanup; pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid); if( pEList == 0 ) goto limit_where_cleanup; /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree ** and the SELECT subtree. */ pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0); if( pSelectSrc == 0 ) { sqlite3ExprListDelete(pParse->db, pEList); goto limit_where_cleanup; } /* generate the SELECT expression tree. */ pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0, pOrderBy,0,pLimit,pOffset); if( pSelect == 0 ) return 0; /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */ pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0); pInClause = pWhereRowid ? sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0) : 0; sqlite3PExprAddSelect(pParse, pInClause, pSelect); return pInClause; limit_where_cleanup: sqlite3ExprDelete(pParse->db, pWhere); sqlite3ExprListDelete(pParse->db, pOrderBy); sqlite3ExprDelete(pParse->db, pLimit); |
︙ | ︙ | |||
103794 103795 103796 103797 103798 103799 103800 | if( !IsVirtual(pTab) && aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 || pTab->pSelect!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); VdbeCoverage(v); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v); | | | 104052 104053 104054 104055 104056 104057 104058 104059 104060 104061 104062 104063 104064 104065 104066 | if( !IsVirtual(pTab) && aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 || pTab->pSelect!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); VdbeCoverage(v); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowData, iEphCur, iKey); assert( nKey==0 ); /* OP_Found will use a composite key */ }else{ addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey); VdbeCoverage(v); assert( nKey==1 ); } |
︙ | ︙ | |||
104011 104012 104013 104014 104015 104016 104017 | ** the update-hook is not invoked for rows removed by REPLACE, but the ** pre-update-hook is. */ if( pTab->pSelect==0 ){ u8 p5 = 0; sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek); sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0)); | | | 104269 104270 104271 104272 104273 104274 104275 104276 104277 104278 104279 104280 104281 104282 104283 | ** the update-hook is not invoked for rows removed by REPLACE, but the ** pre-update-hook is. */ if( pTab->pSelect==0 ){ u8 p5 = 0; sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek); sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0)); sqlite3VdbeAppendP4(v, (char*)pTab, P4_TABLE); if( eMode!=ONEPASS_OFF ){ sqlite3VdbeChangeP5(v, OPFLAG_AUXDELETE); } if( iIdxNoSeek>=0 ){ sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek); } if( eMode==ONEPASS_MULTI ) p5 |= OPFLAG_SAVEPOSITION; |
︙ | ︙ | |||
104788 104789 104790 104791 104792 104793 104794 | ** case. Thus 'a' LIKE 'A' would be true. */ static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator ** is case sensitive causing 'a' LIKE 'A' to be false */ static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; /* | > > > > > > > | | < > > > > | 105046 105047 105048 105049 105050 105051 105052 105053 105054 105055 105056 105057 105058 105059 105060 105061 105062 105063 105064 105065 105066 105067 105068 105069 105070 105071 105072 | ** case. Thus 'a' LIKE 'A' would be true. */ static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator ** is case sensitive causing 'a' LIKE 'A' to be false */ static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; /* ** Possible error returns from patternMatch() */ #define SQLITE_MATCH 0 #define SQLITE_NOMATCH 1 #define SQLITE_NOWILDCARDMATCH 2 /* ** Compare two UTF-8 strings for equality where the first string is ** a GLOB or LIKE expression. Return values: ** ** SQLITE_MATCH: Match ** SQLITE_NOMATCH: No match ** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards. ** ** Globbing rules: ** ** '*' Matches any sequence of zero or more characters. ** ** '?' Matches exactly one character. ** |
︙ | ︙ | |||
104841 104842 104843 104844 104845 104846 104847 | while( (c = Utf8Read(zPattern))!=0 ){ if( c==matchAll ){ /* Match "*" */ /* Skip over multiple "*" characters in the pattern. If there ** are also "?" characters, skip those as well, but consume a ** single character of the input string for each "?" skipped */ while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){ if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ | | | | | | > | | > | > > | > | | | | 105109 105110 105111 105112 105113 105114 105115 105116 105117 105118 105119 105120 105121 105122 105123 105124 105125 105126 105127 105128 105129 105130 105131 105132 105133 105134 105135 105136 105137 105138 105139 105140 105141 105142 105143 105144 105145 105146 105147 105148 105149 105150 105151 105152 105153 105154 105155 105156 105157 105158 105159 105160 105161 105162 105163 105164 105165 105166 105167 105168 105169 105170 105171 105172 105173 105174 105175 105176 105177 105178 105179 105180 105181 105182 105183 105184 105185 105186 105187 105188 | while( (c = Utf8Read(zPattern))!=0 ){ if( c==matchAll ){ /* Match "*" */ /* Skip over multiple "*" characters in the pattern. If there ** are also "?" characters, skip those as well, but consume a ** single character of the input string for each "?" skipped */ while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){ if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ return SQLITE_NOWILDCARDMATCH; } } if( c==0 ){ return SQLITE_MATCH; /* "*" at the end of the pattern matches */ }else if( c==matchOther ){ if( pInfo->matchSet==0 ){ c = sqlite3Utf8Read(&zPattern); if( c==0 ) return SQLITE_NOWILDCARDMATCH; }else{ /* "[...]" immediately follows the "*". We have to do a slow ** recursive search in this case, but it is an unusual case. */ assert( matchOther<0x80 ); /* '[' is a single-byte character */ while( *zString ){ int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; SQLITE_SKIP_UTF8(zString); } return SQLITE_NOWILDCARDMATCH; } } /* At this point variable c contains the first character of the ** pattern string past the "*". Search in the input string for the ** first matching character and recursively continue the match from ** that point. ** ** For a case-insensitive search, set variable cx to be the same as ** c but in the other case and search the input string for either ** c or cx. */ if( c<=0x80 ){ u32 cx; int bMatch; if( noCase ){ cx = sqlite3Toupper(c); c = sqlite3Tolower(c); }else{ cx = c; } while( (c2 = *(zString++))!=0 ){ if( c2!=c && c2!=cx ) continue; bMatch = patternCompare(zPattern,zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; } }else{ int bMatch; while( (c2 = Utf8Read(zString))!=0 ){ if( c2!=c ) continue; bMatch = patternCompare(zPattern,zString,pInfo,matchOther); if( bMatch!=SQLITE_NOMATCH ) return bMatch; } } return SQLITE_NOWILDCARDMATCH; } if( c==matchOther ){ if( pInfo->matchSet==0 ){ c = sqlite3Utf8Read(&zPattern); if( c==0 ) return SQLITE_NOMATCH; zEscaped = zPattern; }else{ u32 prior_c = 0; int seen = 0; int invert = 0; c = sqlite3Utf8Read(&zString); if( c==0 ) return SQLITE_NOMATCH; c2 = sqlite3Utf8Read(&zPattern); if( c2=='^' ){ invert = 1; c2 = sqlite3Utf8Read(&zPattern); } if( c2==']' ){ if( c==']' ) seen = 1; |
︙ | ︙ | |||
104925 104926 104927 104928 104929 104930 104931 | seen = 1; } prior_c = c2; } c2 = sqlite3Utf8Read(&zPattern); } if( c2==0 || (seen ^ invert)==0 ){ | | | | | > | | > | | 105198 105199 105200 105201 105202 105203 105204 105205 105206 105207 105208 105209 105210 105211 105212 105213 105214 105215 105216 105217 105218 105219 105220 105221 105222 105223 105224 105225 105226 105227 105228 105229 105230 105231 105232 105233 105234 105235 105236 105237 105238 105239 105240 105241 | seen = 1; } prior_c = c2; } c2 = sqlite3Utf8Read(&zPattern); } if( c2==0 || (seen ^ invert)==0 ){ return SQLITE_NOMATCH; } continue; } } c2 = Utf8Read(zString); if( c==c2 ) continue; if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){ continue; } if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue; return SQLITE_NOMATCH; } return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH; } /* ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and ** non-zero if there is no match. */ SQLITE_API int sqlite3_strglob(const char *zGlobPattern, const char *zString){ return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '['); } /* ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for ** a miss - like strcmp(). */ SQLITE_API int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){ return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc); } /* ** Count the number of times that the LIKE operator (or GLOB which is ** just a variation of LIKE) gets called. This is used for testing ** only. */ |
︙ | ︙ | |||
105033 105034 105035 105036 105037 105038 105039 | }else{ escape = pInfo->matchSet; } if( zA && zB ){ #ifdef SQLITE_TEST sqlite3_like_count++; #endif | | | 105308 105309 105310 105311 105312 105313 105314 105315 105316 105317 105318 105319 105320 105321 105322 | }else{ escape = pInfo->matchSet; } if( zA && zB ){ #ifdef SQLITE_TEST sqlite3_like_count++; #endif sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH); } } /* ** Implementation of the NULLIF(x,y) function. The result is the first ** argument if the arguments are different. The result is NULL if the ** arguments are equal to each other. |
︙ | ︙ | |||
106626 106627 106628 106629 106630 106631 106632 | iCol = pIdx ? pIdx->aiColumn[i] : -1; pLeft = exprTableRegister(pParse, pTab, regData, iCol); iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iCol>=0 ); zCol = pFKey->pFrom->aCol[iCol].zName; pRight = sqlite3Expr(db, TK_ID, zCol); | | | 106901 106902 106903 106904 106905 106906 106907 106908 106909 106910 106911 106912 106913 106914 106915 | iCol = pIdx ? pIdx->aiColumn[i] : -1; pLeft = exprTableRegister(pParse, pTab, regData, iCol); iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iCol>=0 ); zCol = pFKey->pFrom->aCol[iCol].zName; pRight = sqlite3Expr(db, TK_ID, zCol); pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); pWhere = sqlite3ExprAnd(db, pWhere, pEq); } /* If the child table is the same as the parent table, then add terms ** to the WHERE clause that prevent this entry from being scanned. ** The added WHERE clause terms are like this: ** |
︙ | ︙ | |||
106648 106649 106650 106651 106652 106653 106654 | if( pTab==pFKey->pFrom && nIncr>0 ){ Expr *pNe; /* Expression (pLeft != pRight) */ Expr *pLeft; /* Value from parent table row */ Expr *pRight; /* Column ref to child table */ if( HasRowid(pTab) ){ pLeft = exprTableRegister(pParse, pTab, regData, -1); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); | | | | | 106923 106924 106925 106926 106927 106928 106929 106930 106931 106932 106933 106934 106935 106936 106937 106938 106939 106940 106941 106942 106943 106944 106945 106946 106947 106948 106949 106950 | if( pTab==pFKey->pFrom && nIncr>0 ){ Expr *pNe; /* Expression (pLeft != pRight) */ Expr *pLeft; /* Value from parent table row */ Expr *pRight; /* Column ref to child table */ if( HasRowid(pTab) ){ pLeft = exprTableRegister(pParse, pTab, regData, -1); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); }else{ Expr *pEq, *pAll = 0; Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pIdx!=0 ); for(i=0; i<pPk->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; assert( iCol>=0 ); pLeft = exprTableRegister(pParse, pTab, regData, iCol); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); pAll = sqlite3ExprAnd(db, pAll, pEq); } pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); } pWhere = sqlite3ExprAnd(db, pWhere, pNe); } /* Resolve the references in the WHERE clause. */ memset(&sNameContext, 0, sizeof(NameContext)); sNameContext.pSrcList = pSrc; |
︙ | ︙ | |||
107247 107248 107249 107250 107251 107252 107253 | /* Create the expression "OLD.zToCol = zFromCol". It is important ** that the "OLD.zToCol" term is on the LHS of the = operator, so ** that the affinity and collation sequence associated with the ** parent table are used for the comparison. */ pEq = sqlite3PExpr(pParse, TK_EQ, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), | | < | | < | < | | < | 107522 107523 107524 107525 107526 107527 107528 107529 107530 107531 107532 107533 107534 107535 107536 107537 107538 107539 107540 107541 107542 107543 107544 107545 107546 107547 107548 107549 107550 107551 107552 107553 107554 107555 107556 107557 107558 107559 107560 107561 107562 107563 | /* Create the expression "OLD.zToCol = zFromCol". It is important ** that the "OLD.zToCol" term is on the LHS of the = operator, so ** that the affinity and collation sequence associated with the ** parent table are used for the comparison. */ pEq = sqlite3PExpr(pParse, TK_EQ, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) ); pWhere = sqlite3ExprAnd(db, pWhere, pEq); /* For ON UPDATE, construct the next term of the WHEN clause. ** The final WHEN clause will be like this: ** ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) */ if( pChanges ){ pEq = sqlite3PExpr(pParse, TK_IS, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tNew, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) ); pWhen = sqlite3ExprAnd(db, pWhen, pEq); } if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ Expr *pNew; if( action==OE_Cascade ){ pNew = sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tNew, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); }else if( action==OE_SetDflt ){ Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; if( pDflt ){ pNew = sqlite3ExprDup(db, pDflt, 0); }else{ pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); } |
︙ | ︙ | |||
107334 107335 107336 107337 107338 107339 107340 | pStep->zTarget = (char *)&pStep[1]; memcpy((char *)pStep->zTarget, zFrom, nFrom); pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); if( pWhen ){ | | | 107605 107606 107607 107608 107609 107610 107611 107612 107613 107614 107615 107616 107617 107618 107619 | pStep->zTarget = (char *)&pStep[1]; memcpy((char *)pStep->zTarget, zFrom, nFrom); pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); if( pWhen ){ pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); } } /* Re-enable the lookaside buffer, if it was disabled earlier. */ db->lookaside.bDisable--; |
︙ | ︙ | |||
108758 108759 108760 108761 108762 108763 108764 | case OE_Abort: sqlite3MayAbort(pParse); /* Fall through */ case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pTab->aCol[i].zName); | | | > | 109029 109030 109031 109032 109033 109034 109035 109036 109037 109038 109039 109040 109041 109042 109043 109044 109045 | case OE_Abort: sqlite3MayAbort(pParse); /* Fall through */ case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pTab->aCol[i].zName); sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, regNewData+1+i); sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); VdbeCoverage(v); break; } case OE_Ignore: { sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); VdbeCoverage(v); |
︙ | ︙ | |||
108901 108902 108903 108904 108905 108906 108907 | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( HasRowid(pTab) ){ /* This OP_Delete opcode fires the pre-update-hook only. It does ** not modify the b-tree. It is more efficient to let the coming ** OP_Insert replace the existing entry than it is to delete the ** existing entry and then insert a new one. */ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); | | | 109173 109174 109175 109176 109177 109178 109179 109180 109181 109182 109183 109184 109185 109186 109187 | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK if( HasRowid(pTab) ){ /* This OP_Delete opcode fires the pre-update-hook only. It does ** not modify the b-tree. It is more efficient to let the coming ** OP_Insert replace the existing entry than it is to delete the ** existing entry and then insert a new one. */ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ if( pTab->pIndex ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); } } |
︙ | ︙ | |||
109178 109179 109180 109181 109182 109183 109184 | pik_flags |= OPFLAG_APPEND; } if( useSeekResult ){ pik_flags |= OPFLAG_USESEEKRESULT; } sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); if( !pParse->nested ){ | | | 109450 109451 109452 109453 109454 109455 109456 109457 109458 109459 109460 109461 109462 109463 109464 | pik_flags |= OPFLAG_APPEND; } if( useSeekResult ){ pik_flags |= OPFLAG_USESEEKRESULT; } sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); if( !pParse->nested ){ sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } sqlite3VdbeChangeP5(v, pik_flags); } /* ** Allocate cursors for the pTab table and all its indices and generate ** code to open and initialized those cursors. |
︙ | ︙ | |||
109609 109610 109611 109612 109613 109614 109615 | sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); | | | 109881 109882 109883 109884 109885 109886 109887 109888 109889 109890 109891 109892 109893 109894 109895 | sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); if( db->flags & SQLITE_Vacuum ){ /* This INSERT command is part of a VACUUM operation, which guarantees ** that the destination table is empty. If all indexed columns use ** collation sequence BINARY, then it can also be assumed that the ** index will be populated by inserting keys in strictly sorted ** order. In this case, instead of seeking within the b-tree as part ** of every OP_IdxInsert opcode, an OP_Last is added before the |
︙ | ︙ | |||
114818 114819 114820 114821 114822 114823 114824 | assert( pSrc->nSrc>iRight ); assert( pSrc->a[iLeft].pTab ); assert( pSrc->a[iRight].pTab ); pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); | | | 115090 115091 115092 115093 115094 115095 115096 115097 115098 115099 115100 115101 115102 115103 115104 | assert( pSrc->nSrc>iRight ); assert( pSrc->a[iLeft].pTab ); assert( pSrc->a[iRight].pTab ); pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); if( pEq && isOuterJoin ){ ExprSetProperty(pEq, EP_FromJoin); assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(pEq, EP_NoReduce); pEq->iRightJoinTable = (i16)pE2->iTable; } *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); |
︙ | ︙ | |||
116990 116991 116992 116993 116994 116995 116996 | generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); r1 = sqlite3GetTempReg(pParse); | | | 117262 117263 117264 117265 117266 117267 117268 117269 117270 117271 117272 117273 117274 117275 117276 | generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); r1 = sqlite3GetTempReg(pParse); iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, r1); selectInnerLoop(pParse, p, p->pEList, tab1, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); |
︙ | ︙ | |||
117617 117618 117619 117620 117621 117622 117623 | explainComposite(pParse, p->op, iSub1, iSub2, 0); return pParse->nErr!=0; } #endif #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* Forward Declarations */ | | | | > > > > > | > > > > | | | > | | | | | | | | | | | | | | | 117889 117890 117891 117892 117893 117894 117895 117896 117897 117898 117899 117900 117901 117902 117903 117904 117905 117906 117907 117908 117909 117910 117911 117912 117913 117914 117915 117916 117917 117918 117919 117920 117921 117922 117923 117924 117925 117926 117927 117928 117929 117930 117931 117932 117933 117934 117935 117936 117937 117938 117939 117940 117941 117942 117943 117944 117945 117946 117947 117948 117949 117950 117951 117952 117953 117954 117955 117956 117957 117958 117959 117960 117961 117962 117963 117964 117965 117966 117967 117968 117969 117970 117971 117972 117973 117974 117975 117976 117977 117978 117979 117980 117981 117982 117983 117984 117985 117986 117987 117988 117989 117990 117991 117992 | explainComposite(pParse, p->op, iSub1, iSub2, 0); return pParse->nErr!=0; } #endif #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* Forward Declarations */ static void substExprList(Parse*, ExprList*, int, ExprList*); static void substSelect(Parse*, Select *, int, ExprList*, int); /* ** Scan through the expression pExpr. Replace every reference to ** a column in table number iTable with a copy of the iColumn-th ** entry in pEList. (But leave references to the ROWID column ** unchanged.) ** ** This routine is part of the flattening procedure. A subquery ** whose result set is defined by pEList appears as entry in the ** FROM clause of a SELECT such that the VDBE cursor assigned to that ** FORM clause entry is iTable. This routine make the necessary ** changes to pExpr so that it refers directly to the source table ** of the subquery rather the result set of the subquery. */ static Expr *substExpr( Parse *pParse, /* Report errors here */ Expr *pExpr, /* Expr in which substitution occurs */ int iTable, /* Table to be substituted */ ExprList *pEList /* Substitute expressions */ ){ sqlite3 *db = pParse->db; if( pExpr==0 ) return 0; if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else{ Expr *pNew; Expr *pCopy = pEList->a[pExpr->iColumn].pExpr; assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); assert( pExpr->pLeft==0 && pExpr->pRight==0 ); if( sqlite3ExprIsVector(pCopy) ){ sqlite3VectorErrorMsg(pParse, pCopy); }else{ pNew = sqlite3ExprDup(db, pCopy, 0); if( pNew && (pExpr->flags & EP_FromJoin) ){ pNew->iRightJoinTable = pExpr->iRightJoinTable; pNew->flags |= EP_FromJoin; } sqlite3ExprDelete(db, pExpr); pExpr = pNew; } } }else{ pExpr->pLeft = substExpr(pParse, pExpr->pLeft, iTable, pEList); pExpr->pRight = substExpr(pParse, pExpr->pRight, iTable, pEList); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ substSelect(pParse, pExpr->x.pSelect, iTable, pEList, 1); }else{ substExprList(pParse, pExpr->x.pList, iTable, pEList); } } return pExpr; } static void substExprList( Parse *pParse, /* Report errors here */ ExprList *pList, /* List to scan and in which to make substitutes */ int iTable, /* Table to be substituted */ ExprList *pEList /* Substitute values */ ){ int i; if( pList==0 ) return; for(i=0; i<pList->nExpr; i++){ pList->a[i].pExpr = substExpr(pParse, pList->a[i].pExpr, iTable, pEList); } } static void substSelect( Parse *pParse, /* Report errors here */ Select *p, /* SELECT statement in which to make substitutions */ int iTable, /* Table to be replaced */ ExprList *pEList, /* Substitute values */ int doPrior /* Do substitutes on p->pPrior too */ ){ SrcList *pSrc; struct SrcList_item *pItem; int i; if( !p ) return; do{ substExprList(pParse, p->pEList, iTable, pEList); substExprList(pParse, p->pGroupBy, iTable, pEList); substExprList(pParse, p->pOrderBy, iTable, pEList); p->pHaving = substExpr(pParse, p->pHaving, iTable, pEList); p->pWhere = substExpr(pParse, p->pWhere, iTable, pEList); pSrc = p->pSrc; assert( pSrc!=0 ); for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ substSelect(pParse, pItem->pSelect, iTable, pEList, 1); if( pItem->fg.isTabFunc ){ substExprList(pParse, pItem->u1.pFuncArg, iTable, pEList); } } }while( doPrior && (p = p->pPrior)!=0 ); } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
︙ | ︙ | |||
118221 118222 118223 118224 118225 118226 118227 | sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving ); assert( pParent->pGroupBy==0 ); pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); }else{ pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); } | | | 118503 118504 118505 118506 118507 118508 118509 118510 118511 118512 118513 118514 118515 118516 118517 | sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving ); assert( pParent->pGroupBy==0 ); pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); }else{ pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); } substSelect(pParse, pParent, iParent, pSub->pEList, 0); /* The flattened query is distinct if either the inner or the ** outer query is distinct. */ pParent->selFlags |= pSub->selFlags & SF_Distinct; /* |
︙ | ︙ | |||
118295 118296 118297 118298 118299 118300 118301 | ** (5) The WHERE clause expression originates in the ON or USING clause ** of a LEFT JOIN. ** ** Return 0 if no changes are made and non-zero if one or more WHERE clause ** terms are duplicated into the subquery. */ static int pushDownWhereTerms( | | | | | | | 118577 118578 118579 118580 118581 118582 118583 118584 118585 118586 118587 118588 118589 118590 118591 118592 118593 118594 118595 118596 118597 118598 118599 118600 118601 118602 118603 118604 118605 118606 118607 118608 118609 118610 118611 118612 118613 118614 118615 118616 118617 118618 118619 118620 118621 | ** (5) The WHERE clause expression originates in the ON or USING clause ** of a LEFT JOIN. ** ** Return 0 if no changes are made and non-zero if one or more WHERE clause ** terms are duplicated into the subquery. */ static int pushDownWhereTerms( Parse *pParse, /* Parse context (for malloc() and error reporting) */ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ Expr *pWhere, /* The WHERE clause of the outer query */ int iCursor /* Cursor number of the subquery */ ){ Expr *pNew; int nChng = 0; Select *pX; /* For looping over compound SELECTs in pSubq */ if( pWhere==0 ) return 0; for(pX=pSubq; pX; pX=pX->pPrior){ if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ testcase( pX->selFlags & SF_Aggregate ); testcase( pX->selFlags & SF_Recursive ); testcase( pX!=pSubq ); return 0; /* restrictions (1) and (2) */ } } if( pSubq->pLimit!=0 ){ return 0; /* restriction (3) */ } while( pWhere->op==TK_AND ){ nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); pWhere = pWhere->pLeft; } if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ nChng++; while( pSubq ){ pNew = sqlite3ExprDup(pParse->db, pWhere, 0); pNew = substExpr(pParse, pNew, iCursor, pSubq->pEList); pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); pSubq = pSubq->pPrior; } } return nChng; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
︙ | ︙ | |||
118955 118956 118957 118958 118959 118960 118961 | } pRight = sqlite3Expr(db, TK_ID, zName); zColname = zName; zToFree = 0; if( longNames || pTabList->nSrc>1 ){ Expr *pLeft; pLeft = sqlite3Expr(db, TK_ID, zTabName); | | | | 119237 119238 119239 119240 119241 119242 119243 119244 119245 119246 119247 119248 119249 119250 119251 119252 119253 119254 | } pRight = sqlite3Expr(db, TK_ID, zName); zColname = zName; zToFree = 0; if( longNames || pTabList->nSrc>1 ){ Expr *pLeft; pLeft = sqlite3Expr(db, TK_ID, zTabName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); if( zSchemaName ){ pLeft = sqlite3Expr(db, TK_ID, zSchemaName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); } if( longNames ){ zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); zToFree = zColname; } }else{ pExpr = pRight; |
︙ | ︙ | |||
119195 119196 119197 119198 119199 119200 119201 | static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pF; for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ ExprList *pList = pF->pExpr->x.pList; assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); | | | | 119477 119478 119479 119480 119481 119482 119483 119484 119485 119486 119487 119488 119489 119490 119491 119492 | static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; struct AggInfo_func *pF; for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ ExprList *pList = pF->pExpr->x.pList; assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); } } /* ** Update the accumulator memory cells for an aggregate based on ** the current cursor position. */ |
︙ | ︙ | |||
119247 119248 119249 119250 119251 119252 119253 | } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } | | | | 119529 119530 119531 119532 119533 119534 119535 119536 119537 119538 119539 119540 119541 119542 119543 119544 | } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); sqlite3ExprCacheClear(pParse); } |
︙ | ︙ | |||
119482 119483 119484 119485 119486 119487 119488 | */ pParse->nHeight += sqlite3SelectExprHeight(p); /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( (pItem->fg.jointype & JT_OUTER)==0 | | | 119764 119765 119766 119767 119768 119769 119770 119771 119772 119773 119774 119775 119776 119777 119778 | */ pParse->nHeight += sqlite3SelectExprHeight(p); /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( (pItem->fg.jointype & JT_OUTER)==0 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) ){ #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x100 ){ SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif |
︙ | ︙ | |||
121568 121569 121570 121571 121572 121573 121574 | u8 enc = ENC(sqlite3VdbeDb(v)); Column *pCol = &pTab->aCol[i]; VdbeComment((v, "%s.%s", pTab->zName, pCol->zName)); assert( i<pTab->nCol ); sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, pCol->affinity, &pValue); if( pValue ){ | | | 121850 121851 121852 121853 121854 121855 121856 121857 121858 121859 121860 121861 121862 121863 121864 | u8 enc = ENC(sqlite3VdbeDb(v)); Column *pCol = &pTab->aCol[i]; VdbeComment((v, "%s.%s", pTab->zName, pCol->zName)); assert( i<pTab->nCol ); sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, pCol->affinity, &pValue); if( pValue ){ sqlite3VdbeAppendP4(v, pValue, P4_MEM); } #ifndef SQLITE_OMIT_FLOATING_POINT if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); } #endif } |
︙ | ︙ | |||
121951 121952 121953 121954 121955 121956 121957 | labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverageIf(v, pPk==0); VdbeCoverageIf(v, pPk!=0); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); | | | 122233 122234 122235 122236 122237 122238 122239 122240 122241 122242 122243 122244 122245 122246 122247 | labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverageIf(v, pPk==0); VdbeCoverageIf(v, pPk!=0); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); addrTop = sqlite3VdbeAddOp2(v, OP_RowData, iEph, regKey); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0); VdbeCoverage(v); }else{ labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, labelBreak, regOldRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); |
︙ | ︙ | |||
122109 122110 122111 122112 122113 122114 122115 | assert( regNew==regNewRowid+1 ); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK sqlite3VdbeAddOp3(v, OP_Delete, iDataCur, OPFLAG_ISUPDATE | ((hasFK || chngKey || pPk!=0) ? 0 : OPFLAG_ISNOOP), regNewRowid ); if( !pParse->nested ){ | | | 122391 122392 122393 122394 122395 122396 122397 122398 122399 122400 122401 122402 122403 122404 122405 | assert( regNew==regNewRowid+1 ); #ifdef SQLITE_ENABLE_PREUPDATE_HOOK sqlite3VdbeAddOp3(v, OP_Delete, iDataCur, OPFLAG_ISUPDATE | ((hasFK || chngKey || pPk!=0) ? 0 : OPFLAG_ISNOOP), regNewRowid ); if( !pParse->nested ){ sqlite3VdbeAppendP4(v, pTab, P4_TABLE); } #else if( hasFK || chngKey || pPk!=0 ){ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0); } #endif if( bReplace || chngKey ){ |
︙ | ︙ | |||
125605 125606 125607 125608 125609 125610 125611 | codeExprOrVector(pParse, pRight, iTarget, 1); } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, | | | 125887 125888 125889 125890 125891 125892 125893 125894 125895 125896 125897 125898 125899 125900 125901 | codeExprOrVector(pParse, pRight, iTarget, 1); } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); VdbeCoverage(v); pLoop->u.vtab.needFree = 0; pLevel->p1 = iCur; pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; pLevel->p2 = sqlite3VdbeCurrentAddr(v); iIn = pLevel->u.in.nIn; for(j=nConstraint-1; j>=0; j--){ |
︙ | ︙ | |||
125638 125639 125640 125641 125642 125643 125644 | assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); testcase( pOp->opcode==OP_Rowid ); sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); } /* Generate code that will continue to the next row if ** the IN constraint is not satisfied */ | | | 125920 125921 125922 125923 125924 125925 125926 125927 125928 125929 125930 125931 125932 125933 125934 | assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); testcase( pOp->opcode==OP_Rowid ); sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); } /* Generate code that will continue to the next row if ** the IN constraint is not satisfied */ pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); assert( pCompare!=0 || db->mallocFailed ); if( pCompare ){ pCompare->pLeft = pTerm->pExpr->pLeft; pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); if( pRight ){ pRight->iTable = iReg+j+2; sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); |
︙ | ︙ | |||
126237 126238 126239 126240 126241 126242 126243 | if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); pExpr = sqlite3ExprDup(db, pExpr, 0); pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); } if( pAndExpr ){ | | | 126519 126520 126521 126522 126523 126524 126525 126526 126527 126528 126529 126530 126531 126532 126533 | if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); pExpr = sqlite3ExprDup(db, pExpr, 0); pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); } if( pAndExpr ){ pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr); } } /* Run a separate WHERE clause for each term of the OR clause. After ** eliminating duplicates from other WHERE clauses, the action for each ** sub-WHERE clause is to to invoke the main loop body as a subroutine. */ |
︙ | ︙ | |||
127239 127240 127241 127242 127243 127244 127245 | assert( pOrTerm->u.leftColumn==iColumn ); pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); pLeft = pOrTerm->pExpr->pLeft; } assert( pLeft!=0 ); pDup = sqlite3ExprDup(db, pLeft, 0); | | | 127521 127522 127523 127524 127525 127526 127527 127528 127529 127530 127531 127532 127533 127534 127535 | assert( pOrTerm->u.leftColumn==iColumn ); pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); pLeft = pOrTerm->pExpr->pLeft; } assert( pLeft!=0 ); pDup = sqlite3ExprDup(db, pLeft, 0); pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); if( pNew ){ int idxNew; transferJoinMarkings(pNew, pExpr); assert( !ExprHasProperty(pNew, EP_xIsSelect) ); pNew->x.pList = pList; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); |
︙ | ︙ | |||
127537 127538 127539 127540 127541 127542 127543 | assert( pList!=0 ); assert( pList->nExpr==2 ); for(i=0; i<2; i++){ Expr *pNewExpr; int idxNew; pNewExpr = sqlite3PExpr(pParse, ops[i], sqlite3ExprDup(db, pExpr->pLeft, 0), | | | 127819 127820 127821 127822 127823 127824 127825 127826 127827 127828 127829 127830 127831 127832 127833 | assert( pList!=0 ); assert( pList->nExpr==2 ); for(i=0; i<2; i++){ Expr *pNewExpr; int idxNew; pNewExpr = sqlite3PExpr(pParse, ops[i], sqlite3ExprDup(db, pExpr->pLeft, 0), sqlite3ExprDup(db, pList->a[i].pExpr, 0)); transferJoinMarkings(pNewExpr, pExpr); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); } |
︙ | ︙ | |||
127622 127623 127624 127625 127626 127627 127628 | } *pC = c + 1; } zCollSeqName = noCase ? "NOCASE" : "BINARY"; pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), | | | | 127904 127905 127906 127907 127908 127909 127910 127911 127912 127913 127914 127915 127916 127917 127918 127919 127920 127921 127922 127923 127924 127925 127926 | } *pC = c + 1; } zCollSeqName = noCase ? "NOCASE" : "BINARY"; pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), pStr1); transferJoinMarkings(pNewExpr1, pExpr); idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); testcase( idxNew1==0 ); exprAnalyze(pSrc, pWC, idxNew1); pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), pStr2); transferJoinMarkings(pNewExpr2, pExpr); idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ markTermAsChild(pWC, idxNew1, idxTerm); |
︙ | ︙ | |||
127663 127664 127665 127666 127667 127668 127669 | pRight = pExpr->x.pList->a[0].pExpr; pLeft = pExpr->x.pList->a[1].pExpr; prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); if( (prereqExpr & prereqColumn)==0 ){ Expr *pNewExpr; pNewExpr = sqlite3PExpr(pParse, TK_MATCH, | | | 127945 127946 127947 127948 127949 127950 127951 127952 127953 127954 127955 127956 127957 127958 127959 | pRight = pExpr->x.pList->a[0].pExpr; pLeft = pExpr->x.pList->a[1].pExpr; prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); if( (prereqExpr & prereqColumn)==0 ){ Expr *pNewExpr; pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 0, sqlite3ExprDup(db, pRight, 0)); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = prereqExpr; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_MATCH; |
︙ | ︙ | |||
127702 127703 127704 127705 127706 127707 127708 | assert( nLeft==sqlite3ExprVectorSize(pExpr->pRight) ); for(i=0; i<nLeft; i++){ int idxNew; Expr *pNew; Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); | | | 127984 127985 127986 127987 127988 127989 127990 127991 127992 127993 127994 127995 127996 127997 127998 | assert( nLeft==sqlite3ExprVectorSize(pExpr->pRight) ); for(i=0; i<nLeft; i++){ int idxNew; Expr *pNew; Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); transferJoinMarkings(pNew, pExpr); idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); exprAnalyze(pSrc, pWC, idxNew); } pTerm = &pWC->a[idxTerm]; pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL; /* Disable the original */ pTerm->eOperator = 0; |
︙ | ︙ | |||
127754 127755 127756 127757 127758 127759 127760 | Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; pNewExpr = sqlite3PExpr(pParse, TK_GT, sqlite3ExprDup(db, pLeft, 0), | | | 128036 128037 128038 128039 128040 128041 128042 128043 128044 128045 128046 128047 128048 128049 128050 | Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; pNewExpr = sqlite3PExpr(pParse, TK_GT, sqlite3ExprDup(db, pLeft, 0), sqlite3ExprAlloc(db, TK_NULL, 0, 0)); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); if( idxNew ){ pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = 0; pNewTerm->leftCursor = pLeft->iTable; |
︙ | ︙ | |||
127940 127941 127942 127943 127944 127945 127946 | } pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); if( pColRef==0 ) return; pColRef->iTable = pItem->iCursor; pColRef->iColumn = k++; pColRef->pTab = pTab; pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, | | | 128222 128223 128224 128225 128226 128227 128228 128229 128230 128231 128232 128233 128234 128235 128236 | } pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); if( pColRef==0 ) return; pColRef->iTable = pItem->iCursor; pColRef->iColumn = k++; pColRef->pTab = pTab; pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0)); whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); } } /************** End of whereexpr.c *******************************************/ /************** Begin file where.c *******************************************/ /* |
︙ | ︙ | |||
133065 133066 133067 133068 133069 133070 133071 | */ static void spanBinaryExpr( Parse *pParse, /* The parsing context. Errors accumulate here */ int op, /* The binary operation */ ExprSpan *pLeft, /* The left operand, and output */ ExprSpan *pRight /* The right operand */ ){ | | | | | 133347 133348 133349 133350 133351 133352 133353 133354 133355 133356 133357 133358 133359 133360 133361 133362 133363 133364 133365 133366 133367 133368 133369 133370 133371 133372 133373 133374 133375 133376 133377 133378 133379 133380 133381 133382 | */ static void spanBinaryExpr( Parse *pParse, /* The parsing context. Errors accumulate here */ int op, /* The binary operation */ ExprSpan *pLeft, /* The left operand, and output */ ExprSpan *pRight /* The right operand */ ){ pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr); pLeft->zEnd = pRight->zEnd; } /* If doNot is true, then add a TK_NOT Expr-node wrapper around the ** outside of *ppExpr. */ static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){ if( doNot ){ pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0); } } /* Construct an expression node for a unary postfix operator */ static void spanUnaryPostfix( Parse *pParse, /* Parsing context to record errors */ int op, /* The operator */ ExprSpan *pOperand, /* The operand, and output */ Token *pPostOp /* The operand token for setting the span */ ){ pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0); pOperand->zEnd = &pPostOp->z[pPostOp->n]; } /* A routine to convert a binary TK_IS or TK_ISNOT expression into a ** unary TK_ISNULL or TK_NOTNULL expression. */ static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ sqlite3 *db = pParse->db; |
︙ | ︙ | |||
133111 133112 133113 133114 133115 133116 133117 | ExprSpan *pOut, /* Write the new expression node here */ Parse *pParse, /* Parsing context to record errors */ int op, /* The operator */ ExprSpan *pOperand, /* The operand */ Token *pPreOp /* The operand token for setting the span */ ){ pOut->zStart = pPreOp->z; | | | 133393 133394 133395 133396 133397 133398 133399 133400 133401 133402 133403 133404 133405 133406 133407 | ExprSpan *pOut, /* Write the new expression node here */ Parse *pParse, /* Parsing context to record errors */ int op, /* The operator */ ExprSpan *pOperand, /* The operand */ Token *pPreOp /* The operand token for setting the span */ ){ pOut->zStart = pPreOp->z; pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0); pOut->zEnd = pOperand->zEnd; } /* Add a single new term to an ExprList that is used to store a ** list of identifiers. Report an error if the ID list contains ** a COLLATE clause or an ASC or DESC keyword, except ignore the ** error while parsing a legacy schema. |
︙ | ︙ | |||
134704 134705 134706 134707 134708 134709 134710 | } /* ** The following routine is called if the stack overflows. */ static void yyStackOverflow(yyParser *yypParser){ sqlite3ParserARG_FETCH; | < | 134986 134987 134988 134989 134990 134991 134992 134993 134994 134995 134996 134997 134998 134999 | } /* ** The following routine is called if the stack overflows. */ static void yyStackOverflow(yyParser *yypParser){ sqlite3ParserARG_FETCH; #ifndef NDEBUG if( yyTraceFILE ){ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); } #endif while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser); /* Here code is inserted which will execute if the parser |
︙ | ︙ | |||
134759 134760 134761 134762 134763 134764 134765 134766 134767 134768 134769 134770 134771 134772 134773 134774 134775 134776 134777 134778 | if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){ yypParser->yyhwm++; assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) ); } #endif #if YYSTACKDEPTH>0 if( yypParser->yytos>=&yypParser->yystack[YYSTACKDEPTH] ){ yyStackOverflow(yypParser); return; } #else if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz] ){ if( yyGrowStack(yypParser) ){ yyStackOverflow(yypParser); return; } } #endif if( yyNewState > YY_MAX_SHIFT ){ yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE; | > > | 135040 135041 135042 135043 135044 135045 135046 135047 135048 135049 135050 135051 135052 135053 135054 135055 135056 135057 135058 135059 135060 135061 | if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){ yypParser->yyhwm++; assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) ); } #endif #if YYSTACKDEPTH>0 if( yypParser->yytos>=&yypParser->yystack[YYSTACKDEPTH] ){ yypParser->yytos--; yyStackOverflow(yypParser); return; } #else if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz] ){ if( yyGrowStack(yypParser) ){ yypParser->yytos--; yyStackOverflow(yypParser); return; } } #endif if( yyNewState > YY_MAX_SHIFT ){ yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE; |
︙ | ︙ | |||
135306 135307 135308 135309 135310 135311 135312 | break; case 31: /* ccons ::= DEFAULT LP expr RP */ {sqlite3AddDefaultValue(pParse,&yymsp[-1].minor.yy190);} break; case 33: /* ccons ::= DEFAULT MINUS term */ { ExprSpan v; | | | 135589 135590 135591 135592 135593 135594 135595 135596 135597 135598 135599 135600 135601 135602 135603 | break; case 31: /* ccons ::= DEFAULT LP expr RP */ {sqlite3AddDefaultValue(pParse,&yymsp[-1].minor.yy190);} break; case 33: /* ccons ::= DEFAULT MINUS term */ { ExprSpan v; v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy190.pExpr, 0); v.zStart = yymsp[-1].minor.yy0.z; v.zEnd = yymsp[0].minor.yy190.zEnd; sqlite3AddDefaultValue(pParse,&v); } break; case 34: /* ccons ::= DEFAULT ID|INDEXED */ { |
︙ | ︙ | |||
135570 135571 135572 135573 135574 135575 135576 | { Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); yymsp[-1].minor.yy148 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy148, p); } break; case 94: /* selcollist ::= sclp nm DOT STAR */ { | | | | | 135853 135854 135855 135856 135857 135858 135859 135860 135861 135862 135863 135864 135865 135866 135867 135868 135869 | { Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); yymsp[-1].minor.yy148 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy148, p); } break; case 94: /* selcollist ::= sclp nm DOT STAR */ { Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &yymsp[-2].minor.yy0, 1); Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); yymsp[-3].minor.yy148 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy148, pDot); } break; case 95: /* as ::= AS nm */ case 106: /* dbnm ::= DOT nm */ yytestcase(yyruleno==106); case 225: /* plus_num ::= PLUS INTEGER|FLOAT */ yytestcase(yyruleno==225); case 226: /* minus_num ::= MINUS INTEGER|FLOAT */ yytestcase(yyruleno==226); |
︙ | ︙ | |||
135798 135799 135800 135801 135802 135803 135804 | {spanExpr(&yymsp[0].minor.yy190,pParse,TK_ID,yymsp[0].minor.yy0); /*A-overwrites-X*/} break; case 154: /* expr ::= nm DOT nm */ { Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &yymsp[-2].minor.yy0, 1); Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &yymsp[0].minor.yy0, 1); spanSet(&yymsp[-2].minor.yy190,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/ | | | | | 136081 136082 136083 136084 136085 136086 136087 136088 136089 136090 136091 136092 136093 136094 136095 136096 136097 136098 136099 136100 136101 136102 136103 136104 136105 | {spanExpr(&yymsp[0].minor.yy190,pParse,TK_ID,yymsp[0].minor.yy0); /*A-overwrites-X*/} break; case 154: /* expr ::= nm DOT nm */ { Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &yymsp[-2].minor.yy0, 1); Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &yymsp[0].minor.yy0, 1); spanSet(&yymsp[-2].minor.yy190,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/ yymsp[-2].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); } break; case 155: /* expr ::= nm DOT nm DOT nm */ { Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &yymsp[-4].minor.yy0, 1); Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &yymsp[-2].minor.yy0, 1); Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &yymsp[0].minor.yy0, 1); Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); spanSet(&yymsp[-4].minor.yy190,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/ yymsp[-4].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); } break; case 158: /* term ::= INTEGER */ { yylhsminor.yy190.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &yymsp[0].minor.yy0, 1); yylhsminor.yy190.zStart = yymsp[0].minor.yy0.z; yylhsminor.yy190.zEnd = yymsp[0].minor.yy0.z + yymsp[0].minor.yy0.n; |
︙ | ︙ | |||
135837 135838 135839 135840 135841 135842 135843 | Token t = yymsp[0].minor.yy0; /*A-overwrites-X*/ assert( t.n>=2 ); spanSet(&yymsp[0].minor.yy190, &t, &t); if( pParse->nested==0 ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); yymsp[0].minor.yy190.pExpr = 0; }else{ | | | > | 136120 136121 136122 136123 136124 136125 136126 136127 136128 136129 136130 136131 136132 136133 136134 136135 136136 136137 136138 136139 136140 136141 136142 136143 136144 136145 136146 136147 136148 136149 136150 | Token t = yymsp[0].minor.yy0; /*A-overwrites-X*/ assert( t.n>=2 ); spanSet(&yymsp[0].minor.yy190, &t, &t); if( pParse->nested==0 ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); yymsp[0].minor.yy190.pExpr = 0; }else{ yymsp[0].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); if( yymsp[0].minor.yy190.pExpr ) sqlite3GetInt32(&t.z[1], &yymsp[0].minor.yy190.pExpr->iTable); } } } break; case 160: /* expr ::= expr COLLATE ID|STRING */ { yymsp[-2].minor.yy190.pExpr = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy190.pExpr, &yymsp[0].minor.yy0, 1); yymsp[-2].minor.yy190.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; } break; case 161: /* expr ::= CAST LP expr AS typetoken RP */ { spanSet(&yymsp[-5].minor.yy190,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/ yymsp[-5].minor.yy190.pExpr = sqlite3ExprAlloc(pParse->db, TK_CAST, &yymsp[-1].minor.yy0, 1); sqlite3ExprAttachSubtrees(pParse->db, yymsp[-5].minor.yy190.pExpr, yymsp[-3].minor.yy190.pExpr, 0); } break; case 162: /* expr ::= ID|INDEXED LP distinct exprlist RP */ { if( yymsp[-1].minor.yy148 && yymsp[-1].minor.yy148->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0); } |
︙ | ︙ | |||
135885 135886 135887 135888 135889 135890 135891 | spanSet(&yylhsminor.yy190, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0); } yymsp[0].minor.yy190 = yylhsminor.yy190; break; case 165: /* expr ::= LP nexprlist COMMA expr RP */ { ExprList *pList = sqlite3ExprListAppend(pParse, yymsp[-3].minor.yy148, yymsp[-1].minor.yy190.pExpr); | | | 136169 136170 136171 136172 136173 136174 136175 136176 136177 136178 136179 136180 136181 136182 136183 | spanSet(&yylhsminor.yy190, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0); } yymsp[0].minor.yy190 = yylhsminor.yy190; break; case 165: /* expr ::= LP nexprlist COMMA expr RP */ { ExprList *pList = sqlite3ExprListAppend(pParse, yymsp[-3].minor.yy148, yymsp[-1].minor.yy190.pExpr); yylhsminor.yy190.pExpr = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); if( yylhsminor.yy190.pExpr ){ yylhsminor.yy190.pExpr->x.pList = pList; spanSet(&yylhsminor.yy190, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0); }else{ sqlite3ExprListDelete(pParse->db, pList); } } |
︙ | ︙ | |||
135974 135975 135976 135977 135978 135979 135980 | case 189: /* in_op ::= IN */ yytestcase(yyruleno==189); {yymsp[0].minor.yy194 = 0;} break; case 188: /* expr ::= expr between_op expr AND expr */ { ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy190.pExpr); pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy190.pExpr); | | | 136258 136259 136260 136261 136262 136263 136264 136265 136266 136267 136268 136269 136270 136271 136272 | case 189: /* in_op ::= IN */ yytestcase(yyruleno==189); {yymsp[0].minor.yy194 = 0;} break; case 188: /* expr ::= expr between_op expr AND expr */ { ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy190.pExpr); pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy190.pExpr); yymsp[-4].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy190.pExpr, 0); if( yymsp[-4].minor.yy190.pExpr ){ yymsp[-4].minor.yy190.pExpr->x.pList = pList; }else{ sqlite3ExprListDelete(pParse->db, pList); } exprNot(pParse, yymsp[-3].minor.yy194, &yymsp[-4].minor.yy190); yymsp[-4].minor.yy190.zEnd = yymsp[0].minor.yy190.zEnd; |
︙ | ︙ | |||
135996 135997 135998 135999 136000 136001 136002 | ** expr1 IN () ** expr1 NOT IN () ** ** simplify to constants 0 (false) and 1 (true), respectively, ** regardless of the value of expr1. */ sqlite3ExprDelete(pParse->db, yymsp[-4].minor.yy190.pExpr); | | | 136280 136281 136282 136283 136284 136285 136286 136287 136288 136289 136290 136291 136292 136293 136294 | ** expr1 IN () ** expr1 NOT IN () ** ** simplify to constants 0 (false) and 1 (true), respectively, ** regardless of the value of expr1. */ sqlite3ExprDelete(pParse->db, yymsp[-4].minor.yy190.pExpr); yymsp[-4].minor.yy190.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[yymsp[-3].minor.yy194],1); }else if( yymsp[-1].minor.yy148->nExpr==1 ){ /* Expressions of the form: ** ** expr1 IN (?1) ** expr1 NOT IN (?2) ** ** with exactly one value on the RHS can be simplified to something |
︙ | ︙ | |||
136023 136024 136025 136026 136027 136028 136029 | sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy148); /* pRHS cannot be NULL because a malloc error would have been detected ** before now and control would have never reached this point */ if( ALWAYS(pRHS) ){ pRHS->flags &= ~EP_Collate; pRHS->flags |= EP_Generic; } | | | | | | | | | 136307 136308 136309 136310 136311 136312 136313 136314 136315 136316 136317 136318 136319 136320 136321 136322 136323 136324 136325 136326 136327 136328 136329 136330 136331 136332 136333 136334 136335 136336 136337 136338 136339 136340 136341 136342 136343 136344 136345 136346 136347 136348 136349 136350 136351 136352 136353 136354 136355 136356 136357 136358 136359 136360 136361 136362 136363 136364 136365 136366 136367 136368 136369 136370 136371 136372 | sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy148); /* pRHS cannot be NULL because a malloc error would have been detected ** before now and control would have never reached this point */ if( ALWAYS(pRHS) ){ pRHS->flags &= ~EP_Collate; pRHS->flags |= EP_Generic; } yymsp[-4].minor.yy190.pExpr = sqlite3PExpr(pParse, yymsp[-3].minor.yy194 ? TK_NE : TK_EQ, yymsp[-4].minor.yy190.pExpr, pRHS); }else{ yymsp[-4].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy190.pExpr, 0); if( yymsp[-4].minor.yy190.pExpr ){ yymsp[-4].minor.yy190.pExpr->x.pList = yymsp[-1].minor.yy148; sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy190.pExpr); }else{ sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy148); } exprNot(pParse, yymsp[-3].minor.yy194, &yymsp[-4].minor.yy190); } yymsp[-4].minor.yy190.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; } break; case 192: /* expr ::= LP select RP */ { spanSet(&yymsp[-2].minor.yy190,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-B*/ yymsp[-2].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0); sqlite3PExprAddSelect(pParse, yymsp[-2].minor.yy190.pExpr, yymsp[-1].minor.yy243); } break; case 193: /* expr ::= expr in_op LP select RP */ { yymsp[-4].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy190.pExpr, 0); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy190.pExpr, yymsp[-1].minor.yy243); exprNot(pParse, yymsp[-3].minor.yy194, &yymsp[-4].minor.yy190); yymsp[-4].minor.yy190.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n]; } break; case 194: /* expr ::= expr in_op nm dbnm paren_exprlist */ { SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); if( yymsp[0].minor.yy148 ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, yymsp[0].minor.yy148); yymsp[-4].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy190.pExpr, 0); sqlite3PExprAddSelect(pParse, yymsp[-4].minor.yy190.pExpr, pSelect); exprNot(pParse, yymsp[-3].minor.yy194, &yymsp[-4].minor.yy190); yymsp[-4].minor.yy190.zEnd = yymsp[-1].minor.yy0.z ? &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n] : &yymsp[-2].minor.yy0.z[yymsp[-2].minor.yy0.n]; } break; case 195: /* expr ::= EXISTS LP select RP */ { Expr *p; spanSet(&yymsp[-3].minor.yy190,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-B*/ p = yymsp[-3].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); sqlite3PExprAddSelect(pParse, p, yymsp[-1].minor.yy243); } break; case 196: /* expr ::= CASE case_operand case_exprlist case_else END */ { spanSet(&yymsp[-4].minor.yy190,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-C*/ yymsp[-4].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy72, 0); if( yymsp[-4].minor.yy190.pExpr ){ yymsp[-4].minor.yy190.pExpr->x.pList = yymsp[-1].minor.yy72 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy148,yymsp[-1].minor.yy72) : yymsp[-2].minor.yy148; sqlite3ExprSetHeightAndFlags(pParse, yymsp[-4].minor.yy190.pExpr); }else{ sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy148); sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy72); } |
︙ | ︙ | |||
136248 136249 136250 136251 136252 136253 136254 | break; case 246: /* trigger_cmd ::= select */ {yymsp[0].minor.yy145 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy243); /*A-overwrites-X*/} break; case 247: /* expr ::= RAISE LP IGNORE RP */ { spanSet(&yymsp[-3].minor.yy190,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/ | | | | 136532 136533 136534 136535 136536 136537 136538 136539 136540 136541 136542 136543 136544 136545 136546 136547 136548 136549 136550 136551 136552 136553 136554 136555 | break; case 246: /* trigger_cmd ::= select */ {yymsp[0].minor.yy145 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy243); /*A-overwrites-X*/} break; case 247: /* expr ::= RAISE LP IGNORE RP */ { spanSet(&yymsp[-3].minor.yy190,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/ yymsp[-3].minor.yy190.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0); if( yymsp[-3].minor.yy190.pExpr ){ yymsp[-3].minor.yy190.pExpr->affinity = OE_Ignore; } } break; case 248: /* expr ::= RAISE LP raisetype COMMA nm RP */ { spanSet(&yymsp[-5].minor.yy190,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0); /*A-overwrites-X*/ yymsp[-5].minor.yy190.pExpr = sqlite3ExprAlloc(pParse->db, TK_RAISE, &yymsp[-1].minor.yy0, 1); if( yymsp[-5].minor.yy190.pExpr ) { yymsp[-5].minor.yy190.pExpr->affinity = (char)yymsp[-3].minor.yy194; } } break; case 249: /* raisetype ::= ROLLBACK */ {yymsp[0].minor.yy194 = OE_Rollback;} |
︙ | ︙ | |||
141489 141490 141491 141492 141493 141494 141495 | } /* ** Interface to the testing logic. */ SQLITE_API int sqlite3_test_control(int op, ...){ int rc = 0; | | | 141773 141774 141775 141776 141777 141778 141779 141780 141781 141782 141783 141784 141785 141786 141787 | } /* ** Interface to the testing logic. */ SQLITE_API int sqlite3_test_control(int op, ...){ int rc = 0; #ifdef SQLITE_UNTESTABLE UNUSED_PARAMETER(op); #else va_list ap; va_start(ap, op); switch( op ){ /* |
︙ | ︙ | |||
141826 141827 141828 141829 141830 141831 141832 | sqlite3ResetAllSchemasOfConnection(db); } sqlite3_mutex_leave(db->mutex); break; } } va_end(ap); | | | 142110 142111 142112 142113 142114 142115 142116 142117 142118 142119 142120 142121 142122 142123 142124 | sqlite3ResetAllSchemasOfConnection(db); } sqlite3_mutex_leave(db->mutex); break; } } va_end(ap); #endif /* SQLITE_UNTESTABLE */ return rc; } /* ** This is a utility routine, useful to VFS implementations, that checks ** to see if a database file was a URI that contained a specific query ** parameter, and if so obtains the value of the query parameter. |
︙ | ︙ | |||
141937 141938 141939 141940 141941 141942 141943 | SQLITE_API int sqlite3_snapshot_get( sqlite3 *db, const char *zDb, sqlite3_snapshot **ppSnapshot ){ int rc = SQLITE_ERROR; #ifndef SQLITE_OMIT_WAL | < > | | | | | | | > | 142221 142222 142223 142224 142225 142226 142227 142228 142229 142230 142231 142232 142233 142234 142235 142236 142237 142238 142239 142240 142241 142242 142243 142244 142245 142246 142247 142248 142249 142250 142251 | SQLITE_API int sqlite3_snapshot_get( sqlite3 *db, const char *zDb, sqlite3_snapshot **ppSnapshot ){ int rc = SQLITE_ERROR; #ifndef SQLITE_OMIT_WAL #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( db->autoCommit==0 ){ int iDb = sqlite3FindDbName(db, zDb); if( iDb==0 || iDb>1 ){ Btree *pBt = db->aDb[iDb].pBt; if( 0==sqlite3BtreeIsInTrans(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot); } } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; |
︙ | ︙ | |||
141994 141995 141996 141997 141998 141999 142000 142001 142002 142003 142004 142005 142006 142007 | rc = sqlite3BtreeBeginTrans(pBt, 0); sqlite3PagerSnapshotOpen(sqlite3BtreePager(pBt), 0); } } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Free a snapshot handle obtained from sqlite3_snapshot_get(). | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 142279 142280 142281 142282 142283 142284 142285 142286 142287 142288 142289 142290 142291 142292 142293 142294 142295 142296 142297 142298 142299 142300 142301 142302 142303 142304 142305 142306 142307 142308 142309 142310 142311 142312 142313 142314 142315 142316 142317 142318 142319 142320 142321 142322 142323 142324 | rc = sqlite3BtreeBeginTrans(pBt, 0); sqlite3PagerSnapshotOpen(sqlite3BtreePager(pBt), 0); } } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Recover as many snapshots as possible from the wal file associated with ** schema zDb of database db. */ SQLITE_API int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){ int rc = SQLITE_ERROR; int iDb; #ifndef SQLITE_OMIT_WAL #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); iDb = sqlite3FindDbName(db, zDb); if( iDb==0 || iDb>1 ){ Btree *pBt = db->aDb[iDb].pBt; if( 0==sqlite3BtreeIsInReadTrans(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt)); sqlite3BtreeCommit(pBt); } } } sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Free a snapshot handle obtained from sqlite3_snapshot_get(). |
︙ | ︙ | |||
180832 180833 180834 180835 180836 180837 180838 | } /* ** The following routine is called if the stack overflows. */ static void fts5yyStackOverflow(fts5yyParser *fts5yypParser){ sqlite3Fts5ParserARG_FETCH; | < | 181149 181150 181151 181152 181153 181154 181155 181156 181157 181158 181159 181160 181161 181162 | } /* ** The following routine is called if the stack overflows. */ static void fts5yyStackOverflow(fts5yyParser *fts5yypParser){ sqlite3Fts5ParserARG_FETCH; #ifndef NDEBUG if( fts5yyTraceFILE ){ fprintf(fts5yyTraceFILE,"%sStack Overflow!\n",fts5yyTracePrompt); } #endif while( fts5yypParser->fts5yytos>fts5yypParser->fts5yystack ) fts5yy_pop_parser_stack(fts5yypParser); /* Here code is inserted which will execute if the parser |
︙ | ︙ | |||
180887 180888 180889 180890 180891 180892 180893 180894 180895 180896 180897 180898 180899 180900 180901 180902 180903 180904 180905 180906 | if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){ fts5yypParser->fts5yyhwm++; assert( fts5yypParser->fts5yyhwm == (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack) ); } #endif #if fts5YYSTACKDEPTH>0 if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5YYSTACKDEPTH] ){ fts5yyStackOverflow(fts5yypParser); return; } #else if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5yypParser->fts5yystksz] ){ if( fts5yyGrowStack(fts5yypParser) ){ fts5yyStackOverflow(fts5yypParser); return; } } #endif if( fts5yyNewState > fts5YY_MAX_SHIFT ){ fts5yyNewState += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE; | > > | 181203 181204 181205 181206 181207 181208 181209 181210 181211 181212 181213 181214 181215 181216 181217 181218 181219 181220 181221 181222 181223 181224 | if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){ fts5yypParser->fts5yyhwm++; assert( fts5yypParser->fts5yyhwm == (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack) ); } #endif #if fts5YYSTACKDEPTH>0 if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5YYSTACKDEPTH] ){ fts5yypParser->fts5yytos--; fts5yyStackOverflow(fts5yypParser); return; } #else if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5yypParser->fts5yystksz] ){ if( fts5yyGrowStack(fts5yypParser) ){ fts5yypParser->fts5yytos--; fts5yyStackOverflow(fts5yypParser); return; } } #endif if( fts5yyNewState > fts5YY_MAX_SHIFT ){ fts5yyNewState += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE; |
︙ | ︙ | |||
184204 184205 184206 184207 184208 184209 184210 184211 184212 184213 184214 184215 184216 | } /* ** Initialize all term iterators in the pNear object. If any term is found ** to match no documents at all, return immediately without initializing any ** further iterators. */ static int fts5ExprNearInitAll( Fts5Expr *pExpr, Fts5ExprNode *pNode ){ Fts5ExprNearset *pNear = pNode->pNear; | > > > > | < < | > > > > > | | | > | > | | | | | | | | | | | > | | | | | | > > | < | | > > | | | 184522 184523 184524 184525 184526 184527 184528 184529 184530 184531 184532 184533 184534 184535 184536 184537 184538 184539 184540 184541 184542 184543 184544 184545 184546 184547 184548 184549 184550 184551 184552 184553 184554 184555 184556 184557 184558 184559 184560 184561 184562 184563 184564 184565 184566 184567 184568 184569 184570 184571 184572 184573 184574 184575 184576 184577 184578 184579 184580 184581 184582 184583 184584 184585 184586 184587 184588 184589 184590 | } /* ** Initialize all term iterators in the pNear object. If any term is found ** to match no documents at all, return immediately without initializing any ** further iterators. ** ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. It is not considered an error if some term matches zero ** documents. */ static int fts5ExprNearInitAll( Fts5Expr *pExpr, Fts5ExprNode *pNode ){ Fts5ExprNearset *pNear = pNode->pNear; int i; assert( pNode->bNomatch==0 ); for(i=0; i<pNear->nPhrase; i++){ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; if( pPhrase->nTerm==0 ){ pNode->bEof = 1; return SQLITE_OK; }else{ int j; for(j=0; j<pPhrase->nTerm; j++){ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j]; Fts5ExprTerm *p; int bHit = 0; for(p=pTerm; p; p=p->pSynonym){ int rc; if( p->pIter ){ sqlite3Fts5IterClose(p->pIter); p->pIter = 0; } rc = sqlite3Fts5IndexQuery( pExpr->pIndex, p->zTerm, (int)strlen(p->zTerm), (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) | (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0), pNear->pColset, &p->pIter ); assert( (rc==SQLITE_OK)==(p->pIter!=0) ); if( rc!=SQLITE_OK ) return rc; if( 0==sqlite3Fts5IterEof(p->pIter) ){ bHit = 1; } } if( bHit==0 ){ pNode->bEof = 1; return SQLITE_OK; } } } } pNode->bEof = 0; return SQLITE_OK; } /* ** If pExpr is an ASC iterator, this function returns a value with the ** same sign as: ** ** (iLhs - iRhs) |
︙ | ︙ | |||
195783 195784 195785 195786 195787 195788 195789 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); | | | 196114 196115 196116 196117 196118 196119 196120 196121 196122 196123 196124 196125 196126 196127 196128 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); sqlite3_result_text(pCtx, "fts5: 2016-12-08 19:04:36 b26df26e184ec6da4b5537526c10f42a293d09b5", -1, SQLITE_TRANSIENT); } static int fts5Init(sqlite3 *db){ static const sqlite3_module fts5Mod = { /* iVersion */ 2, /* xCreate */ fts5CreateMethod, /* xConnect */ fts5ConnectMethod, |
︙ | ︙ |
Changes to src/sqlite3.h.
︙ | ︙ | |||
119 120 121 122 123 124 125 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.16.0" #define SQLITE_VERSION_NUMBER 3016000 | | | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.16.0" #define SQLITE_VERSION_NUMBER 3016000 #define SQLITE_SOURCE_ID "2016-12-08 19:04:36 b26df26e184ec6da4b5537526c10f42a293d09b5" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 | ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, ** since the statements themselves do not actually modify the database but ** rather they control the timing of when other statements modify the ** database. ^The [ATTACH] and [DETACH] statements also cause ** sqlite3_stmt_readonly() to return true since, while those statements ** change the configuration of a database connection, they do not make ** changes to the content of the database files on disk. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** | > > > > | 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 | ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true, ** since the statements themselves do not actually modify the database but ** rather they control the timing of when other statements modify the ** database. ^The [ATTACH] and [DETACH] statements also cause ** sqlite3_stmt_readonly() to return true since, while those statements ** change the configuration of a database connection, they do not make ** changes to the content of the database files on disk. ** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since ** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and ** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so ** sqlite3_stmt_readonly() returns false for those commands. */ SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** |
︙ | ︙ | |||
8255 8256 8257 8258 8259 8260 8261 | ** called to get back the underlying "errno" that caused the problem, such ** as ENOSPC, EAUTH, EISDIR, and so forth. */ SQLITE_API int sqlite3_system_errno(sqlite3*); /* ** CAPI3REF: Database Snapshot | | | 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 | ** called to get back the underlying "errno" that caused the problem, such ** as ENOSPC, EAUTH, EISDIR, and so forth. */ SQLITE_API int sqlite3_system_errno(sqlite3*); /* ** CAPI3REF: Database Snapshot ** KEYWORDS: {snapshot} {sqlite3_snapshot} ** EXPERIMENTAL ** ** An instance of the snapshot object records the state of a [WAL mode] ** database for some specific point in history. ** ** In [WAL mode], multiple [database connections] that are open on the ** same database file can each be reading a different historical version |
︙ | ︙ | |||
8279 8280 8281 8282 8283 8284 8285 | ** the most recent version. ** ** The constructor for this object is [sqlite3_snapshot_get()]. The ** [sqlite3_snapshot_open()] method causes a fresh read transaction to refer ** to an historical snapshot (if possible). The destructor for ** sqlite3_snapshot objects is [sqlite3_snapshot_free()]. */ | | > > > > > > > > > > > > > | > > > > > > > > > > > > > | < | 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 | ** the most recent version. ** ** The constructor for this object is [sqlite3_snapshot_get()]. The ** [sqlite3_snapshot_open()] method causes a fresh read transaction to refer ** to an historical snapshot (if possible). The destructor for ** sqlite3_snapshot objects is [sqlite3_snapshot_free()]. */ typedef struct sqlite3_snapshot { unsigned char hidden[48]; } sqlite3_snapshot; /* ** CAPI3REF: Record A Database Snapshot ** EXPERIMENTAL ** ** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a ** new [sqlite3_snapshot] object that records the current state of ** schema S in database connection D. ^On success, the ** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly ** created [sqlite3_snapshot] object into *P and returns SQLITE_OK. ** If there is not already a read-transaction open on schema S when ** this function is called, one is opened automatically. ** ** The following must be true for this function to succeed. If any of ** the following statements are false when sqlite3_snapshot_get() is ** called, SQLITE_ERROR is returned. The final value of *P is undefined ** in this case. ** ** <ul> ** <li> The database handle must be in [autocommit mode]. ** ** <li> Schema S of [database connection] D must be a [WAL mode] database. ** ** <li> There must not be a write transaction open on schema S of database ** connection D. ** ** <li> One or more transactions must have been written to the current wal ** file since it was created on disk (by any connection). This means ** that a snapshot cannot be taken on a wal mode database with no wal ** file immediately after it is first opened. At least one transaction ** must be written to it first. ** </ul> ** ** This function may also return SQLITE_NOMEM. If it is called with the ** database handle in autocommit mode but fails for some other reason, ** whether or not a read transaction is opened on schema S is undefined. ** ** The [sqlite3_snapshot] object returned from a successful call to ** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()] ** to avoid a memory leak. ** ** The [sqlite3_snapshot_get()] interface is only available when the ** SQLITE_ENABLE_SNAPSHOT compile-time option is used. |
︙ | ︙ | |||
8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 | ** snapshot, and a positive value if P1 is a newer snapshot than P2. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp( sqlite3_snapshot *p1, sqlite3_snapshot *p2 ); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif | > > > > > > > > > > > > > > > > > > > > > > | 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 | ** snapshot, and a positive value if P1 is a newer snapshot than P2. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp( sqlite3_snapshot *p1, sqlite3_snapshot *p2 ); /* ** CAPI3REF: Recover snapshots from a wal file ** EXPERIMENTAL ** ** If all connections disconnect from a database file but do not perform ** a checkpoint, the existing wal file is opened along with the database ** file the next time the database is opened. At this point it is only ** possible to successfully call sqlite3_snapshot_open() to open the most ** recent snapshot of the database (the one at the head of the wal file), ** even though the wal file may contain other valid snapshots for which ** clients have sqlite3_snapshot handles. ** ** This function attempts to scan the wal file associated with database zDb ** of database handle db and make all valid snapshots available to ** sqlite3_snapshot_open(). It is an error if there is already a read ** transaction open on the database, or if the database is not a wal mode ** database. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif |
︙ | ︙ |