Fossil

Check-in [aa33292c]
Login

Check-in [aa33292c]

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite to the latest 3.46.0 alpha that includes the enhanced "PRAGMA optimize" logic. The interface to "PRAGMA optimize" is unchanged, so the minimum SQLite version did not need to be updated.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA3-256: aa33292ccdfb47b5cad35618d0738502a8391fb9d03e6ff32a5a377f22a7d674
User & Date: drh 2024-02-21 11:56:52
Context
2024-02-21
12:17
Updates to the change log. ... (check-in: 3e0b35ed user: drh tags: trunk)
11:56
Update the built-in SQLite to the latest 3.46.0 alpha that includes the enhanced "PRAGMA optimize" logic. The interface to "PRAGMA optimize" is unchanged, so the minimum SQLite version did not need to be updated. ... (check-in: aa33292c user: drh tags: trunk)
2024-02-20
14:35
Changed home page title from "Home" to "A Coherent Software Configuration Management System" since docs now show the title in the body area. "Home" in the title area was fine, but now it wants something more explanatory of the page's content.

Moved the list of links on the right up a bit as a result.

Switched the ASCII hyphens to em dashes in the list of Fossil attributes belo. ... (check-in: 452726d6 user: wyoung tags: trunk)

Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to extsrc/shell.c.

576
577
578
579
580
581
582



583
584
585
586
587
588
589
# include <limits.h>
# include <assert.h>
/* # include "sqlite3.h" */
#endif
#ifndef HAVE_CONSOLE_IO_H
# include "console_io.h"
#endif




#ifndef SQLITE_CIO_NO_TRANSLATE
# if (defined(_WIN32) || defined(WIN32)) && !SQLITE_OS_WINRT
#  ifndef SHELL_NO_SYSINC
#   include <io.h>
#   include <fcntl.h>
#   undef WIN32_LEAN_AND_MEAN







>
>
>







576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# include <limits.h>
# include <assert.h>
/* # include "sqlite3.h" */
#endif
#ifndef HAVE_CONSOLE_IO_H
# include "console_io.h"
#endif
#if defined(_MSC_VER)
# pragma warning(disable : 4204)
#endif

#ifndef SQLITE_CIO_NO_TRANSLATE
# if (defined(_WIN32) || defined(WIN32)) && !SQLITE_OS_WINRT
#  ifndef SHELL_NO_SYSINC
#   include <io.h>
#   include <fcntl.h>
#   undef WIN32_LEAN_AND_MEAN
673
674
675
676
677
678
679




680
681
682
683
684
685
686
  return rv;
# else
  ppst->pf = pf;
  ppst->reachesConsole = ( (short)isatty(fileno(pf)) );
  return ppst->reachesConsole;
# endif
}





# if CIO_WIN_WC_XLATE
/* Define console modes for use with the Windows Console API. */
#  define SHELL_CONI_MODE \
  (ENABLE_ECHO_INPUT | ENABLE_INSERT_MODE | ENABLE_LINE_INPUT | 0x80 \
  | ENABLE_QUICK_EDIT_MODE | ENABLE_EXTENDED_FLAGS | ENABLE_PROCESSED_INPUT)
#  define SHELL_CONO_MODE (ENABLE_PROCESSED_OUTPUT | ENABLE_WRAP_AT_EOL_OUTPUT \







>
>
>
>







676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
  return rv;
# else
  ppst->pf = pf;
  ppst->reachesConsole = ( (short)isatty(fileno(pf)) );
  return ppst->reachesConsole;
# endif
}

# ifndef ENABLE_VIRTUAL_TERMINAL_PROCESSING
#  define ENABLE_VIRTUAL_TERMINAL_PROCESSING  (0x4)
# endif

# if CIO_WIN_WC_XLATE
/* Define console modes for use with the Windows Console API. */
#  define SHELL_CONI_MODE \
  (ENABLE_ECHO_INPUT | ENABLE_INSERT_MODE | ENABLE_LINE_INPUT | 0x80 \
  | ENABLE_QUICK_EDIT_MODE | ENABLE_EXTENDED_FLAGS | ENABLE_PROCESSED_INPUT)
#  define SHELL_CONO_MODE (ENABLE_PROCESSED_OUTPUT | ENABLE_WRAP_AT_EOL_OUTPUT \
1223
1224
1225
1226
1227
1228
1229




1230
1231
1232
1233
1234
1235
1236
# endif
    return fgets(cBuf, ncMax, pfIn);
# if CIO_WIN_WC_XLATE
  }
# endif
}
#endif /* !defined(SQLITE_CIO_NO_TRANSLATE) */





#undef SHELL_INVALID_FILE_PTR

/************************* End ../ext/consio/console_io.c ********************/

#ifndef SQLITE_SHELL_FIDDLE








>
>
>
>







1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
# endif
    return fgets(cBuf, ncMax, pfIn);
# if CIO_WIN_WC_XLATE
  }
# endif
}
#endif /* !defined(SQLITE_CIO_NO_TRANSLATE) */

#if defined(_MSC_VER)
# pragma warning(default : 4204)
#endif

#undef SHELL_INVALID_FILE_PTR

/************************* End ../ext/consio/console_io.c ********************/

#ifndef SQLITE_SHELL_FIDDLE

1246
1247
1248
1249
1250
1251
1252



1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263





1264

1265

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
 *  eputf(f, ...)    => emit varargs per format f to error stream
 *  oputb(b, n)      => emit char buffer b[0..n-1] to default stream
 *
 * Note that the default stream is whatever has been last set via:
 *   setOutputStream(FILE *pf)
 * This is normally the stream that CLI normal output goes to.
 * For the stand-alone CLI, it is stdout with no .output redirect.



 */
# define sputz(s,z) fPutsUtf8(z,s)
# define sputf fPrintfUtf8
# define oputz(z) oPutsUtf8(z)
# define oputf oPrintfUtf8
# define eputz(z) ePutsUtf8(z)
# define eputf ePrintfUtf8
# define oputb(buf,na) oPutbUtf8(buf,na)

#else
/* For Fiddle, all console handling and emit redirection is omitted. */





# define sputz(fp,z) fputs(z,fp)

# define sputf(fp,fmt, ...) fprintf(fp,fmt,__VA_ARGS__)

# define oputz(z) fputs(z,stdout)
# define oputf(fmt, ...) printf(fmt,__VA_ARGS__)
# define eputz(z) fputs(z,stderr)
# define eputf(fmt, ...) fprintf(stderr,fmt,__VA_ARGS__)
# define oputb(buf,na) fwrite(buf,1,na,stdout)
#endif

/* True if the timer is enabled */
static int enableTimer = 0;

/* A version of strcmp() that works with NULL values */







>
>
>











>
>
>
>
>
|
>

>

<

|







1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

1288
1289
1290
1291
1292
1293
1294
1295
1296
 *  eputf(f, ...)    => emit varargs per format f to error stream
 *  oputb(b, n)      => emit char buffer b[0..n-1] to default stream
 *
 * Note that the default stream is whatever has been last set via:
 *   setOutputStream(FILE *pf)
 * This is normally the stream that CLI normal output goes to.
 * For the stand-alone CLI, it is stdout with no .output redirect.
 *
 * The ?putz(z) forms are required for the Fiddle builds for string literal
 * output, in aid of enforcing format string to argument correspondence.
 */
# define sputz(s,z) fPutsUtf8(z,s)
# define sputf fPrintfUtf8
# define oputz(z) oPutsUtf8(z)
# define oputf oPrintfUtf8
# define eputz(z) ePutsUtf8(z)
# define eputf ePrintfUtf8
# define oputb(buf,na) oPutbUtf8(buf,na)

#else
/* For Fiddle, all console handling and emit redirection is omitted. */
/* These next 3 macros are for emitting formatted output. When complaints
 * from the WASM build are issued for non-formatted output, (when a mere
 * string literal is to be emitted, the ?putz(z) forms should be used.
 * (This permits compile-time checking of format string / argument mismatch.)
 */
# define oputf(fmt, ...) printf(fmt,__VA_ARGS__)
# define eputf(fmt, ...) fprintf(stderr,fmt,__VA_ARGS__)
# define sputf(fp,fmt, ...) fprintf(fp,fmt,__VA_ARGS__)
/* These next 3 macros are for emitting simple string literals. */
# define oputz(z) fputs(z,stdout)

# define eputz(z) fputs(z,stderr)
# define sputz(fp,z) fputs(z,fp)
# define oputb(buf,na) fwrite(buf,1,na,stdout)
#endif

/* True if the timer is enabled */
static int enableTimer = 0;

/* A version of strcmp() that works with NULL values */
5707
5708
5709
5710
5711
5712
5713
5714

5715
5716

5717


5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Return that member of a generate_series(...) sequence whose 0-based
** index is ix. The 0th member is given by smBase. The sequence members
** progress per ix increment by smStep.
*/
static sqlite3_int64 genSeqMember(sqlite3_int64 smBase,

                                  sqlite3_int64 smStep,
                                  sqlite3_uint64 ix){

  if( ix>=(sqlite3_uint64)LLONG_MAX ){


    /* Get ix into signed i64 range. */
    ix -= (sqlite3_uint64)LLONG_MAX;
    /* With 2's complement ALU, this next can be 1 step, but is split into
     * 2 for UBSAN's satisfaction (and hypothetical 1's complement ALUs.) */
    smBase += (LLONG_MAX/2) * smStep;
    smBase += (LLONG_MAX - LLONG_MAX/2) * smStep;
  }
  /* Under UBSAN (or on 1's complement machines), must do this last term
   * in steps to avoid the dreaded (and harmless) signed multiply overlow. */
  if( ix>=2 ){
    sqlite3_int64 ix2 = (sqlite3_int64)ix/2;
    smBase += ix2*smStep;
    ix -= ix2;







|
>
|
|
>
|
>
>

|


|
|







5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Return that member of a generate_series(...) sequence whose 0-based
** index is ix. The 0th member is given by smBase. The sequence members
** progress per ix increment by smStep.
*/
static sqlite3_int64 genSeqMember(
  sqlite3_int64 smBase,
  sqlite3_int64 smStep,
  sqlite3_uint64 ix
){
  static const sqlite3_uint64 mxI64 =
      ((sqlite3_uint64)0x7fffffff)<<32 | 0xffffffff;
  if( ix>=mxI64 ){
    /* Get ix into signed i64 range. */
    ix -= mxI64;
    /* With 2's complement ALU, this next can be 1 step, but is split into
     * 2 for UBSAN's satisfaction (and hypothetical 1's complement ALUs.) */
    smBase += (mxI64/2) * smStep;
    smBase += (mxI64 - mxI64/2) * smStep;
  }
  /* Under UBSAN (or on 1's complement machines), must do this last term
   * in steps to avoid the dreaded (and harmless) signed multiply overlow. */
  if( ix>=2 ){
    sqlite3_int64 ix2 = (sqlite3_int64)ix/2;
    smBase += ix2*smStep;
    ix -= ix2;
24734
24735
24736
24737
24738
24739
24740
































24741
24742
24743
24744
24745
24746
24747
    oputz("/* WARNING: "
          "Script requires that SQLITE_DBCONFIG_DEFENSIVE be disabled */\n"
    );
  }
  shellFinalize(&rc, pStmt);
  return rc;
}

































/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
    oputz("/* WARNING: "
          "Script requires that SQLITE_DBCONFIG_DEFENSIVE be disabled */\n"
    );
  }
  shellFinalize(&rc, pStmt);
  return rc;
}

/*
** Fault-Simulator state and logic.
*/
static struct {
  int iId;           /* ID that triggers a simulated fault.  -1 means "any" */
  int iErr;          /* The error code to return on a fault */
  int iCnt;          /* Trigger the fault only if iCnt is already zero */
  int iInterval;     /* Reset iCnt to this value after each fault */
  int eVerbose;      /* When to print output */
} faultsim_state = {-1, 0, 0, 0, 0};

/*
** This is the fault-sim callback
*/
static int faultsim_callback(int iArg){
  if( faultsim_state.iId>0 && faultsim_state.iId!=iArg ){
    return SQLITE_OK;
  }
  if( faultsim_state.iCnt>0 ){
    faultsim_state.iCnt--;
    if( faultsim_state.eVerbose>=2 ){
      oputf("FAULT-SIM id=%d no-fault (cnt=%d)\n", iArg, faultsim_state.iCnt);
    }
    return SQLITE_OK;
  }
  if( faultsim_state.eVerbose>=1 ){
    oputf("FAULT-SIM id=%d returns %d\n", iArg, faultsim_state.iErr);
  }
  faultsim_state.iCnt = faultsim_state.iInterval;
  return faultsim_state.iErr;
}

/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
25226
25227
25228
25229
25230
25231
25232
25233

25234
25235
25236
25237
25238
25239
25240
    );
    run_schema_dump_query(p,zSql);
    sqlite3_free(zSql);
    if( (p->shellFlgs & SHFLG_DumpDataOnly)==0 ){
      zSql = sqlite3_mprintf(
        "SELECT sql FROM sqlite_schema AS o "
        "WHERE (%s) AND sql NOT NULL"
        "  AND type IN ('index','trigger','view')",

        zLike
      );
      run_table_dump_query(p, zSql);
      sqlite3_free(zSql);
    }
    sqlite3_free(zLike);
    if( p->writableSchema ){







|
>







25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
    );
    run_schema_dump_query(p,zSql);
    sqlite3_free(zSql);
    if( (p->shellFlgs & SHFLG_DumpDataOnly)==0 ){
      zSql = sqlite3_mprintf(
        "SELECT sql FROM sqlite_schema AS o "
        "WHERE (%s) AND sql NOT NULL"
        "  AND type IN ('index','trigger','view') "
        "ORDER BY type COLLATE NOCASE DESC",
        zLike
      );
      run_table_dump_query(p, zSql);
      sqlite3_free(zSql);
    }
    sqlite3_free(zLike);
    if( p->writableSchema ){
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
    } aCtrl[] = {
    {"always",             SQLITE_TESTCTRL_ALWAYS, 1,     "BOOLEAN"         },
    {"assert",             SQLITE_TESTCTRL_ASSERT, 1,     "BOOLEAN"         },
  /*{"benign_malloc_hooks",SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS,1, ""        },*/
  /*{"bitvec_test",        SQLITE_TESTCTRL_BITVEC_TEST, 1,  ""              },*/
    {"byteorder",          SQLITE_TESTCTRL_BYTEORDER, 0,  ""                },
    {"extra_schema_checks",SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS,0,"BOOLEAN"  },
  /*{"fault_install",      SQLITE_TESTCTRL_FAULT_INSTALL, 1,""              },*/
    {"fk_no_action",       SQLITE_TESTCTRL_FK_NO_ACTION, 0, "BOOLEAN"       },
    {"imposter",         SQLITE_TESTCTRL_IMPOSTER,1,"SCHEMA ON/OFF ROOTPAGE"},
    {"internal_functions", SQLITE_TESTCTRL_INTERNAL_FUNCTIONS,0,""          },
    {"json_selfcheck",     SQLITE_TESTCTRL_JSON_SELFCHECK ,0,"BOOLEAN"      },
    {"localtime_fault",    SQLITE_TESTCTRL_LOCALTIME_FAULT,0,"BOOLEAN"      },
    {"never_corrupt",      SQLITE_TESTCTRL_NEVER_CORRUPT,1, "BOOLEAN"       },
    {"optimizations",      SQLITE_TESTCTRL_OPTIMIZATIONS,0,"DISABLE-MASK"   },







|







27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
    } aCtrl[] = {
    {"always",             SQLITE_TESTCTRL_ALWAYS, 1,     "BOOLEAN"         },
    {"assert",             SQLITE_TESTCTRL_ASSERT, 1,     "BOOLEAN"         },
  /*{"benign_malloc_hooks",SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS,1, ""        },*/
  /*{"bitvec_test",        SQLITE_TESTCTRL_BITVEC_TEST, 1,  ""              },*/
    {"byteorder",          SQLITE_TESTCTRL_BYTEORDER, 0,  ""                },
    {"extra_schema_checks",SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS,0,"BOOLEAN"  },
    {"fault_install",      SQLITE_TESTCTRL_FAULT_INSTALL, 1,"args..."       },
    {"fk_no_action",       SQLITE_TESTCTRL_FK_NO_ACTION, 0, "BOOLEAN"       },
    {"imposter",         SQLITE_TESTCTRL_IMPOSTER,1,"SCHEMA ON/OFF ROOTPAGE"},
    {"internal_functions", SQLITE_TESTCTRL_INTERNAL_FUNCTIONS,0,""          },
    {"json_selfcheck",     SQLITE_TESTCTRL_JSON_SELFCHECK ,0,"BOOLEAN"      },
    {"localtime_fault",    SQLITE_TESTCTRL_LOCALTIME_FAULT,0,"BOOLEAN"      },
    {"never_corrupt",      SQLITE_TESTCTRL_NEVER_CORRUPT,1, "BOOLEAN"       },
    {"optimizations",      SQLITE_TESTCTRL_OPTIMIZATIONS,0,"DISABLE-MASK"   },
27855
27856
27857
27858
27859
27860
27861


























































27862
27863
27864
27865
27866
27867
27868
            isOk = 1;
          }else{
            rc2 = booleanValue(azArg[2]);
            isOk = 3;
          }
          sqlite3_test_control(testctrl, &rc2);
          break;


























































      }
    }
    if( isOk==0 && iCtrl>=0 ){
      oputf("Usage: .testctrl %s %s\n", zCmd,aCtrl[iCtrl].zUsage);
      rc = 1;
    }else if( isOk==1 ){
      oputf("%d\n", rc2);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
            isOk = 1;
          }else{
            rc2 = booleanValue(azArg[2]);
            isOk = 3;
          }
          sqlite3_test_control(testctrl, &rc2);
          break;
        case SQLITE_TESTCTRL_FAULT_INSTALL: {
          int kk;
          int bShowHelp = nArg<=2;
          isOk = 3;
          for(kk=2; kk<nArg; kk++){
            const char *z = azArg[kk];
            if( z[0]=='-' && z[1]=='-' ) z++;
            if( cli_strcmp(z,"off")==0 ){
              sqlite3_test_control(testctrl, 0);
            }else if( cli_strcmp(z,"on")==0 ){
              faultsim_state.iCnt = faultsim_state.iInterval;
              if( faultsim_state.iErr==0 ) faultsim_state.iErr = 1;
              sqlite3_test_control(testctrl, faultsim_callback);
            }else if( cli_strcmp(z,"reset")==0 ){
              faultsim_state.iCnt = faultsim_state.iInterval;
            }else if( cli_strcmp(z,"status")==0 ){
              oputf("faultsim.iId:       %d\n", faultsim_state.iId);
              oputf("faultsim.iErr:      %d\n", faultsim_state.iErr);
              oputf("faultsim.iCnt:      %d\n", faultsim_state.iCnt);
              oputf("faultsim.iInterval: %d\n", faultsim_state.iInterval);
              oputf("faultsim.eVerbose:  %d\n", faultsim_state.eVerbose);
            }else if( cli_strcmp(z,"-v")==0 ){
              if( faultsim_state.eVerbose<2 ) faultsim_state.eVerbose++;
            }else if( cli_strcmp(z,"-q")==0 ){
              if( faultsim_state.eVerbose>0 ) faultsim_state.eVerbose--;
            }else if( cli_strcmp(z,"-id")==0 && kk+1<nArg ){
              faultsim_state.iId = atoi(azArg[++kk]);
            }else if( cli_strcmp(z,"-errcode")==0 && kk+1<nArg ){
              faultsim_state.iErr = atoi(azArg[++kk]);
            }else if( cli_strcmp(z,"-interval")==0 && kk+1<nArg ){
              faultsim_state.iInterval = atoi(azArg[++kk]);
            }else if( cli_strcmp(z,"-?")==0 || sqlite3_strglob("*help*",z)==0){
              bShowHelp = 1;
            }else{
              eputf("Unrecognized fault_install argument: \"%s\"\n",
                  azArg[kk]);
              rc = 1;
              bShowHelp = 1;
              break;
            }
          }
          if( bShowHelp ){
            oputz(
               "Usage: .testctrl fault_install ARGS\n"
               "Possible arguments:\n"
               "   off               Disable faultsim\n"
               "   on                Activate faultsim\n"
               "   reset             Reset the trigger counter\n"
               "   status            Show current status\n"
               "   -v                Increase verbosity\n"
               "   -q                Decrease verbosity\n"
               "   --errcode N       When triggered, return N as error code\n"
               "   --id ID           Trigger only for the ID specified\n"
               "   --interval N      Trigger only after every N-th call\n"
            );
          }
          break;
        }
      }
    }
    if( isOk==0 && iCtrl>=0 ){
      oputf("Usage: .testctrl %s %s\n", zCmd,aCtrl[iCtrl].zUsage);
      rc = 1;
    }else if( isOk==1 ){
      oputf("%d\n", rc2);
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
       "FILENAME is the name of an SQLite database. A new database is created\n"
       "if the file does not previously exist. Defaults to :memory:.\n", Argv0);
  if( showDetail ){
    eputf("OPTIONS include:\n%s", zOptions);
  }else{
    eputz("Use the -help option for additional information\n");
  }
  exit(1);
}

/*
** Internal check:  Verify that the SQLite is uninitialized.  Print a
** error message if it is initialized.
*/
static void verify_uninitialized(void){







|







28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
       "FILENAME is the name of an SQLite database. A new database is created\n"
       "if the file does not previously exist. Defaults to :memory:.\n", Argv0);
  if( showDetail ){
    eputf("OPTIONS include:\n%s", zOptions);
  }else{
    eputz("Use the -help option for additional information\n");
  }
  exit(0);
}

/*
** Internal check:  Verify that the SQLite is uninitialized.  Print a
** error message if it is initialized.
*/
static void verify_uninitialized(void){

Changes to extsrc/sqlite3.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.45.1.  By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
** programs, you need this file and the "sqlite3.h" header file that defines
** the programming interface to the SQLite library.  (If you do not have
** the "sqlite3.h" header file at hand, you will find a copy embedded within
** the text of this file.  Search for "Begin file sqlite3.h" to find the start
** of the embedded sqlite3.h header file.) Additional code files may be needed
** if you want a wrapper to interface SQLite with your choice of programming
** language. The code for the "sqlite3" command-line shell is also in a
** separate file. This file contains only code for the core SQLite library.
**
** The content in this amalgamation comes from Fossil check-in
** e876e51a0ed5c5b3126f52e532044363a014.
*/
#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
#ifndef SQLITE_PRIVATE
# define SQLITE_PRIVATE static
#endif
/************** Begin file sqliteInt.h ***************************************/


|

















|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.46.0.  By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
** programs, you need this file and the "sqlite3.h" header file that defines
** the programming interface to the SQLite library.  (If you do not have
** the "sqlite3.h" header file at hand, you will find a copy embedded within
** the text of this file.  Search for "Begin file sqlite3.h" to find the start
** of the embedded sqlite3.h header file.) Additional code files may be needed
** if you want a wrapper to interface SQLite with your choice of programming
** language. The code for the "sqlite3" command-line shell is also in a
** separate file. This file contains only code for the core SQLite library.
**
** The content in this amalgamation comes from Fossil check-in
** 27a2113d78b35e324e9aedda7403c96c56ad.
*/
#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
#ifndef SQLITE_PRIVATE
# define SQLITE_PRIVATE static
#endif
/************** Begin file sqliteInt.h ***************************************/
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
** been edited in any way since it was last checked in, then the last
** four hexadecimal digits of the hash may be modified.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.45.1"
#define SQLITE_VERSION_NUMBER 3045001
#define SQLITE_SOURCE_ID      "2024-01-30 16:01:20 e876e51a0ed5c5b3126f52e532044363a014bc594cfefa87ffb5b82257cc467a"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
** been edited in any way since it was last checked in, then the last
** four hexadecimal digits of the hash may be modified.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.46.0"
#define SQLITE_VERSION_NUMBER 3046000
#define SQLITE_SOURCE_ID      "2024-02-20 15:38:36 27a2113d78b35e324e9aedda7403c96c56ad0bed8c6b139fc5a179e8800b9109"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
729
730
731
732
733
734
735


736
737
738
739
740
741
742
** <ul>
** <li> The application must ensure that the 1st parameter to sqlite3_exec()
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.


** </ul>
*/
SQLITE_API int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */







>
>







729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
** <ul>
** <li> The application must ensure that the 1st parameter to sqlite3_exec()
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not dereference the arrays or string pointers
**       passed as the 3rd and 4th callback parameters after it returns.
** </ul>
*/
SQLITE_API int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
*/
#ifndef SQLITE_PTRSIZE
# if defined(__SIZEOF_POINTER__)
#   define SQLITE_PTRSIZE __SIZEOF_POINTER__
# elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
       defined(_M_ARM)   || defined(__arm__)    || defined(__x86)   ||    \
      (defined(__APPLE__) && defined(__POWERPC__)) ||                     \
      (defined(__TOS_AIX__) && !defined(__64BIT__))
#   define SQLITE_PTRSIZE 4
# else
#   define SQLITE_PTRSIZE 8
# endif
#endif








|







14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
*/
#ifndef SQLITE_PTRSIZE
# if defined(__SIZEOF_POINTER__)
#   define SQLITE_PTRSIZE __SIZEOF_POINTER__
# elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
       defined(_M_ARM)   || defined(__arm__)    || defined(__x86)   ||    \
      (defined(__APPLE__) && defined(__ppc__)) ||                         \
      (defined(__TOS_AIX__) && !defined(__64BIT__))
#   define SQLITE_PTRSIZE 4
# else
#   define SQLITE_PTRSIZE 8
# endif
#endif

16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
#define OP_IfNoHope       26 /* jump, synopsis: key=r[P3@P4]               */
#define OP_NoConflict     27 /* jump, synopsis: key=r[P3@P4]               */
#define OP_NotFound       28 /* jump, synopsis: key=r[P3@P4]               */
#define OP_Found          29 /* jump, synopsis: key=r[P3@P4]               */
#define OP_SeekRowid      30 /* jump, synopsis: intkey=r[P3]               */
#define OP_NotExists      31 /* jump, synopsis: intkey=r[P3]               */
#define OP_Last           32 /* jump                                       */
#define OP_IfSmaller      33 /* jump                                       */
#define OP_SorterSort     34 /* jump                                       */
#define OP_Sort           35 /* jump                                       */
#define OP_Rewind         36 /* jump                                       */
#define OP_SorterNext     37 /* jump                                       */
#define OP_Prev           38 /* jump                                       */
#define OP_Next           39 /* jump                                       */
#define OP_IdxLE          40 /* jump, synopsis: key=r[P3@P4]               */







|







16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
#define OP_IfNoHope       26 /* jump, synopsis: key=r[P3@P4]               */
#define OP_NoConflict     27 /* jump, synopsis: key=r[P3@P4]               */
#define OP_NotFound       28 /* jump, synopsis: key=r[P3@P4]               */
#define OP_Found          29 /* jump, synopsis: key=r[P3@P4]               */
#define OP_SeekRowid      30 /* jump, synopsis: intkey=r[P3]               */
#define OP_NotExists      31 /* jump, synopsis: intkey=r[P3]               */
#define OP_Last           32 /* jump                                       */
#define OP_IfSizeBetween  33 /* jump                                       */
#define OP_SorterSort     34 /* jump                                       */
#define OP_Sort           35 /* jump                                       */
#define OP_Rewind         36 /* jump                                       */
#define OP_SorterNext     37 /* jump                                       */
#define OP_Prev           38 /* jump                                       */
#define OP_Next           39 /* jump                                       */
#define OP_IdxLE          40 /* jump, synopsis: key=r[P3@P4]               */
17490
17491
17492
17493
17494
17495
17496




17497
17498
17499
17500
17501
17502
17503
*/
#define SQLITE_FUNC_HASH_SZ 23
struct FuncDefHash {
  FuncDef *a[SQLITE_FUNC_HASH_SZ];       /* Hash table for functions */
};
#define SQLITE_FUNC_HASH(C,L) (((C)+(L))%SQLITE_FUNC_HASH_SZ)





#ifdef SQLITE_USER_AUTHENTICATION
/*
** Information held in the "sqlite3" database connection object and used
** to manage user authentication.
*/
typedef struct sqlite3_userauth sqlite3_userauth;
struct sqlite3_userauth {







>
>
>
>







17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
*/
#define SQLITE_FUNC_HASH_SZ 23
struct FuncDefHash {
  FuncDef *a[SQLITE_FUNC_HASH_SZ];       /* Hash table for functions */
};
#define SQLITE_FUNC_HASH(C,L) (((C)+(L))%SQLITE_FUNC_HASH_SZ)

#if defined(SQLITE_USER_AUTHENTICATION)
# warning  "The SQLITE_USER_AUTHENTICATION extension is deprecated. \
 See ext/userauth/user-auth.txt for details."
#endif
#ifdef SQLITE_USER_AUTHENTICATION
/*
** Information held in the "sqlite3" database connection object and used
** to manage user authentication.
*/
typedef struct sqlite3_userauth sqlite3_userauth;
struct sqlite3_userauth {
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
#define TF_HasPrimaryKey  0x00000004 /* Table has a primary key */
#define TF_Autoincrement  0x00000008 /* Integer primary key is autoincrement */
#define TF_HasStat1       0x00000010 /* nRowLogEst set from sqlite_stat1 */
#define TF_HasVirtual     0x00000020 /* Has one or more VIRTUAL columns */
#define TF_HasStored      0x00000040 /* Has one or more STORED columns */
#define TF_HasGenerated   0x00000060 /* Combo: HasVirtual + HasStored */
#define TF_WithoutRowid   0x00000080 /* No rowid.  PRIMARY KEY is the key */
#define TF_StatsUsed      0x00000100 /* Query planner decisions affected by
                                     ** Index.aiRowLogEst[] values */
#define TF_NoVisibleRowid 0x00000200 /* No user-visible "rowid" column */
#define TF_OOOHidden      0x00000400 /* Out-of-Order hidden columns */
#define TF_HasNotNull     0x00000800 /* Contains NOT NULL constraints */
#define TF_Shadow         0x00001000 /* True for a shadow table */
#define TF_HasStat4       0x00002000 /* STAT4 info available for this table */
#define TF_Ephemeral      0x00004000 /* An ephemeral table */
#define TF_Eponymous      0x00008000 /* An eponymous virtual table */







|
<







18372
18373
18374
18375
18376
18377
18378
18379

18380
18381
18382
18383
18384
18385
18386
#define TF_HasPrimaryKey  0x00000004 /* Table has a primary key */
#define TF_Autoincrement  0x00000008 /* Integer primary key is autoincrement */
#define TF_HasStat1       0x00000010 /* nRowLogEst set from sqlite_stat1 */
#define TF_HasVirtual     0x00000020 /* Has one or more VIRTUAL columns */
#define TF_HasStored      0x00000040 /* Has one or more STORED columns */
#define TF_HasGenerated   0x00000060 /* Combo: HasVirtual + HasStored */
#define TF_WithoutRowid   0x00000080 /* No rowid.  PRIMARY KEY is the key */
#define TF_MaybeReanalyze 0x00000100 /* Maybe run ANALYZE on this table */

#define TF_NoVisibleRowid 0x00000200 /* No user-visible "rowid" column */
#define TF_OOOHidden      0x00000400 /* Out-of-Order hidden columns */
#define TF_HasNotNull     0x00000800 /* Contains NOT NULL constraints */
#define TF_Shadow         0x00001000 /* True for a shadow table */
#define TF_HasStat4       0x00002000 /* STAT4 info available for this table */
#define TF_Ephemeral      0x00004000 /* An ephemeral table */
#define TF_Eponymous      0x00008000 /* An eponymous virtual table */
25334
25335
25336
25337
25338
25339
25340
25341
25342















































25343
25344
25345
25346
25347

25348



25349


25350
25351

25352
25353



25354
25355


25356


25357
25358
25359
25360
25361
25362
25363
25364
      zBuf[0] = '-';
      sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT);
    }else{
      sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT);
    }
  }
}

/*















































**    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
**
** Return a string described by FORMAT.  Conversions as follows:
**
**   %d  day of month

**   %f  ** fractional seconds  SS.SSS



**   %H  hour 00-24


**   %j  day of year 000-366
**   %J  ** julian day number

**   %m  month 01-12
**   %M  minute 00-59



**   %s  seconds since 1970-01-01
**   %S  seconds 00-59


**   %w  day of week 0-6  Sunday==0


**   %W  week of year 00-53
**   %Y  year 0000-9999
**   %%  %
*/
static void strftimeFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|
>

>
>
>

>
>
|

>


>
>
>


>
>
|
>
>
|







25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
      zBuf[0] = '-';
      sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT);
    }else{
      sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT);
    }
  }
}

/*
** Compute the number of days after the most recent January 1.
**
** In other words, compute the zero-based day number for the
** current year:
**
**   Jan01 = 0,  Jan02 = 1, ..., Jan31 = 30, Feb01 = 31, ...
**   Dec31 = 364 or 365.
*/
static int daysAfterJan01(DateTime *pDate){
  DateTime jan01 = *pDate;
  assert( jan01.validYMD );
  assert( jan01.validHMS );
  assert( pDate->validJD );
  jan01.validJD = 0;
  jan01.M = 1;
  jan01.D = 1;
  computeJD(&jan01);
  return (int)((pDate->iJD-jan01.iJD+43200000)/86400000);
}

/*
** Return the number of days after the most recent Monday.
**
** In other words, return the day of the week according
** to this code:
**
**   0=Monday, 1=Tuesday, 2=Wednesday, ..., 6=Sunday.
*/
static int daysAfterMonday(DateTime *pDate){
  assert( pDate->validJD );
  return (int)((pDate->iJD+43200000)/86400000) % 7;
}

/*
** Return the number of days after the most recent Sunday.
**
** In other words, return the day of the week according
** to this code:
**
**   0=Sunday, 1=Monday, 2=Tues, ..., 6=Saturday
*/
static int daysAfterSunday(DateTime *pDate){
  assert( pDate->validJD );
  return (int)((pDate->iJD+129600000)/86400000) % 7;
}

/*
**    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
**
** Return a string described by FORMAT.  Conversions as follows:
**
**   %d  day of month  01-31
**   %e  day of month  1-31
**   %f  ** fractional seconds  SS.SSS
**   %F  ISO date.  YYYY-MM-DD
**   %G  ISO year corresponding to %V 0000-9999.
**   %g  2-digit ISO year corresponding to %V 00-99
**   %H  hour 00-24
**   %k  hour  0-24  (leading zero converted to space)
**   %I  hour 01-12
**   %j  day of year 001-366
**   %J  ** julian day number
**   %l  hour  1-12  (leading zero converted to space)
**   %m  month 01-12
**   %M  minute 00-59
**   %p  "am" or "pm"
**   %P  "AM" or "PM"
**   %R  time as HH:MM
**   %s  seconds since 1970-01-01
**   %S  seconds 00-59
**   %T  time as HH:MM:SS
**   %u  day of week 1-7  Monday==1, Sunday==7
**   %w  day of week 0-6  Sunday==0, Monday==1
**   %U  week of year 00-53  (First Sunday is start of week 01)
**   %V  week of year 01-53  (First week containing Thursday is week 01)
**   %W  week of year 00-53  (First Monday is start of week 01)
**   %Y  year 0000-9999
**   %%  %
*/
static void strftimeFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402















25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
    cf = zFmt[i];
    switch( cf ){
      case 'd':  /* Fall thru */
      case 'e': {
        sqlite3_str_appendf(&sRes, cf=='d' ? "%02d" : "%2d", x.D);
        break;
      }
      case 'f': {
        double s = x.s;
        if( s>59.999 ) s = 59.999;
        sqlite3_str_appendf(&sRes, "%06.3f", s);
        break;
      }
      case 'F': {
        sqlite3_str_appendf(&sRes, "%04d-%02d-%02d", x.Y, x.M, x.D);
        break;















      }
      case 'H':
      case 'k': {
        sqlite3_str_appendf(&sRes, cf=='H' ? "%02d" : "%2d", x.h);
        break;
      }
      case 'I': /* Fall thru */
      case 'l': {
        int h = x.h;
        if( h>12 ) h -= 12;
        if( h==0 ) h = 12;
        sqlite3_str_appendf(&sRes, cf=='I' ? "%02d" : "%2d", h);
        break;
      }
      case 'W': /* Fall thru */
      case 'j': {
        int nDay;             /* Number of days since 1st day of year */
        DateTime y = x;
        y.validJD = 0;
        y.M = 1;
        y.D = 1;
        computeJD(&y);
        nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
        if( cf=='W' ){
          int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
          wd = (int)(((x.iJD+43200000)/86400000)%7);
          sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7);
        }else{
          sqlite3_str_appendf(&sRes,"%03d",nDay+1);
        }
        break;
      }
      case 'J': {
        sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0);
        break;
      }
      case 'm': {
        sqlite3_str_appendf(&sRes,"%02d",x.M);
        break;
      }







|








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














<
|
<
<
<
<
<
<
<
<
<
<
<
<
|
<


|







25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497

25498












25499

25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
    cf = zFmt[i];
    switch( cf ){
      case 'd':  /* Fall thru */
      case 'e': {
        sqlite3_str_appendf(&sRes, cf=='d' ? "%02d" : "%2d", x.D);
        break;
      }
      case 'f': {  /* Fractional seconds.  (Non-standard) */
        double s = x.s;
        if( s>59.999 ) s = 59.999;
        sqlite3_str_appendf(&sRes, "%06.3f", s);
        break;
      }
      case 'F': {
        sqlite3_str_appendf(&sRes, "%04d-%02d-%02d", x.Y, x.M, x.D);
        break;
      }
      case 'G': /* Fall thru */
      case 'g': {
        DateTime y = x;
        assert( y.validJD );
        /* Move y so that it is the Thursday in the same week as x */
        y.iJD += (3 - daysAfterMonday(&x))*86400000;
        y.validYMD = 0;
        computeYMD(&y);
        if( cf=='g' ){
          sqlite3_str_appendf(&sRes, "%02d", y.Y%100);
        }else{
          sqlite3_str_appendf(&sRes, "%04d", y.Y);
        }
        break;
      }
      case 'H':
      case 'k': {
        sqlite3_str_appendf(&sRes, cf=='H' ? "%02d" : "%2d", x.h);
        break;
      }
      case 'I': /* Fall thru */
      case 'l': {
        int h = x.h;
        if( h>12 ) h -= 12;
        if( h==0 ) h = 12;
        sqlite3_str_appendf(&sRes, cf=='I' ? "%02d" : "%2d", h);
        break;
      }

      case 'j': {  /* Day of year.  Jan01==1, Jan02==2, and so forth */












        sqlite3_str_appendf(&sRes,"%03d",daysAfterJan01(&x)+1);

        break;
      }
      case 'J': {  /* Julian day number.  (Non-standard) */
        sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0);
        break;
      }
      case 'm': {
        sqlite3_str_appendf(&sRes,"%02d",x.M);
        break;
      }
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483




















25484
25485
25486
25487
25488
25489
25490
        sqlite3_str_appendf(&sRes,"%02d",(int)x.s);
        break;
      }
      case 'T': {
        sqlite3_str_appendf(&sRes,"%02d:%02d:%02d", x.h, x.m, (int)x.s);
        break;
      }
      case 'u': /* Fall thru */
      case 'w': {
        char c = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
        if( c=='0' && cf=='u' ) c = '7';
        sqlite3_str_appendchar(&sRes, 1, c);
        break;




















      }
      case 'Y': {
        sqlite3_str_appendf(&sRes,"%04d",x.Y);
        break;
      }
      case '%': {
        sqlite3_str_appendchar(&sRes, 1, '%');







|
|
|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
        sqlite3_str_appendf(&sRes,"%02d",(int)x.s);
        break;
      }
      case 'T': {
        sqlite3_str_appendf(&sRes,"%02d:%02d:%02d", x.h, x.m, (int)x.s);
        break;
      }
      case 'u':    /* Day of week.  1 to 7.  Monday==1, Sunday==7 */
      case 'w': {  /* Day of week.  0 to 6.  Sunday==0, Monday==1 */
        char c = (char)daysAfterSunday(&x) + '0';
        if( c=='0' && cf=='u' ) c = '7';
        sqlite3_str_appendchar(&sRes, 1, c);
        break;
      }
      case 'U': {  /* Week num. 00-53. First Sun of the year is week 01 */
        sqlite3_str_appendf(&sRes,"%02d",
              (daysAfterJan01(&x)-daysAfterSunday(&x)+7)/7);
        break;
      }
      case 'V': {  /* Week num. 01-53. First week with a Thur is week 01 */
        DateTime y = x;
        /* Adjust y so that is the Thursday in the same week as x */
        assert( y.validJD );
        y.iJD += (3 - daysAfterMonday(&x))*86400000;
        y.validYMD = 0;
        computeYMD(&y);
        sqlite3_str_appendf(&sRes,"%02d", daysAfterJan01(&y)/7+1);
        break;
      }
      case 'W': {  /* Week num. 00-53. First Mon of the year is week 01 */
        sqlite3_str_appendf(&sRes,"%02d",
           (daysAfterJan01(&x)-daysAfterMonday(&x)+7)/7);
        break;
      }
      case 'Y': {
        sqlite3_str_appendf(&sRes,"%04d",x.Y);
        break;
      }
      case '%': {
        sqlite3_str_appendchar(&sRes, 1, '%');
30125
30126
30127
30128
30129
30130
30131


















30132
30133
30134
30135
30136
30137
30138
static void sqlite3MallocAlarm(int nByte){
  if( mem0.alarmThreshold<=0 ) return;
  sqlite3_mutex_leave(mem0.mutex);
  sqlite3_release_memory(nByte);
  sqlite3_mutex_enter(mem0.mutex);
}



















/*
** Do a memory allocation with statistics and alarms.  Assume the
** lock is already held.
*/
static void mallocWithAlarm(int n, void **pp){
  void *p;
  int nFull;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
static void sqlite3MallocAlarm(int nByte){
  if( mem0.alarmThreshold<=0 ) return;
  sqlite3_mutex_leave(mem0.mutex);
  sqlite3_release_memory(nByte);
  sqlite3_mutex_enter(mem0.mutex);
}

#ifdef SQLITE_DEBUG
/*
** This routine is called whenever an out-of-memory condition is seen,
** It's only purpose to to serve as a breakpoint for gdb or similar
** code debuggers when working on out-of-memory conditions, for example
** caused by PRAGMA hard_heap_limit=N.
*/
static SQLITE_NOINLINE void test_oom_breakpoint(void){
  static u64 nOomFault = 0;
  nOomFault++;
  /* The assert() is never reached in a human lifetime.  It  is here mostly
  ** to prevent code optimizers from optimizing out this function. */
  assert( (nOomFault>>32) < 0xffffffff );
}
#else
# define test_oom_breakpoint(X)   /* No-op for production builds */
#endif

/*
** Do a memory allocation with statistics and alarms.  Assume the
** lock is already held.
*/
static void mallocWithAlarm(int n, void **pp){
  void *p;
  int nFull;
30151
30152
30153
30154
30155
30156
30157

30158
30159
30160
30161
30162
30163
30164
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      AtomicStore(&mem0.nearlyFull, 1);
      sqlite3MallocAlarm(nFull);
      if( mem0.hardLimit ){
        nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
        if( nUsed >= mem0.hardLimit - nFull ){

          *pp = 0;
          return;
        }
      }
    }else{
      AtomicStore(&mem0.nearlyFull, 0);
    }







>







30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      AtomicStore(&mem0.nearlyFull, 1);
      sqlite3MallocAlarm(nFull);
      if( mem0.hardLimit ){
        nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
        if( nUsed >= mem0.hardLimit - nFull ){
          test_oom_breakpoint();
          *pp = 0;
          return;
        }
      }
    }else{
      AtomicStore(&mem0.nearlyFull, 0);
    }
30439
30440
30441
30442
30443
30444
30445

30446
30447
30448
30449
30450
30451
30452
    sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
      if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
        sqlite3_mutex_leave(mem0.mutex);

        return 0;
      }
    }
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    if( pNew==0 && mem0.alarmThreshold>0 ){
      sqlite3MallocAlarm((int)nBytes);







>







30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
    sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
      if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
        sqlite3_mutex_leave(mem0.mutex);
        test_oom_breakpoint();
        return 0;
      }
    }
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    if( pNew==0 && mem0.alarmThreshold>0 ){
      sqlite3MallocAlarm((int)nBytes);
31305
31306
31307
31308
31309
31310
31311

31312
31313
31314
31315
31316
31317
31318
        if( precision>SQLITE_FP_PRECISION_LIMIT ){
          precision = SQLITE_FP_PRECISION_LIMIT;
        }
#endif
        if( xtype==etFLOAT ){
          iRound = -precision;
        }else if( xtype==etGENERIC ){

          iRound = precision;
        }else{
          iRound = precision+1;
        }
        sqlite3FpDecode(&s, realvalue, iRound, flag_altform2 ? 26 : 16);
        if( s.isSpecial ){
          if( s.isSpecial==2 ){







>







31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
        if( precision>SQLITE_FP_PRECISION_LIMIT ){
          precision = SQLITE_FP_PRECISION_LIMIT;
        }
#endif
        if( xtype==etFLOAT ){
          iRound = -precision;
        }else if( xtype==etGENERIC ){
          if( precision==0 ) precision = 1;
          iRound = precision;
        }else{
          iRound = precision+1;
        }
        sqlite3FpDecode(&s, realvalue, iRound, flag_altform2 ? 26 : 16);
        if( s.isSpecial ){
          if( s.isSpecial==2 ){
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353


31354
31355
31356
31357
31358
31359
31360
        if( s.sign=='-' ){
          prefix = '-';
        }else{
          prefix = flag_prefix;
        }

        exp = s.iDP-1;
        if( xtype==etGENERIC && precision>0 ) precision--;

        /*
        ** If the field type is etGENERIC, then convert to either etEXP
        ** or etFLOAT, as appropriate.
        */
        if( xtype==etGENERIC ){


          flag_rtz = !flag_alternateform;
          if( exp<-4 || exp>precision ){
            xtype = etEXP;
          }else{
            precision = precision - exp;
            xtype = etFLOAT;
          }







<






>
>







31448
31449
31450
31451
31452
31453
31454

31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
        if( s.sign=='-' ){
          prefix = '-';
        }else{
          prefix = flag_prefix;
        }

        exp = s.iDP-1;


        /*
        ** If the field type is etGENERIC, then convert to either etEXP
        ** or etFLOAT, as appropriate.
        */
        if( xtype==etGENERIC ){
          assert( precision>0 );
          precision--;
          flag_rtz = !flag_alternateform;
          if( exp<-4 || exp>precision ){
            xtype = etEXP;
          }else{
            precision = precision - exp;
            xtype = etFLOAT;
          }
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
  assert( v>0 );
  while( v ){  p->zBuf[i--] = (v%10) + '0'; v /= 10; }
  assert( i>=0 && i<sizeof(p->zBuf)-1 );
  p->n = sizeof(p->zBuf) - 1 - i;
  assert( p->n>0 );
  assert( p->n<sizeof(p->zBuf) );
  p->iDP = p->n + exp;
  if( iRound<0 ){
    iRound = p->iDP - iRound;
    if( iRound==0 && p->zBuf[i+1]>='5' ){
      iRound = 1;
      p->zBuf[i--] = '0';
      p->n++;
      p->iDP++;
    }







|







35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
  assert( v>0 );
  while( v ){  p->zBuf[i--] = (v%10) + '0'; v /= 10; }
  assert( i>=0 && i<sizeof(p->zBuf)-1 );
  p->n = sizeof(p->zBuf) - 1 - i;
  assert( p->n>0 );
  assert( p->n<sizeof(p->zBuf) );
  p->iDP = p->n + exp;
  if( iRound<=0 ){
    iRound = p->iDP - iRound;
    if( iRound==0 && p->zBuf[i+1]>='5' ){
      iRound = 1;
      p->zBuf[i--] = '0';
      p->n++;
      p->iDP++;
    }
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
    /*  26 */ "IfNoHope"         OpHelp("key=r[P3@P4]"),
    /*  27 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
    /*  28 */ "NotFound"         OpHelp("key=r[P3@P4]"),
    /*  29 */ "Found"            OpHelp("key=r[P3@P4]"),
    /*  30 */ "SeekRowid"        OpHelp("intkey=r[P3]"),
    /*  31 */ "NotExists"        OpHelp("intkey=r[P3]"),
    /*  32 */ "Last"             OpHelp(""),
    /*  33 */ "IfSmaller"        OpHelp(""),
    /*  34 */ "SorterSort"       OpHelp(""),
    /*  35 */ "Sort"             OpHelp(""),
    /*  36 */ "Rewind"           OpHelp(""),
    /*  37 */ "SorterNext"       OpHelp(""),
    /*  38 */ "Prev"             OpHelp(""),
    /*  39 */ "Next"             OpHelp(""),
    /*  40 */ "IdxLE"            OpHelp("key=r[P3@P4]"),







|







36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
    /*  26 */ "IfNoHope"         OpHelp("key=r[P3@P4]"),
    /*  27 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
    /*  28 */ "NotFound"         OpHelp("key=r[P3@P4]"),
    /*  29 */ "Found"            OpHelp("key=r[P3@P4]"),
    /*  30 */ "SeekRowid"        OpHelp("intkey=r[P3]"),
    /*  31 */ "NotExists"        OpHelp("intkey=r[P3]"),
    /*  32 */ "Last"             OpHelp(""),
    /*  33 */ "IfSizeBetween"    OpHelp(""),
    /*  34 */ "SorterSort"       OpHelp(""),
    /*  35 */ "Sort"             OpHelp(""),
    /*  36 */ "Rewind"           OpHelp(""),
    /*  37 */ "SorterNext"       OpHelp(""),
    /*  38 */ "Prev"             OpHelp(""),
    /*  39 */ "Next"             OpHelp(""),
    /*  40 */ "IdxLE"            OpHelp("key=r[P3@P4]"),
39258
39259
39260
39261
39262
39263
39264



39265
39266

39267
39268
39269
39270
39271
39272
39273
  ** Otherwise, assume that the system provides the POSIX version of
  ** strerror_r(), which always writes an error message into aErr[].
  **
  ** If the code incorrectly assumes that it is the POSIX version that is
  ** available, the error message will often be an empty string. Not a
  ** huge problem. Incorrectly concluding that the GNU version is available
  ** could lead to a segfault though.



  */
#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)

  zErr =
# endif
  strerror_r(iErrno, aErr, sizeof(aErr)-1);

#elif SQLITE_THREADSAFE
  /* This is a threadsafe build, but strerror_r() is not available. */
  zErr = "";







>
>
>

|
>







39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
  ** Otherwise, assume that the system provides the POSIX version of
  ** strerror_r(), which always writes an error message into aErr[].
  **
  ** If the code incorrectly assumes that it is the POSIX version that is
  ** available, the error message will often be an empty string. Not a
  ** huge problem. Incorrectly concluding that the GNU version is available
  ** could lead to a segfault though.
  **
  ** Forum post 3f13857fa4062301 reports that the Android SDK may use
  ** int-type return, depending on its version.
  */
#if (defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)) \
  && !defined(ANDROID) && !defined(__ANDROID__)
  zErr =
# endif
  strerror_r(iErrno, aErr, sizeof(aErr)-1);

#elif SQLITE_THREADSAFE
  /* This is a threadsafe build, but strerror_r() is not available. */
  zErr = "";
53258
53259
53260
53261
53262
53263
53264








53265
53266
53267
53268
53269
53270
53271
  sqlite3_free(zSql);
  if( rc ) return 0;
  rc = sqlite3_step(pStmt);
  if( rc!=SQLITE_ROW ){
    pOut = 0;
  }else{
    sz = sqlite3_column_int64(pStmt, 0)*szPage;








    if( piSize ) *piSize = sz;
    if( mFlags & SQLITE_SERIALIZE_NOCOPY ){
      pOut = 0;
    }else{
      pOut = sqlite3_malloc64( sz );
      if( pOut ){
        int nPage = sqlite3_column_int(pStmt, 0);







>
>
>
>
>
>
>
>







53371
53372
53373
53374
53375
53376
53377
53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388
53389
53390
53391
53392
  sqlite3_free(zSql);
  if( rc ) return 0;
  rc = sqlite3_step(pStmt);
  if( rc!=SQLITE_ROW ){
    pOut = 0;
  }else{
    sz = sqlite3_column_int64(pStmt, 0)*szPage;
    if( sz==0 ){
      sqlite3_reset(pStmt);
      sqlite3_exec(db, "BEGIN IMMEDIATE; COMMIT;", 0, 0, 0);
      rc = sqlite3_step(pStmt);
      if( rc==SQLITE_ROW ){
        sz = sqlite3_column_int64(pStmt, 0)*szPage;
      }
    }
    if( piSize ) *piSize = sz;
    if( mFlags & SQLITE_SERIALIZE_NOCOPY ){
      pOut = 0;
    }else{
      pOut = sqlite3_malloc64( sz );
      if( pOut ){
        int nPage = sqlite3_column_int(pStmt, 0);
70279
70280
70281
70282
70283
70284
70285






70286
70287

































70288
70289
70290
70291
70292
70293
70294
  return SQLITE_CORRUPT_BKPT;
}
# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
#else
# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
#endif







#ifndef SQLITE_OMIT_SHARED_CACHE


































#ifdef SQLITE_DEBUG
/*
**** This function is only used as part of an assert() statement. ***
**
** Check to see if pBtree holds the required locks to read or write to the
** table with root page iRoot.   Return 1 if it does and 0 if not.
**







>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
  return SQLITE_CORRUPT_BKPT;
}
# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
#else
# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
#endif

/* Default value for SHARED_LOCK_TRACE macro if shared-cache is disabled
** or if the lock tracking is disabled.  This is always the value for
** release builds.
*/
#define SHARED_LOCK_TRACE(X,MSG,TAB,TYPE)  /*no-op*/

#ifndef SQLITE_OMIT_SHARED_CACHE

#if 0
/*  ^----  Change to 1 and recompile to enable shared-lock tracing
**         for debugging purposes.
**
** Print all shared-cache locks on a BtShared.  Debugging use only.
*/
static void sharedLockTrace(
  BtShared *pBt,
  const char *zMsg,
  int iRoot,
  int eLockType
){
  BtLock *pLock;
  if( iRoot>0 ){
    printf("%s-%p %u%s:", zMsg, pBt, iRoot, eLockType==READ_LOCK?"R":"W");
  }else{
    printf("%s-%p:", zMsg, pBt);
  }
  for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
    printf(" %p/%u%s", pLock->pBtree, pLock->iTable,
           pLock->eLock==READ_LOCK ? "R" : "W");
    while( pLock->pNext && pLock->pBtree==pLock->pNext->pBtree ){
      pLock = pLock->pNext;
      printf(",%u%s", pLock->iTable, pLock->eLock==READ_LOCK ? "R" : "W");
    }
  }
  printf("\n");
  fflush(stdout);
}
#undef SHARED_LOCK_TRACE
#define SHARED_LOCK_TRACE(X,MSG,TAB,TYPE)  sharedLockTrace(X,MSG,TAB,TYPE)
#endif /* Shared-lock tracing */

#ifdef SQLITE_DEBUG
/*
**** This function is only used as part of an assert() statement. ***
**
** Check to see if pBtree holds the required locks to read or write to the
** table with root page iRoot.   Return 1 if it does and 0 if not.
**
70356
70357
70358
70359
70360
70361
70362


70363
70364
70365
70366
70367
70368
70369
        iTab = pIdx->pTable->tnum;
        bSeen = 1;
      }
    }
  }else{
    iTab = iRoot;
  }



  /* Search for the required lock. Either a write-lock on root-page iTab, a
  ** write-lock on the schema table, or (if the client is reading) a
  ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
  for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
    if( pLock->pBtree==pBtree
     && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))







>
>







70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
        iTab = pIdx->pTable->tnum;
        bSeen = 1;
      }
    }
  }else{
    iTab = iRoot;
  }

  SHARED_LOCK_TRACE(pBtree->pBt,"hasLock",iRoot,eLockType);

  /* Search for the required lock. Either a write-lock on root-page iTab, a
  ** write-lock on the schema table, or (if the client is reading) a
  ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
  for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
    if( pLock->pBtree==pBtree
     && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
70490
70491
70492
70493
70494
70495
70496


70497
70498
70499
70500
70501
70502
70503
** is returned if a malloc attempt fails.
*/
static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;



  assert( sqlite3BtreeHoldsMutex(p) );
  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
  assert( p->db!=0 );

  /* A connection with the read-uncommitted flag set will never try to
  ** obtain a read-lock using this function. The only read-lock obtained
  ** by a connection in read-uncommitted mode is on the sqlite_schema







>
>







70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
** is returned if a malloc attempt fails.
*/
static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;

  SHARED_LOCK_TRACE(pBt,"setLock", iTable, eLock);

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
  assert( p->db!=0 );

  /* A connection with the read-uncommitted flag set will never try to
  ** obtain a read-lock using this function. The only read-lock obtained
  ** by a connection in read-uncommitted mode is on the sqlite_schema
70557
70558
70559
70560
70561
70562
70563


70564
70565
70566
70567
70568
70569
70570
  BtShared *pBt = p->pBt;
  BtLock **ppIter = &pBt->pLock;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->sharable || 0==*ppIter );
  assert( p->inTrans>0 );



  while( *ppIter ){
    BtLock *pLock = *ppIter;
    assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
    assert( pLock->pBtree->inTrans>=pLock->eLock );
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
      assert( pLock->iTable!=1 || pLock==&p->lock );







>
>







70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
  BtShared *pBt = p->pBt;
  BtLock **ppIter = &pBt->pLock;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->sharable || 0==*ppIter );
  assert( p->inTrans>0 );

  SHARED_LOCK_TRACE(pBt, "clearAllLocks", 0, 0);

  while( *ppIter ){
    BtLock *pLock = *ppIter;
    assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
    assert( pLock->pBtree->inTrans>=pLock->eLock );
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
      assert( pLock->iTable!=1 || pLock==&p->lock );
70595
70596
70597
70598
70599
70600
70601



70602
70603
70604
70605
70606
70607
70608
}

/*
** This function changes all write-locks held by Btree p into read-locks.
*/
static void downgradeAllSharedCacheTableLocks(Btree *p){
  BtShared *pBt = p->pBt;



  if( pBt->pWriter==p ){
    BtLock *pLock;
    pBt->pWriter = 0;
    pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
    for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
      assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
      pLock->eLock = READ_LOCK;







>
>
>







70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
}

/*
** This function changes all write-locks held by Btree p into read-locks.
*/
static void downgradeAllSharedCacheTableLocks(Btree *p){
  BtShared *pBt = p->pBt;

  SHARED_LOCK_TRACE(pBt, "downgradeLocks", 0, 0);

  if( pBt->pWriter==p ){
    BtLock *pLock;
    pBt->pWriter = 0;
    pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
    for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
      assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
      pLock->eLock = READ_LOCK;
75208
75209
75210
75211
75212
75213
75214
75215



75216
75217

75218
75219
75220
75221
75222
75223
75224
    ** means "not yet known" (the cache is lazily populated).
    */
    if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      if( pCur->aOverflow==0
       || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
      ){
        Pgno *aNew = (Pgno*)sqlite3Realloc(



            pCur->aOverflow, nOvfl*2*sizeof(Pgno)
        );

        if( aNew==0 ){
          return SQLITE_NOMEM_BKPT;
        }else{
          pCur->aOverflow = aNew;
        }
      }
      memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));







|
>
>
>
|
<
>







75377
75378
75379
75380
75381
75382
75383
75384
75385
75386
75387
75388

75389
75390
75391
75392
75393
75394
75395
75396
    ** means "not yet known" (the cache is lazily populated).
    */
    if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      if( pCur->aOverflow==0
       || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
      ){
        Pgno *aNew;
        if( sqlite3FaultSim(413) ){
          aNew = 0;
        }else{
          aNew = (Pgno*)sqlite3Realloc(pCur->aOverflow, nOvfl*2*sizeof(Pgno));

        }
        if( aNew==0 ){
          return SQLITE_NOMEM_BKPT;
        }else{
          pCur->aOverflow = aNew;
        }
      }
      memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
76259
76260
76261
76262
76263
76264
76265
76266

76267
76268
76269
76270
76271
76272
76273
76274
76275
76276
SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
  i64 n;
  u8 i;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* Currently this interface is only called by the OP_IfSmaller

  ** opcode, and it that case the cursor will always be valid and
  ** will always point to a leaf node. */
  if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
  if( NEVER(pCur->pPage->leaf==0) ) return -1;

  n = pCur->pPage->nCell;
  for(i=0; i<pCur->iPage; i++){
    n *= pCur->apPage[i]->nCell;
  }
  return n;







|
>
|
<
|







76431
76432
76433
76434
76435
76436
76437
76438
76439
76440

76441
76442
76443
76444
76445
76446
76447
76448
SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
  i64 n;
  u8 i;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* Currently this interface is only called by the OP_IfSizeBetween
  ** opcode and the OP_Count opcode with P3=1.  In either case,
  ** the cursor will always be valid unless the btree is empty. */

  if( pCur->eState!=CURSOR_VALID ) return 0;
  if( NEVER(pCur->pPage->leaf==0) ) return -1;

  n = pCur->pPage->nCell;
  for(i=0; i<pCur->iPage; i++){
    n *= pCur->apPage[i]->nCell;
  }
  return n;
78390
78391
78392
78393
78394
78395
78396
78397
78398
78399
78400
78401
78402
78403
78404
    u8 *piEnd;
    VVA_ONLY( int nCellAtStart = b.nCell; )

    /* Verify that all sibling pages are of the same "type" (table-leaf,
    ** table-interior, index-leaf, or index-interior).
    */
    if( pOld->aData[0]!=apOld[0]->aData[0] ){
      rc = SQLITE_CORRUPT_BKPT;
      goto balance_cleanup;
    }

    /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
    ** contains overflow cells, include them in the b.apCell[] array
    ** in the correct spot.
    **







|







78562
78563
78564
78565
78566
78567
78568
78569
78570
78571
78572
78573
78574
78575
78576
    u8 *piEnd;
    VVA_ONLY( int nCellAtStart = b.nCell; )

    /* Verify that all sibling pages are of the same "type" (table-leaf,
    ** table-interior, index-leaf, or index-interior).
    */
    if( pOld->aData[0]!=apOld[0]->aData[0] ){
      rc = SQLITE_CORRUPT_PAGE(pOld);
      goto balance_cleanup;
    }

    /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
    ** contains overflow cells, include them in the b.apCell[] array
    ** in the correct spot.
    **
78414
78415
78416
78417
78418
78419
78420
78421
78422
78423
78424
78425
78426
78427
78428
    ** offset section of the btree page will be overwritten and we will no
    ** long be able to find the cells if a pointer to each cell is not saved
    ** first.
    */
    memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
    if( pOld->nOverflow>0 ){
      if( NEVER(limit<pOld->aiOvfl[0]) ){
        rc = SQLITE_CORRUPT_BKPT;
        goto balance_cleanup;
      }
      limit = pOld->aiOvfl[0];
      for(j=0; j<limit; j++){
        b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
        piCell += 2;
        b.nCell++;







|







78586
78587
78588
78589
78590
78591
78592
78593
78594
78595
78596
78597
78598
78599
78600
    ** offset section of the btree page will be overwritten and we will no
    ** long be able to find the cells if a pointer to each cell is not saved
    ** first.
    */
    memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
    if( pOld->nOverflow>0 ){
      if( NEVER(limit<pOld->aiOvfl[0]) ){
        rc = SQLITE_CORRUPT_PAGE(pOld);
        goto balance_cleanup;
      }
      limit = pOld->aiOvfl[0];
      for(j=0; j<limit; j++){
        b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
        piCell += 2;
        b.nCell++;
79057
79058
79059
79060
79061
79062
79063
79064
79065
79066
79067
79068
79069
79070
79071
static int anotherValidCursor(BtCursor *pCur){
  BtCursor *pOther;
  for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
    if( pOther!=pCur
     && pOther->eState==CURSOR_VALID
     && pOther->pPage==pCur->pPage
    ){
      return SQLITE_CORRUPT_BKPT;
    }
  }
  return SQLITE_OK;
}

/*
** The page that pCur currently points to has just been modified in







|







79229
79230
79231
79232
79233
79234
79235
79236
79237
79238
79239
79240
79241
79242
79243
static int anotherValidCursor(BtCursor *pCur){
  BtCursor *pOther;
  for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
    if( pOther!=pCur
     && pOther->eState==CURSOR_VALID
     && pOther->pPage==pCur->pPage
    ){
      return SQLITE_CORRUPT_PAGE(pCur->pPage);
    }
  }
  return SQLITE_OK;
}

/*
** The page that pCur currently points to has just been modified in
79117
79118
79119
79120
79121
79122
79123
79124
79125
79126
79127
79128
79129
79130
79131
      }else{
        break;
      }
    }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){
      /* The page being written is not a root page, and there is currently
      ** more than one reference to it. This only happens if the page is one
      ** of its own ancestor pages. Corruption. */
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      MemPage * const pParent = pCur->apPage[iPage-1];
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite3PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK && pParent->nFree<0 ){
        rc = btreeComputeFreeSpace(pParent);







|







79289
79290
79291
79292
79293
79294
79295
79296
79297
79298
79299
79300
79301
79302
79303
      }else{
        break;
      }
    }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){
      /* The page being written is not a root page, and there is currently
      ** more than one reference to it. This only happens if the page is one
      ** of its own ancestor pages. Corruption. */
      rc = SQLITE_CORRUPT_PAGE(pPage);
    }else{
      MemPage * const pParent = pCur->apPage[iPage-1];
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite3PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK && pParent->nFree<0 ){
        rc = btreeComputeFreeSpace(pParent);
79281
79282
79283
79284
79285
79286
79287
79288
79289
79290
79291
79292
79293
79294
79295
  ovflPgno = get4byte(pCur->info.pPayload + iOffset);
  pBt = pPage->pBt;
  ovflPageSize = pBt->usableSize - 4;
  do{
    rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
    if( rc ) return rc;
    if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      if( iOffset+ovflPageSize<(u32)nTotal ){
        ovflPgno = get4byte(pPage->aData);
      }else{
        ovflPageSize = nTotal - iOffset;
      }
      rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,







|







79453
79454
79455
79456
79457
79458
79459
79460
79461
79462
79463
79464
79465
79466
79467
  ovflPgno = get4byte(pCur->info.pPayload + iOffset);
  pBt = pPage->pBt;
  ovflPageSize = pBt->usableSize - 4;
  do{
    rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
    if( rc ) return rc;
    if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
      rc = SQLITE_CORRUPT_PAGE(pPage);
    }else{
      if( iOffset+ovflPageSize<(u32)nTotal ){
        ovflPgno = get4byte(pPage->aData);
      }else{
        ovflPageSize = nTotal - iOffset;
      }
      rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
79309
79310
79311
79312
79313
79314
79315
79316
79317
79318
79319
79320
79321
79322
79323
static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
  int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
  MemPage *pPage = pCur->pPage;       /* Page being written */

  if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
   || pCur->info.pPayload < pPage->aData + pPage->cellOffset
  ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( pCur->info.nLocal==nTotal ){
    /* The entire cell is local */
    return btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
                                 0, pCur->info.nLocal);
  }else{
    /* The cell contains overflow content */







|







79481
79482
79483
79484
79485
79486
79487
79488
79489
79490
79491
79492
79493
79494
79495
static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
  int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
  MemPage *pPage = pCur->pPage;       /* Page being written */

  if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
   || pCur->info.pPayload < pPage->aData + pPage->cellOffset
  ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  if( pCur->info.nLocal==nTotal ){
    /* The entire cell is local */
    return btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
                                 0, pCur->info.nLocal);
  }else{
    /* The cell contains overflow content */
79390
79391
79392
79393
79394
79395
79396
79397
79398
79399
79400
79401
79402
79403
79404
    if( rc ) return rc;
    if( loc && pCur->iPage<0 ){
      /* This can only happen if the schema is corrupt such that there is more
      ** than one table or index with the same root page as used by the cursor.
      ** Which can only happen if the SQLITE_NoSchemaError flag was set when
      ** the schema was loaded. This cannot be asserted though, as a user might
      ** set the flag, load the schema, and then unset the flag.  */
      return SQLITE_CORRUPT_BKPT;
    }
  }

  /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
  ** points to a valid cell.
  */
  if( pCur->eState>=CURSOR_REQUIRESEEK ){







|







79562
79563
79564
79565
79566
79567
79568
79569
79570
79571
79572
79573
79574
79575
79576
    if( rc ) return rc;
    if( loc && pCur->iPage<0 ){
      /* This can only happen if the schema is corrupt such that there is more
      ** than one table or index with the same root page as used by the cursor.
      ** Which can only happen if the SQLITE_NoSchemaError flag was set when
      ** the schema was loaded. This cannot be asserted though, as a user might
      ** set the flag, load the schema, and then unset the flag.  */
      return SQLITE_CORRUPT_PGNO(pCur->pgnoRoot);
    }
  }

  /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
  ** points to a valid cell.
  */
  if( pCur->eState>=CURSOR_REQUIRESEEK ){
79513
79514
79515
79516
79517
79518
79519
79520
79521
79522
79523
79524
79525
79526
79527

  pPage = pCur->pPage;
  assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
  assert( pPage->leaf || !pPage->intKey );
  if( pPage->nFree<0 ){
    if( NEVER(pCur->eState>CURSOR_INVALID) ){
     /* ^^^^^--- due to the moveToRoot() call above */
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = btreeComputeFreeSpace(pPage);
    }
    if( rc ) return rc;
  }

  TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n",







|







79685
79686
79687
79688
79689
79690
79691
79692
79693
79694
79695
79696
79697
79698
79699

  pPage = pCur->pPage;
  assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
  assert( pPage->leaf || !pPage->intKey );
  if( pPage->nFree<0 ){
    if( NEVER(pCur->eState>CURSOR_INVALID) ){
     /* ^^^^^--- due to the moveToRoot() call above */
      rc = SQLITE_CORRUPT_PAGE(pPage);
    }else{
      rc = btreeComputeFreeSpace(pPage);
    }
    if( rc ) return rc;
  }

  TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n",
79552
79553
79554
79555
79556
79557
79558
79559
79560
79561
79562
79563
79564
79565
79566
  assert( szNew <= MX_CELL_SIZE(p->pBt) );
  idx = pCur->ix;
  pCur->info.nSize = 0;
  if( loc==0 ){
    CellInfo info;
    assert( idx>=0 );
    if( idx>=pPage->nCell ){
      return SQLITE_CORRUPT_BKPT;
    }
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc ){
      goto end_insert;
    }
    oldCell = findCell(pPage, idx);
    if( !pPage->leaf ){







|







79724
79725
79726
79727
79728
79729
79730
79731
79732
79733
79734
79735
79736
79737
79738
  assert( szNew <= MX_CELL_SIZE(p->pBt) );
  idx = pCur->ix;
  pCur->info.nSize = 0;
  if( loc==0 ){
    CellInfo info;
    assert( idx>=0 );
    if( idx>=pPage->nCell ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc ){
      goto end_insert;
    }
    oldCell = findCell(pPage, idx);
    if( !pPage->leaf ){
79579
79580
79581
79582
79583
79584
79585
79586
79587
79588
79589
79590
79591
79592
79593
79594
79595
79596
      ** calling dropCell() and insertCell().
      **
      ** This optimization cannot be used on an autovacuum database if the
      ** new entry uses overflow pages, as the insertCell() call below is
      ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
      assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
      if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
        return SQLITE_CORRUPT_BKPT;
      }
      if( oldCell+szNew > pPage->aDataEnd ){
        return SQLITE_CORRUPT_BKPT;
      }
      memcpy(oldCell, newCell, szNew);
      return SQLITE_OK;
    }
    dropCell(pPage, idx, info.nSize, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){







|


|







79751
79752
79753
79754
79755
79756
79757
79758
79759
79760
79761
79762
79763
79764
79765
79766
79767
79768
      ** calling dropCell() and insertCell().
      **
      ** This optimization cannot be used on an autovacuum database if the
      ** new entry uses overflow pages, as the insertCell() call below is
      ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
      assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
      if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      if( oldCell+szNew > pPage->aDataEnd ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      memcpy(oldCell, newCell, szNew);
      return SQLITE_OK;
    }
    dropCell(pPage, idx, info.nSize, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
79684
79685
79686
79687
79688
79689
79690
79691
79692
79693
79694
79695
79696
79697
79698
  }else{
    aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
  }
  if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
  nIn = pSrc->info.nLocal;
  aIn = pSrc->info.pPayload;
  if( aIn+nIn>pSrc->pPage->aDataEnd ){
    return SQLITE_CORRUPT_BKPT;
  }
  nRem = pSrc->info.nPayload;
  if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
    memcpy(aOut, aIn, nIn);
    pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
    return SQLITE_OK;
  }else{







|







79856
79857
79858
79859
79860
79861
79862
79863
79864
79865
79866
79867
79868
79869
79870
  }else{
    aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
  }
  if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
  nIn = pSrc->info.nLocal;
  aIn = pSrc->info.pPayload;
  if( aIn+nIn>pSrc->pPage->aDataEnd ){
    return SQLITE_CORRUPT_PAGE(pSrc->pPage);
  }
  nRem = pSrc->info.nPayload;
  if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
    memcpy(aOut, aIn, nIn);
    pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
    return SQLITE_OK;
  }else{
79709
79710
79711
79712
79713
79714
79715
79716
79717
79718
79719
79720
79721
79722
79723
    if( nOut<pSrc->info.nPayload ){
      pPgnoOut = &aOut[nOut];
      pBt->nPreformatSize += 4;
    }

    if( nRem>nIn ){
      if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
        return SQLITE_CORRUPT_BKPT;
      }
      ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
    }

    do {
      nRem -= nOut;
      do{







|







79881
79882
79883
79884
79885
79886
79887
79888
79889
79890
79891
79892
79893
79894
79895
    if( nOut<pSrc->info.nPayload ){
      pPgnoOut = &aOut[nOut];
      pBt->nPreformatSize += 4;
    }

    if( nRem>nIn ){
      if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
        return SQLITE_CORRUPT_PAGE(pSrc->pPage);
      }
      ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
    }

    do {
      nRem -= nOut;
      do{
79805
79806
79807
79808
79809
79810
79811
79812
79813
79814
79815
79816
79817
79818
79819
79820
79821
79822
79823
79824
79825
79826
79827
79828
79829
79830
79831
79832
79833
79834
79835
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
  if( pCur->eState!=CURSOR_VALID ){
    if( pCur->eState>=CURSOR_REQUIRESEEK ){
      rc = btreeRestoreCursorPosition(pCur);
      assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
      if( rc || pCur->eState!=CURSOR_VALID ) return rc;
    }else{
      return SQLITE_CORRUPT_BKPT;
    }
  }
  assert( pCur->eState==CURSOR_VALID );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->ix;
  pPage = pCur->pPage;
  if( pPage->nCell<=iCellIdx ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCell = findCell(pPage, iCellIdx);
  if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( pCell<&pPage->aCellIdx[pPage->nCell] ){
    return SQLITE_CORRUPT_BKPT;
  }

  /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
  ** returning.







|








|



|


|







79977
79978
79979
79980
79981
79982
79983
79984
79985
79986
79987
79988
79989
79990
79991
79992
79993
79994
79995
79996
79997
79998
79999
80000
80001
80002
80003
80004
80005
80006
80007
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
  if( pCur->eState!=CURSOR_VALID ){
    if( pCur->eState>=CURSOR_REQUIRESEEK ){
      rc = btreeRestoreCursorPosition(pCur);
      assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
      if( rc || pCur->eState!=CURSOR_VALID ) return rc;
    }else{
      return SQLITE_CORRUPT_PGNO(pCur->pgnoRoot);
    }
  }
  assert( pCur->eState==CURSOR_VALID );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->ix;
  pPage = pCur->pPage;
  if( pPage->nCell<=iCellIdx ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  pCell = findCell(pPage, iCellIdx);
  if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  if( pCell<&pPage->aCellIdx[pPage->nCell] ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }

  /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
  ** returning.
79912
79913
79914
79915
79916
79917
79918
79919
79920
79921
79922
79923
79924
79925
79926
    }
    if( iCellDepth<pCur->iPage-1 ){
      n = pCur->apPage[iCellDepth+1]->pgno;
    }else{
      n = pCur->pPage->pgno;
    }
    pCell = findCell(pLeaf, pLeaf->nCell-1);
    if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
    nCell = pLeaf->xCellSize(pLeaf, pCell);
    assert( MX_CELL_SIZE(pBt) >= nCell );
    pTmp = pBt->pTmpSpace;
    assert( pTmp!=0 );
    rc = sqlite3PagerWrite(pLeaf->pDbPage);
    if( rc==SQLITE_OK ){
      rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);







|







80084
80085
80086
80087
80088
80089
80090
80091
80092
80093
80094
80095
80096
80097
80098
    }
    if( iCellDepth<pCur->iPage-1 ){
      n = pCur->apPage[iCellDepth+1]->pgno;
    }else{
      n = pCur->pPage->pgno;
    }
    pCell = findCell(pLeaf, pLeaf->nCell-1);
    if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_PAGE(pLeaf);
    nCell = pLeaf->xCellSize(pLeaf, pCell);
    assert( MX_CELL_SIZE(pBt) >= nCell );
    pTmp = pBt->pTmpSpace;
    assert( pTmp!=0 );
    rc = sqlite3PagerWrite(pLeaf->pDbPage);
    if( rc==SQLITE_OK ){
      rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);
80028
80029
80030
80031
80032
80033
80034
80035
80036
80037
80038
80039
80040
80041
80042

    /* Read the value of meta[3] from the database to determine where the
    ** root page of the new table should go. meta[3] is the largest root-page
    ** created so far, so the new root-page is (meta[3]+1).
    */
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
    if( pgnoRoot>btreePagecount(pBt) ){
      return SQLITE_CORRUPT_BKPT;
    }
    pgnoRoot++;

    /* The new root-page may not be allocated on a pointer-map page, or the
    ** PENDING_BYTE page.
    */
    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||







|







80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214

    /* Read the value of meta[3] from the database to determine where the
    ** root page of the new table should go. meta[3] is the largest root-page
    ** created so far, so the new root-page is (meta[3]+1).
    */
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
    if( pgnoRoot>btreePagecount(pBt) ){
      return SQLITE_CORRUPT_PGNO(pgnoRoot);
    }
    pgnoRoot++;

    /* The new root-page may not be allocated on a pointer-map page, or the
    ** PENDING_BYTE page.
    */
    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
80076
80077
80078
80079
80080
80081
80082
80083
80084
80085
80086
80087
80088
80089
80090
      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_BKPT;
      }
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
      assert( eType!=PTRMAP_ROOTPAGE );
      assert( eType!=PTRMAP_FREEPAGE );







|







80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_PGNO(pgnoRoot);
      }
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
      assert( eType!=PTRMAP_ROOTPAGE );
      assert( eType!=PTRMAP_FREEPAGE );
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
  unsigned char *pCell;
  int i;
  int hdr;
  CellInfo info;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, pgno, &pPage, 0);
  if( rc ) return rc;
  if( (pBt->openFlags & BTREE_SINGLE)==0
   && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
  ){
    rc = SQLITE_CORRUPT_BKPT;
    goto cleardatabasepage_out;
  }
  hdr = pPage->hdrOffset;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);







|






|







80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
  unsigned char *pCell;
  int i;
  int hdr;
  CellInfo info;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_PGNO(pgno);
  }
  rc = getAndInitPage(pBt, pgno, &pPage, 0);
  if( rc ) return rc;
  if( (pBt->openFlags & BTREE_SINGLE)==0
   && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
  ){
    rc = SQLITE_CORRUPT_PAGE(pPage);
    goto cleardatabasepage_out;
  }
  hdr = pPage->hdrOffset;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
  MemPage *pPage = 0;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->inTrans==TRANS_WRITE );
  assert( iTable>=2 );
  if( iTable>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ) return rc;
  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( NEVER(rc) ){
    releasePage(pPage);







|







80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
  MemPage *pPage = 0;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->inTrans==TRANS_WRITE );
  assert( iTable>=2 );
  if( iTable>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_PGNO(iTable);
  }

  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ) return rc;
  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( NEVER(rc) ){
    releasePage(pPage);
83918
83919
83920
83921
83922
83923
83924
83925
83926
83927

83928



83929
83930
83931
83932


83933
83934
83935
83936
83937
83938
83939
83940




83941
83942
83943
83944

83945








83946

83947
83948
83949
83950
83951
83952
83953
      sqlite3VdbeMemCast(*ppVal, aff, enc);
      sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
    }
    return rc;
  }

  /* Handle negative integers in a single step.  This is needed in the
  ** case when the value is -9223372036854775808.
  */
  if( op==TK_UMINUS

   && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){



    pExpr = pExpr->pLeft;
    op = pExpr->op;
    negInt = -1;
    zNeg = "-";


  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
    }else{




      zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
    }

    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){








      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);

    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    assert( (pVal->flags & MEM_IntReal)==0 );
    if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
      testcase( pVal->flags & MEM_Int );
      testcase( pVal->flags & MEM_Real );







|
|
|
>
|
>
>
>
|
|
|
|
>
>








>
>
>
>
|
|
|
|
>
|
>
>
>
>
>
>
>
>
|
>







84090
84091
84092
84093
84094
84095
84096
84097
84098
84099
84100
84101
84102
84103
84104
84105
84106
84107
84108
84109
84110
84111
84112
84113
84114
84115
84116
84117
84118
84119
84120
84121
84122
84123
84124
84125
84126
84127
84128
84129
84130
84131
84132
84133
84134
84135
84136
84137
84138
84139
84140
84141
84142
84143
84144
84145
      sqlite3VdbeMemCast(*ppVal, aff, enc);
      sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
    }
    return rc;
  }

  /* Handle negative integers in a single step.  This is needed in the
  ** case when the value is -9223372036854775808. Except - do not do this
  ** for hexadecimal literals.  */
  if( op==TK_UMINUS ){
    Expr *pLeft = pExpr->pLeft;
    if( (pLeft->op==TK_INTEGER || pLeft->op==TK_FLOAT) ){
      if( ExprHasProperty(pLeft, EP_IntValue)
       || pLeft->u.zToken[0]!='0' || (pLeft->u.zToken[1] & ~0x20)!='X'
      ){
        pExpr = pLeft;
        op = pExpr->op;
        negInt = -1;
        zNeg = "-";
      }
    }
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
    }else{
      i64 iVal;
      if( op==TK_INTEGER && 0==sqlite3DecOrHexToI64(pExpr->u.zToken, &iVal) ){
        sqlite3VdbeMemSetInt64(pVal, iVal*negInt);
      }else{
        zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
        if( zVal==0 ) goto no_mem;
        sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
      }
    }
    if( affinity==SQLITE_AFF_BLOB ){
      if( op==TK_FLOAT ){
        assert( pVal && pVal->z && pVal->flags==(MEM_Str|MEM_Term) );
        sqlite3AtoF(pVal->z, &pVal->u.r, pVal->n, SQLITE_UTF8);
        pVal->flags = MEM_Real;
      }else if( op==TK_INTEGER ){
        /* This case is required by -9223372036854775808 and other strings
        ** that look like integers but cannot be handled by the
        ** sqlite3DecOrHexToI64() call above.  */
        sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
      }
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    assert( (pVal->flags & MEM_IntReal)==0 );
    if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
      testcase( pVal->flags & MEM_Int );
      testcase( pVal->flags & MEM_Real );
94639
94640
94641
94642
94643
94644
94645
94646
94647
94648
94649
94650
94651
94652
94653
    sqlite3VdbeMemRealify(pIn1);
    REGISTER_TRACE(pOp->p1, pIn1);
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_CAST
/* Opcode: Cast P1 P2 * * *
** Synopsis: affinity(r[P1])
**
** Force the value in register P1 to be the type defined by P2.
**
** <ul>
** <li> P2=='A' &rarr; BLOB







|







94831
94832
94833
94834
94835
94836
94837
94838
94839
94840
94841
94842
94843
94844
94845
    sqlite3VdbeMemRealify(pIn1);
    REGISTER_TRACE(pOp->p1, pIn1);
  }
  break;
}
#endif

#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_ANALYZE)
/* Opcode: Cast P1 P2 * * *
** Synopsis: affinity(r[P1])
**
** Force the value in register P1 to be the type defined by P2.
**
** <ul>
** <li> P2=='A' &rarr; BLOB
94854
94855
94856
94857
94858
94859
94860


94861
94862
94863
94864
94865
94866
94867
94868
94869


94870
94871
94872
94873
94874
94875
94876
94877
          flags3 = pIn3->flags;
        }
        if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
          applyNumericAffinity(pIn3,0);
        }
      }
    }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){


      if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
        testcase( pIn1->flags & MEM_Int );
        testcase( pIn1->flags & MEM_Real );
        testcase( pIn1->flags & MEM_IntReal );
        sqlite3VdbeMemStringify(pIn1, encoding, 1);
        testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
        flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
        if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
      }


      if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
        testcase( pIn3->flags & MEM_Int );
        testcase( pIn3->flags & MEM_Real );
        testcase( pIn3->flags & MEM_IntReal );
        sqlite3VdbeMemStringify(pIn3, encoding, 1);
        testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
        flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
      }







>
>
|








>
>
|







95046
95047
95048
95049
95050
95051
95052
95053
95054
95055
95056
95057
95058
95059
95060
95061
95062
95063
95064
95065
95066
95067
95068
95069
95070
95071
95072
95073
          flags3 = pIn3->flags;
        }
        if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
          applyNumericAffinity(pIn3,0);
        }
      }
    }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
      if( (flags1 & MEM_Str)!=0 ){
        pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
      }else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
        testcase( pIn1->flags & MEM_Int );
        testcase( pIn1->flags & MEM_Real );
        testcase( pIn1->flags & MEM_IntReal );
        sqlite3VdbeMemStringify(pIn1, encoding, 1);
        testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
        flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
        if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
      }
      if( (flags3 & MEM_Str)!=0 ){
        pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
      }else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
        testcase( pIn3->flags & MEM_Int );
        testcase( pIn3->flags & MEM_Real );
        testcase( pIn3->flags & MEM_IntReal );
        sqlite3VdbeMemStringify(pIn3, encoding, 1);
        testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
        flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
      }
96207
96208
96209
96210
96211
96212
96213

96214
96215

96216

96217

96218

96219
96220
96221
96222
96223
96224
96225
          v = pRec->u.i;
        }
        len = sqlite3SmallTypeSizes[serial_type];
        assert( len>=1 && len<=8 && len!=5 && len!=7 );
        switch( len ){
          default: zPayload[7] = (u8)(v&0xff); v >>= 8;
                   zPayload[6] = (u8)(v&0xff); v >>= 8;

          case 6:  zPayload[5] = (u8)(v&0xff); v >>= 8;
                   zPayload[4] = (u8)(v&0xff); v >>= 8;

          case 4:  zPayload[3] = (u8)(v&0xff); v >>= 8;

          case 3:  zPayload[2] = (u8)(v&0xff); v >>= 8;

          case 2:  zPayload[1] = (u8)(v&0xff); v >>= 8;

          case 1:  zPayload[0] = (u8)(v&0xff);
        }
        zPayload += len;
      }
    }else if( serial_type<0x80 ){
      *(zHdr++) = serial_type;
      if( serial_type>=14 && pRec->n>0 ){







>


>

>

>

>







96403
96404
96405
96406
96407
96408
96409
96410
96411
96412
96413
96414
96415
96416
96417
96418
96419
96420
96421
96422
96423
96424
96425
96426
          v = pRec->u.i;
        }
        len = sqlite3SmallTypeSizes[serial_type];
        assert( len>=1 && len<=8 && len!=5 && len!=7 );
        switch( len ){
          default: zPayload[7] = (u8)(v&0xff); v >>= 8;
                   zPayload[6] = (u8)(v&0xff); v >>= 8;
                   /* no break */ deliberate_fall_through
          case 6:  zPayload[5] = (u8)(v&0xff); v >>= 8;
                   zPayload[4] = (u8)(v&0xff); v >>= 8;
                   /* no break */ deliberate_fall_through
          case 4:  zPayload[3] = (u8)(v&0xff); v >>= 8;
                   /* no break */ deliberate_fall_through
          case 3:  zPayload[2] = (u8)(v&0xff); v >>= 8;
                   /* no break */ deliberate_fall_through
          case 2:  zPayload[1] = (u8)(v&0xff); v >>= 8;
                   /* no break */ deliberate_fall_through
          case 1:  zPayload[0] = (u8)(v&0xff);
        }
        zPayload += len;
      }
    }else if( serial_type<0x80 ){
      *(zHdr++) = serial_type;
      if( serial_type>=14 && pRec->n>0 ){
98736
98737
98738
98739
98740
98741
98742
98743
98744
98745
98746


98747
98748
98749
98750
98751
98752
98753
98754



98755
98756
98757
98758
98759
98760
98761


98762

98763
98764

98765
98766
98767
98768
98769
98770
98771
  if( pOp->p2>0 ){
    VdbeBranchTaken(res!=0,2);
    if( res ) goto jump_to_p2;
  }
  break;
}

/* Opcode: IfSmaller P1 P2 P3 * *
**
** Estimate the number of rows in the table P1.  Jump to P2 if that
** estimate is less than approximately 2**(0.1*P3).


*/
case OP_IfSmaller: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  i64 sz;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );



  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->uc.pCursor;
  assert( pCrsr );
  rc = sqlite3BtreeFirst(pCrsr, &res);
  if( rc ) goto abort_due_to_error;
  if( res==0 ){


    sz = sqlite3BtreeRowCountEst(pCrsr);

    if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
  }

  VdbeBranchTaken(res!=0,2);
  if( res ) goto jump_to_p2;
  break;
}


/* Opcode: SorterSort P1 P2 * * *







|

|
|
>
>

|






>
>
>






|
>
>

>
|

>







98937
98938
98939
98940
98941
98942
98943
98944
98945
98946
98947
98948
98949
98950
98951
98952
98953
98954
98955
98956
98957
98958
98959
98960
98961
98962
98963
98964
98965
98966
98967
98968
98969
98970
98971
98972
98973
98974
98975
98976
98977
98978
98979
98980
98981
  if( pOp->p2>0 ){
    VdbeBranchTaken(res!=0,2);
    if( res ) goto jump_to_p2;
  }
  break;
}

/* Opcode: IfSizeBetween P1 P2 P3 P4 *
**
** Let N be the approximate number of rows in the table or index
** with cursor P1 and let X be 10*log2(N) if N is positive or -1
** if N is zero. Thus X will be within the range of -1 to 640, inclusive
** Jump to P2 if X is in between P3 and P4, inclusive.
*/
case OP_IfSizeBetween: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  i64 sz;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p3>=-1 && pOp->p3<=640 );
  assert( pOp->p4.i>=-1 && pOp->p4.i<=640 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->uc.pCursor;
  assert( pCrsr );
  rc = sqlite3BtreeFirst(pCrsr, &res);
  if( rc ) goto abort_due_to_error;
  if( res!=0 ){
    sz = -1;  /* -Infinity encoding */
  }else{
    sz = sqlite3BtreeRowCountEst(pCrsr);
    assert( sz>0 );
    sz = sqlite3LogEst((u64)sz);
  }
  res = sz>=pOp->p3 && sz<=pOp->p4.i;
  VdbeBranchTaken(res!=0,2);
  if( res ) goto jump_to_p2;
  break;
}


/* Opcode: SorterSort P1 P2 * * *
99457
99458
99459
99460
99461
99462
99463
99464
99465
99466



99467

99468



99469
99470
99471
99472
99473
99474
99475

99476
99477
99478
99479
99480
99481
99482
99483

99484
99485
99486
99487
99488
99489



99490
99491
99492
99493
99494
99495

99496
99497
99498
99499
99500
99501
99502
  assert( pDb->pBt!=0 );
  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
  if( rc ) goto abort_due_to_error;
  pOut->u.i = pgno;
  break;
}

/* Opcode: SqlExec * * * P4 *
**
** Run the SQL statement or statements specified in the P4 string.



** Disable Auth and Trace callbacks while those statements are running if

** P1 is true.



*/
case OP_SqlExec: {
  char *zErr;
#ifndef SQLITE_OMIT_AUTHORIZATION
  sqlite3_xauth xAuth;
#endif
  u8 mTrace;


  sqlite3VdbeIncrWriteCounter(p, 0);
  db->nSqlExec++;
  zErr = 0;
#ifndef SQLITE_OMIT_AUTHORIZATION
  xAuth = db->xAuth;
#endif
  mTrace = db->mTrace;

  if( pOp->p1 ){
#ifndef SQLITE_OMIT_AUTHORIZATION
    db->xAuth = 0;
#endif
    db->mTrace = 0;
  }



  rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr);
  db->nSqlExec--;
#ifndef SQLITE_OMIT_AUTHORIZATION
  db->xAuth = xAuth;
#endif
  db->mTrace = mTrace;

  if( zErr || rc ){
    sqlite3VdbeError(p, "%s", zErr);
    sqlite3_free(zErr);
    if( rc==SQLITE_NOMEM ) goto no_mem;
    goto abort_due_to_error;
  }
  break;







|


>
>
>
|
>
|
>
>
>







>








>
|





>
>
>






>







99667
99668
99669
99670
99671
99672
99673
99674
99675
99676
99677
99678
99679
99680
99681
99682
99683
99684
99685
99686
99687
99688
99689
99690
99691
99692
99693
99694
99695
99696
99697
99698
99699
99700
99701
99702
99703
99704
99705
99706
99707
99708
99709
99710
99711
99712
99713
99714
99715
99716
99717
99718
99719
99720
99721
99722
99723
99724
99725
  assert( pDb->pBt!=0 );
  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
  if( rc ) goto abort_due_to_error;
  pOut->u.i = pgno;
  break;
}

/* Opcode: SqlExec P1 P2 * P4 *
**
** Run the SQL statement or statements specified in the P4 string.
**
** The P1 parameter is a bitmask of options:
**
**    0x0001     Disable Auth and Trace callbacks while the statements
**               in P4 are running.
**
**    0x0002     Set db->nAnalysisLimit to P2 while the statements in
**               P4 are running.
**
*/
case OP_SqlExec: {
  char *zErr;
#ifndef SQLITE_OMIT_AUTHORIZATION
  sqlite3_xauth xAuth;
#endif
  u8 mTrace;
  int savedAnalysisLimit;

  sqlite3VdbeIncrWriteCounter(p, 0);
  db->nSqlExec++;
  zErr = 0;
#ifndef SQLITE_OMIT_AUTHORIZATION
  xAuth = db->xAuth;
#endif
  mTrace = db->mTrace;
  savedAnalysisLimit = db->nAnalysisLimit;
  if( pOp->p1 & 0x0001 ){
#ifndef SQLITE_OMIT_AUTHORIZATION
    db->xAuth = 0;
#endif
    db->mTrace = 0;
  }
  if( pOp->p1 & 0x0002 ){
    db->nAnalysisLimit = pOp->p2;
  }
  rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr);
  db->nSqlExec--;
#ifndef SQLITE_OMIT_AUTHORIZATION
  db->xAuth = xAuth;
#endif
  db->mTrace = mTrace;
  db->nAnalysisLimit = savedAnalysisLimit;
  if( zErr || rc ){
    sqlite3VdbeError(p, "%s", zErr);
    sqlite3_free(zErr);
    if( rc==SQLITE_NOMEM ) goto no_mem;
    goto abort_due_to_error;
  }
  break;
99645
99646
99647
99648
99649
99650
99651
99652
99653
99654
99655
99656
99657
99658
99659
99660
**
** Do an analysis of the currently open database.  Store in
** register P1 the text of an error message describing any problems.
** If no problems are found, store a NULL in register P1.
**
** The register P3 contains one less than the maximum number of allowed errors.
** At most reg(P3) errors will be reported.
** In other words, the analysis stops as soon as reg(P1) errors are
** seen.  Reg(P1) is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integers
** stored in P4_INTARRAY argument.
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**







|
|







99868
99869
99870
99871
99872
99873
99874
99875
99876
99877
99878
99879
99880
99881
99882
99883
**
** Do an analysis of the currently open database.  Store in
** register P1 the text of an error message describing any problems.
** If no problems are found, store a NULL in register P1.
**
** The register P3 contains one less than the maximum number of allowed errors.
** At most reg(P3) errors will be reported.
** In other words, the analysis stops as soon as reg(P3) errors are
** seen.  Reg(P3) is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integers
** stored in P4_INTARRAY argument.
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
106208
106209
106210
106211
106212
106213
106214


106215
106216
106217
106218
106219
106220
106221
  Expr *pOrig;           /* The iCol-th column of the result set */
  Expr *pDup;            /* Copy of pOrig */
  sqlite3 *db;           /* The database connection */

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );


  db = pParse->db;
  pDup = sqlite3ExprDup(db, pOrig, 0);
  if( db->mallocFailed ){
    sqlite3ExprDelete(db, pDup);
    pDup = 0;
  }else{
    Expr temp;







>
>







106431
106432
106433
106434
106435
106436
106437
106438
106439
106440
106441
106442
106443
106444
106445
106446
  Expr *pOrig;           /* The iCol-th column of the result set */
  Expr *pDup;            /* Copy of pOrig */
  sqlite3 *db;           /* The database connection */

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
  if( pExpr->pAggInfo ) return;
  db = pParse->db;
  pDup = sqlite3ExprDup(db, pOrig, 0);
  if( db->mallocFailed ){
    sqlite3ExprDelete(db, pDup);
    pDup = 0;
  }else{
    Expr temp;
106406
106407
106408
106409
106410
106411
106412
106413
106414
106415
106416
106417
106418
106419
106420
106421
106422
106423
106424
106425
106426
106427
106428
106429

106430
106431
106432
106433
106434
106435
106436
** If the name cannot be resolved unambiguously, leave an error message
** in pParse and return WRC_Abort.  Return WRC_Prune on success.
*/
static int lookupName(
  Parse *pParse,       /* The parsing context */
  const char *zDb,     /* Name of the database containing table, or NULL */
  const char *zTab,    /* Name of table containing column, or NULL */
  const char *zCol,    /* Name of the column. */
  NameContext *pNC,    /* The name context used to resolve the name */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  int i, j;                         /* Loop counters */
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of potential "rowid" matches */
  int nSubquery = 0;                /* How many levels of subquery */
  sqlite3 *db = pParse->db;         /* The database connection */
  SrcItem *pItem;                   /* Use for looping over pSrcList items */
  SrcItem *pMatch = 0;              /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int eNewExprOp = TK_COLUMN;       /* New value for pExpr->op on success */
  Table *pTab = 0;                  /* Table holding the row */
  Column *pCol;                     /* A column of pTab */
  ExprList *pFJMatch = 0;           /* Matches for FULL JOIN .. USING */


  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( zDb==0 || zTab!=0 );
  assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */







|
















>







106631
106632
106633
106634
106635
106636
106637
106638
106639
106640
106641
106642
106643
106644
106645
106646
106647
106648
106649
106650
106651
106652
106653
106654
106655
106656
106657
106658
106659
106660
106661
106662
** If the name cannot be resolved unambiguously, leave an error message
** in pParse and return WRC_Abort.  Return WRC_Prune on success.
*/
static int lookupName(
  Parse *pParse,       /* The parsing context */
  const char *zDb,     /* Name of the database containing table, or NULL */
  const char *zTab,    /* Name of table containing column, or NULL */
  const Expr *pRight,  /* Name of the column. */
  NameContext *pNC,    /* The name context used to resolve the name */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  int i, j;                         /* Loop counters */
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of potential "rowid" matches */
  int nSubquery = 0;                /* How many levels of subquery */
  sqlite3 *db = pParse->db;         /* The database connection */
  SrcItem *pItem;                   /* Use for looping over pSrcList items */
  SrcItem *pMatch = 0;              /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int eNewExprOp = TK_COLUMN;       /* New value for pExpr->op on success */
  Table *pTab = 0;                  /* Table holding the row */
  Column *pCol;                     /* A column of pTab */
  ExprList *pFJMatch = 0;           /* Matches for FULL JOIN .. USING */
  const char *zCol = pRight->u.zToken;

  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( zDb==0 || zTab!=0 );
  assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
106882
106883
106884
106885
106886
106887
106888




106889
106890
106891
106892
106893
106894
106895
      }
    }
    zErr = cnt==0 ? "no such column" : "ambiguous column name";
    if( zDb ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
    }else if( zTab ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);




    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
    }
    sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
    pParse->checkSchema = 1;
    pTopNC->nNcErr++;
    eNewExprOp = TK_NULL;







>
>
>
>







107108
107109
107110
107111
107112
107113
107114
107115
107116
107117
107118
107119
107120
107121
107122
107123
107124
107125
      }
    }
    zErr = cnt==0 ? "no such column" : "ambiguous column name";
    if( zDb ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
    }else if( zTab ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
    }else if( cnt==0 && ExprHasProperty(pRight,EP_DblQuoted) ){
      sqlite3ErrorMsg(pParse, "%s: \"%s\" - should this be a"
                              " string literal in single-quotes?",
                              zErr, zCol);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
    }
    sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
    pParse->checkSchema = 1;
    pTopNC->nNcErr++;
    eNewExprOp = TK_NULL;
107129
107130
107131
107132
107133
107134
107135
107136
107137
107138
107139
107140
107141
107142
107143
107144
107145
107146
107147
107148
107149
107150
107151
107152
107153
107154
107155
107156
107157
107158
107159
107160
107161
107162
107163
107164
107165
107166
107167
107168
107169
107170
107171
107172
107173
107174
107175
107176
107177
107178
    **
    ** The TK_ID and TK_OUT cases are combined so that there will only
    ** be one call to lookupName().  Then the compiler will in-line
    ** lookupName() for a size reduction and performance increase.
    */
    case TK_ID:
    case TK_DOT: {
      const char *zColumn;
      const char *zTable;
      const char *zDb;
      Expr *pRight;

      if( pExpr->op==TK_ID ){
        zDb = 0;
        zTable = 0;
        assert( !ExprHasProperty(pExpr, EP_IntValue) );
        zColumn = pExpr->u.zToken;
      }else{
        Expr *pLeft = pExpr->pLeft;
        testcase( pNC->ncFlags & NC_IdxExpr );
        testcase( pNC->ncFlags & NC_GenCol );
        sqlite3ResolveNotValid(pParse, pNC, "the \".\" operator",
                               NC_IdxExpr|NC_GenCol, 0, pExpr);
        pRight = pExpr->pRight;
        if( pRight->op==TK_ID ){
          zDb = 0;
        }else{
          assert( pRight->op==TK_DOT );
          assert( !ExprHasProperty(pRight, EP_IntValue) );
          zDb = pLeft->u.zToken;
          pLeft = pRight->pLeft;
          pRight = pRight->pRight;
        }
        assert( ExprUseUToken(pLeft) && ExprUseUToken(pRight) );
        zTable = pLeft->u.zToken;
        zColumn = pRight->u.zToken;
        assert( ExprUseYTab(pExpr) );
        if( IN_RENAME_OBJECT ){
          sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight);
          sqlite3RenameTokenRemap(pParse, (void*)&pExpr->y.pTab, (void*)pLeft);
        }
      }
      return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
    }

    /* Resolve function names
    */
    case TK_FUNCTION: {
      ExprList *pList = pExpr->x.pList;    /* The argument list */
      int n = pList ? pList->nExpr : 0;    /* Number of arguments */







<








|


















<






|







107359
107360
107361
107362
107363
107364
107365

107366
107367
107368
107369
107370
107371
107372
107373
107374
107375
107376
107377
107378
107379
107380
107381
107382
107383
107384
107385
107386
107387
107388
107389
107390
107391
107392

107393
107394
107395
107396
107397
107398
107399
107400
107401
107402
107403
107404
107405
107406
    **
    ** The TK_ID and TK_OUT cases are combined so that there will only
    ** be one call to lookupName().  Then the compiler will in-line
    ** lookupName() for a size reduction and performance increase.
    */
    case TK_ID:
    case TK_DOT: {

      const char *zTable;
      const char *zDb;
      Expr *pRight;

      if( pExpr->op==TK_ID ){
        zDb = 0;
        zTable = 0;
        assert( !ExprHasProperty(pExpr, EP_IntValue) );
        pRight = pExpr;
      }else{
        Expr *pLeft = pExpr->pLeft;
        testcase( pNC->ncFlags & NC_IdxExpr );
        testcase( pNC->ncFlags & NC_GenCol );
        sqlite3ResolveNotValid(pParse, pNC, "the \".\" operator",
                               NC_IdxExpr|NC_GenCol, 0, pExpr);
        pRight = pExpr->pRight;
        if( pRight->op==TK_ID ){
          zDb = 0;
        }else{
          assert( pRight->op==TK_DOT );
          assert( !ExprHasProperty(pRight, EP_IntValue) );
          zDb = pLeft->u.zToken;
          pLeft = pRight->pLeft;
          pRight = pRight->pRight;
        }
        assert( ExprUseUToken(pLeft) && ExprUseUToken(pRight) );
        zTable = pLeft->u.zToken;

        assert( ExprUseYTab(pExpr) );
        if( IN_RENAME_OBJECT ){
          sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight);
          sqlite3RenameTokenRemap(pParse, (void*)&pExpr->y.pTab, (void*)pLeft);
        }
      }
      return lookupName(pParse, zDb, zTable, pRight, pNC, pExpr);
    }

    /* Resolve function names
    */
    case TK_FUNCTION: {
      ExprList *pList = pExpr->x.pList;    /* The argument list */
      int n = pList ? pList->nExpr : 0;    /* Number of arguments */
118536
118537
118538
118539
118540
118541
118542
118543
118544
118545
118546
118547
118548
118549
118550
        p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
    for(i=0; i<p->nKeyCol; i++){
      u64 nDistinct = p->current.anDLt[i] + 1;
      u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
      if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1;
      sqlite3_str_appendf(&sStat, " %llu", iVal);
#ifdef SQLITE_ENABLE_STAT4
      assert( p->current.anEq[i] );
#endif
    }
    sqlite3ResultStrAccum(context, &sStat);
  }
#ifdef SQLITE_ENABLE_STAT4
  else if( eCall==STAT_GET_ROWID ){
    if( p->iGet<0 ){







|







118764
118765
118766
118767
118768
118769
118770
118771
118772
118773
118774
118775
118776
118777
118778
        p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
    for(i=0; i<p->nKeyCol; i++){
      u64 nDistinct = p->current.anDLt[i] + 1;
      u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
      if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1;
      sqlite3_str_appendf(&sStat, " %llu", iVal);
#ifdef SQLITE_ENABLE_STAT4
      assert( p->current.anEq[i] || p->nRow==0 );
#endif
    }
    sqlite3ResultStrAccum(context, &sStat);
  }
#ifdef SQLITE_ENABLE_STAT4
  else if( eCall==STAT_GET_ROWID ){
    if( p->iGet<0 ){
118721
118722
118723
118724
118725
118726
118727
118728
118729
118730
118731
118732
118733
118734
118735
  iIdxCur = iTab++;
  pParse->nTab = MAX(pParse->nTab, iTab);
  sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
  sqlite3VdbeLoadString(v, regTabname, pTab->zName);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;                     /* Number of columns in pIdx. "N" */
    int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
    int addrNextRow;              /* Address of "next_row:" */
    const char *zIdxName;         /* Name of the index */
    int nColTest;                 /* Number of columns to test for changes */

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){







|







118949
118950
118951
118952
118953
118954
118955
118956
118957
118958
118959
118960
118961
118962
118963
  iIdxCur = iTab++;
  pParse->nTab = MAX(pParse->nTab, iTab);
  sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
  sqlite3VdbeLoadString(v, regTabname, pTab->zName);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;                     /* Number of columns in pIdx. "N" */
    int addrGotoEnd;               /* Address of "OP_Rewind iIdxCur" */
    int addrNextRow;              /* Address of "next_row:" */
    const char *zIdxName;         /* Name of the index */
    int nColTest;                 /* Number of columns to test for changes */

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
118745
118746
118747
118748
118749
118750
118751

118752
118753


118754


118755
118756
118757
118758
118759
118760
118761
    /* Populate the register containing the index name. */
    sqlite3VdbeLoadString(v, regIdxname, zIdxName);
    VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));

    /*
    ** Pseudo-code for loop that calls stat_push():
    **

    **   Rewind csr
    **   if eof(csr) goto end_of_scan;


    **   regChng = 0


    **   goto chng_addr_0;
    **
    **  next_row:
    **   regChng = 0
    **   if( idx(0) != regPrev(0) ) goto chng_addr_0
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1







>

|
>
>
|
>
>







118973
118974
118975
118976
118977
118978
118979
118980
118981
118982
118983
118984
118985
118986
118987
118988
118989
118990
118991
118992
118993
118994
    /* Populate the register containing the index name. */
    sqlite3VdbeLoadString(v, regIdxname, zIdxName);
    VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));

    /*
    ** Pseudo-code for loop that calls stat_push():
    **
    **   regChng = 0
    **   Rewind csr
    **   if eof(csr){
    **      stat_init() with count = 0;
    **      goto end_of_scan;
    **   }
    **   count()
    **   stat_init()
    **   goto chng_addr_0;
    **
    **  next_row:
    **   regChng = 0
    **   if( idx(0) != regPrev(0) ) goto chng_addr_0
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1
118786
118787
118788
118789
118790
118791
118792
118793
118794














118795
118796
118797
118798
118799
118800
118801
118802
118803
118804
118805
118806
118807
118808
118809
118810
118811
118812
118813
118814
118815
118816
118817
118818


118819
118820
118821
118822
118823
118824
118825
118826
118827
118828
118829
118830
118831
118832
118833
118834

    /* Open a read-only cursor on the index being analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
    sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
    VdbeComment((v, "%s", pIdx->zName));

    /* Invoke the stat_init() function. The arguments are:
    **














    **    (1) the number of columns in the index including the rowid
    **        (or for a WITHOUT ROWID table, the number of PK columns),
    **    (2) the number of columns in the key without the rowid/pk
    **    (3) estimated number of rows in the index,
    */
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
    assert( regRowid==regStat+2 );
    sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
#ifdef SQLITE_ENABLE_STAT4
    if( OptimizationEnabled(db, SQLITE_Stat4) ){
      sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
      addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
      VdbeCoverage(v);
    }else
#endif
    {
      addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
      VdbeCoverage(v);
      sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
    }
    assert( regTemp2==regStat+4 );
    sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
    sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
                               &statInitFuncdef, 0);



    /* Implementation of the following:
    **
    **   Rewind csr
    **   if eof(csr) goto end_of_scan;
    **   regChng = 0
    **   goto next_push_0;
    **
    */
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
    addrNextRow = sqlite3VdbeCurrentAddr(v);

    if( nColTest>0 ){
      int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
      int *aGotoChng;               /* Array of jump instruction addresses */
      aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);







|

>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
<



<
<
<
<
<
<
<
<
<
<
|
<
|
<


>
>

<
<
<
<
<
<
<
<







119019
119020
119021
119022
119023
119024
119025
119026
119027
119028
119029
119030
119031
119032
119033
119034
119035
119036
119037
119038
119039
119040
119041
119042
119043
119044
119045

119046
119047
119048










119049

119050

119051
119052
119053
119054
119055








119056
119057
119058
119059
119060
119061
119062

    /* Open a read-only cursor on the index being analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
    sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
    VdbeComment((v, "%s", pIdx->zName));

    /* Implementation of the following:
    **
    **   regChng = 0
    **   Rewind csr
    **   if eof(csr){
    **      stat_init() with count = 0;
    **      goto end_of_scan;
    **   }
    **   count()
    **   stat_init()
    **   goto chng_addr_0;
    */
    assert( regTemp2==regStat+4 );
    sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);

    /* Arguments to stat_init():
    **    (1) the number of columns in the index including the rowid
    **        (or for a WITHOUT ROWID table, the number of PK columns),
    **    (2) the number of columns in the key without the rowid/pk
    **    (3) estimated number of rows in the index. */

    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
    assert( regRowid==regStat+2 );
    sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);










    sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp,

                      OptimizationDisabled(db, SQLITE_Stat4));

    sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
                               &statInitFuncdef, 0);
    addrGotoEnd = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
    VdbeCoverage(v);









    sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
    addrNextRow = sqlite3VdbeCurrentAddr(v);

    if( nColTest>0 ){
      int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
      int *aGotoChng;               /* Array of jump instruction addresses */
      aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
118927
118928
118929
118930
118931
118932
118933






118934
118935
118936
118937
118938
118939
118940
        sqlite3VdbeJumpHere(v, j3);
      }else{
        sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
      }
    }

    /* Add the entry to the stat1 table. */






    callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);







>
>
>
>
>
>







119155
119156
119157
119158
119159
119160
119161
119162
119163
119164
119165
119166
119167
119168
119169
119170
119171
119172
119173
119174
        sqlite3VdbeJumpHere(v, j3);
      }else{
        sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
      }
    }

    /* Add the entry to the stat1 table. */
    if( pIdx->pPartIdxWhere ){
      /* Partial indexes might get a zero-entry in sqlite_stat1.  But
      ** an empty table is omitted from sqlite_stat1. */
      sqlite3VdbeJumpHere(v, addrGotoEnd);
      addrGotoEnd = 0;
    }
    callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
118949
118950
118951
118952
118953
118954
118955






118956
118957
118958
118959
118960
118961
118962
      int regDLt = regStat1+2;
      int regSample = regStat1+3;
      int regCol = regStat1+4;
      int regSampleRowid = regCol + nCol;
      int addrNext;
      int addrIsNull;
      u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;







      if( doOnce ){
        int mxCol = nCol;
        Index *pX;

        /* Compute the maximum number of columns in any index */
        for(pX=pTab->pIndex; pX; pX=pX->pNext){







>
>
>
>
>
>







119183
119184
119185
119186
119187
119188
119189
119190
119191
119192
119193
119194
119195
119196
119197
119198
119199
119200
119201
119202
      int regDLt = regStat1+2;
      int regSample = regStat1+3;
      int regCol = regStat1+4;
      int regSampleRowid = regCol + nCol;
      int addrNext;
      int addrIsNull;
      u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;

      /* No STAT4 data is generated if the number of rows is zero */
      if( addrGotoEnd==0 ){
        sqlite3VdbeAddOp2(v, OP_Cast, regStat1, SQLITE_AFF_INTEGER);
        addrGotoEnd = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
      }

      if( doOnce ){
        int mxCol = nCol;
        Index *pX;

        /* Compute the maximum number of columns in any index */
        for(pX=pTab->pIndex; pX; pX=pX->pNext){
119002
119003
119004
119005
119006
119007
119008
119009
119010
119011
119012
119013
119014
119015
119016
      sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
      sqlite3VdbeJumpHere(v, addrIsNull);
    }
#endif /* SQLITE_ENABLE_STAT4 */

    /* End of analysis */
    sqlite3VdbeJumpHere(v, addrRewind);
  }


  /* Create a single sqlite_stat1 entry containing NULL as the index
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){







|







119242
119243
119244
119245
119246
119247
119248
119249
119250
119251
119252
119253
119254
119255
119256
      sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
      sqlite3VdbeJumpHere(v, addrIsNull);
    }
#endif /* SQLITE_ENABLE_STAT4 */

    /* End of analysis */
    if( addrGotoEnd ) sqlite3VdbeJumpHere(v, addrGotoEnd);
  }


  /* Create a single sqlite_stat1 entry containing NULL as the index
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
120751
120752
120753
120754
120755
120756
120757
120758
120759
120760
120761
120762
120763
120764
120765
        sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
        VdbeCoverage(v);
        sqlite3VdbeJumpHere(v, addrRewind);
      }
    }
    sqlite3VdbeAddOp0(v, OP_Halt);

#if SQLITE_USER_AUTHENTICATION
    if( pParse->nTableLock>0 && db->init.busy==0 ){
      sqlite3UserAuthInit(db);
      if( db->auth.authLevel<UAUTH_User ){
        sqlite3ErrorMsg(pParse, "user not authenticated");
        pParse->rc = SQLITE_AUTH_USER;
        return;
      }







|







120991
120992
120993
120994
120995
120996
120997
120998
120999
121000
121001
121002
121003
121004
121005
        sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
        VdbeCoverage(v);
        sqlite3VdbeJumpHere(v, addrRewind);
      }
    }
    sqlite3VdbeAddOp0(v, OP_Halt);

#if SQLITE_USER_AUTHENTICATION && !defined(SQLITE_OMIT_SHARED_CACHE)
    if( pParse->nTableLock>0 && db->init.busy==0 ){
      sqlite3UserAuthInit(db);
      if( db->auth.authLevel<UAUTH_User ){
        sqlite3ErrorMsg(pParse, "user not authenticated");
        pParse->rc = SQLITE_AUTH_USER;
        return;
      }
123485
123486
123487
123488
123489
123490
123491
123492
123493
123494
123495
123496
123497
123498
123499
123500
123501
123502
123503
    /* Reparse everything to update our internal data structures */
    sqlite3VdbeAddParseSchemaOp(v, iDb,
           sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);

    /* Test for cycles in generated columns and illegal expressions
    ** in CHECK constraints and in DEFAULT clauses. */
    if( p->tabFlags & TF_HasGenerated ){
      sqlite3VdbeAddOp4(v, OP_SqlExec, 1, 0, 0,
             sqlite3MPrintf(db, "SELECT*FROM\"%w\".\"%w\"",
                   db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC);
    }
    sqlite3VdbeAddOp4(v, OP_SqlExec, 1, 0, 0,
           sqlite3MPrintf(db, "PRAGMA \"%w\".integrity_check(%Q)",
                 db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC);
  }

  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy ){







|



|







123725
123726
123727
123728
123729
123730
123731
123732
123733
123734
123735
123736
123737
123738
123739
123740
123741
123742
123743
    /* Reparse everything to update our internal data structures */
    sqlite3VdbeAddParseSchemaOp(v, iDb,
           sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);

    /* Test for cycles in generated columns and illegal expressions
    ** in CHECK constraints and in DEFAULT clauses. */
    if( p->tabFlags & TF_HasGenerated ){
      sqlite3VdbeAddOp4(v, OP_SqlExec, 0x0001, 0, 0,
             sqlite3MPrintf(db, "SELECT*FROM\"%w\".\"%w\"",
                   db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC);
    }
    sqlite3VdbeAddOp4(v, OP_SqlExec, 0x0001, 0, 0,
           sqlite3MPrintf(db, "PRAGMA \"%w\".integrity_check(%Q)",
                 db->aDb[iDb].zDbSName, p->zName), P4_DYNAMIC);
  }

  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy ){
129251
129252
129253
129254
129255
129256
129257
129258
129259
129260
129261
129262
129263
129264
129265
  if( zPattern==0 ){
    assert( sqlite3_value_type(argv[1])==SQLITE_NULL
            || sqlite3_context_db_handle(context)->mallocFailed );
    return;
  }
  if( zPattern[0]==0 ){
    assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
    sqlite3_result_value(context, argv[0]);
    return;
  }
  nPattern = sqlite3_value_bytes(argv[1]);
  assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
  zRep = sqlite3_value_text(argv[2]);
  if( zRep==0 ) return;
  nRep = sqlite3_value_bytes(argv[2]);







|







129491
129492
129493
129494
129495
129496
129497
129498
129499
129500
129501
129502
129503
129504
129505
  if( zPattern==0 ){
    assert( sqlite3_value_type(argv[1])==SQLITE_NULL
            || sqlite3_context_db_handle(context)->mallocFailed );
    return;
  }
  if( zPattern[0]==0 ){
    assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
    sqlite3_result_text(context, (const char*)zStr, nStr, SQLITE_TRANSIENT);
    return;
  }
  nPattern = sqlite3_value_bytes(argv[1]);
  assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
  zRep = sqlite3_value_text(argv[2]);
  if( zRep==0 ) return;
  nRep = sqlite3_value_bytes(argv[2]);
137738
137739
137740
137741
137742
137743
137744




























137745
137746
137747
137748
137749
137750
137751
#endif
};
/* Number of pragmas: 68 on by default, 78 total. */

/************** End of pragma.h **********************************************/
/************** Continuing where we left off in pragma.c *********************/





























/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or
** unrecognized string argument.  The FULL and EXTRA option is disallowed
** if the omitFull parameter it 1.
**
** Note that the values returned are one less that the values that







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







137978
137979
137980
137981
137982
137983
137984
137985
137986
137987
137988
137989
137990
137991
137992
137993
137994
137995
137996
137997
137998
137999
138000
138001
138002
138003
138004
138005
138006
138007
138008
138009
138010
138011
138012
138013
138014
138015
138016
138017
138018
138019
#endif
};
/* Number of pragmas: 68 on by default, 78 total. */

/************** End of pragma.h **********************************************/
/************** Continuing where we left off in pragma.c *********************/

/*
** When the 0x10 bit of PRAGMA optimize is set, any ANALYZE commands
** will be run with an analysis_limit set to the lessor of the value of
** the following macro or to the actual analysis_limit if it is non-zero,
** in order to prevent PRAGMA optimize from running for too long.
**
** The value of 2000 is chosen emperically so that the worst-case run-time
** for PRAGMA optimize does not exceed 100 milliseconds against a variety
** of test databases on a RaspberryPI-4 compiled using -Os and without
** -DSQLITE_DEBUG.  Of course, your mileage may vary.  For the purpose of
** his paragraph, "worst-case" means that ANALYZE ends up being
** run on every table in the database.  The worst case typically only
** happens if PRAGMA optimize is run on a database file for which ANALYZE
** has not been previously run and the 0x10000 flag is included so that
** all tables are analyzed.  The usual case for PRAGMA optimize is that
** no ANALYZE commands will be run at all, or if any ANALYZE happens it
** will be against a single table, so that expected timing for PRAGMA
** optimize on a PI-4 is more like 1 millisecond or less with the 0x10000
** flag or less than 100 microseconds without the 0x10000 flag.
**
** An analysis limit of 2000 is almost always sufficient for the query
** planner to fully characterize an index.  The additional accuracy from
** a larger analysis is not usually helpful.
*/
#ifndef SQLITE_DEFAULT_OPTIMIZE_LIMIT
# define SQLITE_DEFAULT_OPTIMIZE_LIMIT 2000
#endif

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or
** unrecognized string argument.  The FULL and EXTRA option is disallowed
** if the omitFull parameter it 1.
**
** Note that the values returned are one less that the values that
139470
139471
139472
139473
139474
139475
139476
139477
139478
139479
139480
139481
139482
139483
139484
139485
139486
139487
139488
139489
139490
139491
139492
139493
139494
139495
139496
139497
139498
139499
139500
139501
139502
139503
139504
139505
139506
139507
139508
        int iDataCur, iIdxCur;
        int r1 = -1;
        int bStrict;            /* True for a STRICT table */
        int r2;                 /* Previous key for WITHOUT ROWID tables */
        int mxCol;              /* Maximum non-virtual column number */

        if( pObjTab && pObjTab!=pTab ) continue;
        if( !IsOrdinaryTable(pTab) ){
#ifndef SQLITE_OMIT_VIRTUALTABLE
          sqlite3_vtab *pVTab;
          int a1;
          if( !IsVirtual(pTab) ) continue;
          if( pTab->nCol<=0 ){
            const char *zMod = pTab->u.vtab.azArg[0];
            if( sqlite3HashFind(&db->aModule, zMod)==0 ) continue;
          }
          sqlite3ViewGetColumnNames(pParse, pTab);
          if( pTab->u.vtab.p==0 ) continue;
          pVTab = pTab->u.vtab.p->pVtab;
          if( NEVER(pVTab==0) ) continue;
          if( NEVER(pVTab->pModule==0) ) continue;
          if( pVTab->pModule->iVersion<4 ) continue;
          if( pVTab->pModule->xIntegrity==0 ) continue;
          sqlite3VdbeAddOp3(v, OP_VCheck, i, 3, isQuick);
          pTab->nTabRef++;
          sqlite3VdbeAppendP4(v, pTab, P4_TABLEREF);
          a1 = sqlite3VdbeAddOp1(v, OP_IsNull, 3); VdbeCoverage(v);
          integrityCheckResultRow(v);
          sqlite3VdbeJumpHere(v, a1);
#endif
          continue;
        }
        if( isQuick || HasRowid(pTab) ){
          pPk = 0;
          r2 = 0;
        }else{
          pPk = sqlite3PrimaryKeyIndex(pTab);
          r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol);
          sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1);







|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







139738
139739
139740
139741
139742
139743
139744
139745
























139746
139747
139748
139749
139750
139751
139752
        int iDataCur, iIdxCur;
        int r1 = -1;
        int bStrict;            /* True for a STRICT table */
        int r2;                 /* Previous key for WITHOUT ROWID tables */
        int mxCol;              /* Maximum non-virtual column number */

        if( pObjTab && pObjTab!=pTab ) continue;
        if( !IsOrdinaryTable(pTab) ) continue;
























        if( isQuick || HasRowid(pTab) ){
          pPk = 0;
          r2 = 0;
        }else{
          pPk = sqlite3PrimaryKeyIndex(pTab);
          r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol);
          sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1);
139629
139630
139631
139632
139633
139634
139635

139636
139637
139638
139639
139640
139641
139642
            }else{
              sqlite3VdbeChangeP5(v, 0x0d); /* INT, TEXT, or BLOB */
              /* OP_IsType does not detect NaN values in the database file
              ** which should be treated as a NULL.  So if the header type
              ** is REAL, we have to load the actual data using OP_Column
              ** to reliably determine if the value is a NULL. */
              sqlite3VdbeAddOp3(v, OP_Column, p1, p3, 3);

              jmp3 = sqlite3VdbeAddOp2(v, OP_NotNull, 3, labelOk);
              VdbeCoverage(v);
            }
            zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
                                pCol->zCnName);
            sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
            if( doTypeCheck ){







>







139873
139874
139875
139876
139877
139878
139879
139880
139881
139882
139883
139884
139885
139886
139887
            }else{
              sqlite3VdbeChangeP5(v, 0x0d); /* INT, TEXT, or BLOB */
              /* OP_IsType does not detect NaN values in the database file
              ** which should be treated as a NULL.  So if the header type
              ** is REAL, we have to load the actual data using OP_Column
              ** to reliably determine if the value is a NULL. */
              sqlite3VdbeAddOp3(v, OP_Column, p1, p3, 3);
              sqlite3ColumnDefault(v, pTab, j, 3);
              jmp3 = sqlite3VdbeAddOp2(v, OP_NotNull, 3, labelOk);
              VdbeCoverage(v);
            }
            zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
                                pCol->zCnName);
            sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
            if( doTypeCheck ){
139819
139820
139821
139822
139823
139824
139825
































139826
139827
139828
139829
139830
139831
139832
            sqlite3VdbeJumpHere(v, addr);
          }
          if( pPk ){
            sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol);
          }
        }
      }
































    }
    {
      static const int iLn = VDBE_OFFSET_LINENO(2);
      static const VdbeOpList endCode[] = {
        { OP_AddImm,      1, 0,        0},    /* 0 */
        { OP_IfNotZero,   1, 4,        0},    /* 1 */
        { OP_String8,     0, 3,        0},    /* 2 */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







140064
140065
140066
140067
140068
140069
140070
140071
140072
140073
140074
140075
140076
140077
140078
140079
140080
140081
140082
140083
140084
140085
140086
140087
140088
140089
140090
140091
140092
140093
140094
140095
140096
140097
140098
140099
140100
140101
140102
140103
140104
140105
140106
140107
140108
140109
            sqlite3VdbeJumpHere(v, addr);
          }
          if( pPk ){
            sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol);
          }
        }
      }

#ifndef SQLITE_OMIT_VIRTUALTABLE
      /* Second pass to invoke the xIntegrity method on all virtual
      ** tables.
      */
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        sqlite3_vtab *pVTab;
        int a1;
        if( pObjTab && pObjTab!=pTab ) continue;
        if( IsOrdinaryTable(pTab) ) continue;
        if( !IsVirtual(pTab) ) continue;
        if( pTab->nCol<=0 ){
          const char *zMod = pTab->u.vtab.azArg[0];
          if( sqlite3HashFind(&db->aModule, zMod)==0 ) continue;
        }
        sqlite3ViewGetColumnNames(pParse, pTab);
        if( pTab->u.vtab.p==0 ) continue;
        pVTab = pTab->u.vtab.p->pVtab;
        if( NEVER(pVTab==0) ) continue;
        if( NEVER(pVTab->pModule==0) ) continue;
        if( pVTab->pModule->iVersion<4 ) continue;
        if( pVTab->pModule->xIntegrity==0 ) continue;
        sqlite3VdbeAddOp3(v, OP_VCheck, i, 3, isQuick);
        pTab->nTabRef++;
        sqlite3VdbeAppendP4(v, pTab, P4_TABLEREF);
        a1 = sqlite3VdbeAddOp1(v, OP_IsNull, 3); VdbeCoverage(v);
        integrityCheckResultRow(v);
        sqlite3VdbeJumpHere(v, a1);
        continue;
      }
#endif
    }
    {
      static const int iLn = VDBE_OFFSET_LINENO(2);
      static const VdbeOpList endCode[] = {
        { OP_AddImm,      1, 0,        0},    /* 0 */
        { OP_IfNotZero,   1, 4,        0},    /* 1 */
        { OP_String8,     0, 3,        0},    /* 2 */
140082
140083
140084
140085
140086
140087
140088
140089
140090
140091
140092
140093
140094
140095
140096
140097
140098




140099
140100
140101
140102

140103
140104

140105
140106
140107
140108
140109
140110
140111
140112
140113
140114
140115
140116








140117
140118
140119
140120

140121

140122
140123


140124
140125
140126


140127
140128
140129
140130
140131
140132
140133
140134
140135
140136
140137




140138
140139
140140
140141
140142
140143
140144








140145
140146
140147
140148
140149
140150
140151
140152
140153

140154
140155
140156
140157
140158



140159

140160

140161
140162


140163












140164
140165







140166



140167








140168
140169
140170
140171
140172
140173
140174
140175
140176
140177
140178
140179

140180
140181
140182
140183















140184
140185
140186
140187
140188
140189
140190
  **
  ** The details of optimizations performed by this pragma are expected
  ** to change and improve over time.  Applications should anticipate that
  ** this pragma will perform new optimizations in future releases.
  **
  ** The optional argument is a bitmask of optimizations to perform:
  **
  **    0x0001    Debugging mode.  Do not actually perform any optimizations
  **              but instead return one line of text for each optimization
  **              that would have been done.  Off by default.
  **
  **    0x0002    Run ANALYZE on tables that might benefit.  On by default.
  **              See below for additional information.
  **
  **    0x0004    (Not yet implemented) Record usage and performance
  **              information from the current session in the
  **              database file so that it will be available to "optimize"




  **              pragmas run by future database connections.
  **
  **    0x0008    (Not yet implemented) Create indexes that might have
  **              been helpful to recent queries

  **
  ** The default MASK is and always shall be 0xfffe.  0xfffe means perform all

  ** of the optimizations listed above except Debug Mode, including new
  ** optimizations that have not yet been invented.  If new optimizations are
  ** ever added that should be off by default, those off-by-default
  ** optimizations will have bitmasks of 0x10000 or larger.
  **
  ** DETERMINATION OF WHEN TO RUN ANALYZE
  **
  ** In the current implementation, a table is analyzed if only if all of
  ** the following are true:
  **
  ** (1) MASK bit 0x02 is set.
  **








  ** (2) The query planner used sqlite_stat1-style statistics for one or
  **     more indexes of the table at some point during the lifetime of
  **     the current connection.
  **

  ** (3) One or more indexes of the table are currently unanalyzed OR

  **     the number of rows in the table has increased by 25 times or more
  **     since the last time ANALYZE was run.


  **
  ** The rules for when tables are analyzed are likely to change in
  ** future releases.


  */
  case PragTyp_OPTIMIZE: {
    int iDbLast;           /* Loop termination point for the schema loop */
    int iTabCur;           /* Cursor for a table whose size needs checking */
    HashElem *k;           /* Loop over tables of a schema */
    Schema *pSchema;       /* The current schema */
    Table *pTab;           /* A table in the schema */
    Index *pIdx;           /* An index of the table */
    LogEst szThreshold;    /* Size threshold above which reanalysis needed */
    char *zSubSql;         /* SQL statement for the OP_SqlExec opcode */
    u32 opMask;            /* Mask of operations to perform */





    if( zRight ){
      opMask = (u32)sqlite3Atoi(zRight);
      if( (opMask & 0x02)==0 ) break;
    }else{
      opMask = 0xfffe;
    }








    iTabCur = pParse->nTab++;
    for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
      if( iDb==1 ) continue;
      sqlite3CodeVerifySchema(pParse, iDb);
      pSchema = db->aDb[iDb].pSchema;
      for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
        pTab = (Table*)sqliteHashData(k);

        /* If table pTab has not been used in a way that would benefit from

        ** having analysis statistics during the current session, then skip it.
        ** This also has the effect of skipping virtual tables and views */
        if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;

        /* Reanalyze if the table is 25 times larger than the last analysis */



        szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );

        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){

          if( !pIdx->hasStat1 ){
            szThreshold = 0; /* Always analyze if any index lacks statistics */


            break;












          }
        }







        if( szThreshold ){



          sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);








          sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
                         sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
          VdbeCoverage(v);
        }
        zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
                                 db->aDb[iDb].zDbSName, pTab->zName);
        if( opMask & 0x01 ){
          int r1 = sqlite3GetTempReg(pParse);
          sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
          sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
        }else{
          sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);

        }
      }
    }
    sqlite3VdbeAddOp0(v, OP_Expire);















    break;
  }

  /*
  **   PRAGMA busy_timeout
  **   PRAGMA busy_timeout = N
  **







|
|
|

|
|

|
|
|
>
>
>
>
|

|
|
>

|
>
|
|
<
|






|

>
>
>
>
>
>
>
>
|
|
|

>
|
>
|
|
>
>


|
>
>











>
>
>
>







>
>
>
>
>
>
>
>








|
>
|
|
|

|
>
>
>
|
>

>

|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>
>
|
|









|
>




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







140359
140360
140361
140362
140363
140364
140365
140366
140367
140368
140369
140370
140371
140372
140373
140374
140375
140376
140377
140378
140379
140380
140381
140382
140383
140384
140385
140386
140387
140388
140389

140390
140391
140392
140393
140394
140395
140396
140397
140398
140399
140400
140401
140402
140403
140404
140405
140406
140407
140408
140409
140410
140411
140412
140413
140414
140415
140416
140417
140418
140419
140420
140421
140422
140423
140424
140425
140426
140427
140428
140429
140430
140431
140432
140433
140434
140435
140436
140437
140438
140439
140440
140441
140442
140443
140444
140445
140446
140447
140448
140449
140450
140451
140452
140453
140454
140455
140456
140457
140458
140459
140460
140461
140462
140463
140464
140465
140466
140467
140468
140469
140470
140471
140472
140473
140474
140475
140476
140477
140478
140479
140480
140481
140482
140483
140484
140485
140486
140487
140488
140489
140490
140491
140492
140493
140494
140495
140496
140497
140498
140499
140500
140501
140502
140503
140504
140505
140506
140507
140508
140509
140510
140511
140512
140513
140514
140515
140516
140517
140518
140519
140520
140521
140522
140523
140524
140525
140526
140527
140528
140529
140530
140531
140532
140533
140534
140535
140536
140537
140538
140539
140540
140541
140542
140543
140544
140545
140546
140547
140548
140549
140550
140551
140552
  **
  ** The details of optimizations performed by this pragma are expected
  ** to change and improve over time.  Applications should anticipate that
  ** this pragma will perform new optimizations in future releases.
  **
  ** The optional argument is a bitmask of optimizations to perform:
  **
  **    0x00001    Debugging mode.  Do not actually perform any optimizations
  **               but instead return one line of text for each optimization
  **               that would have been done.  Off by default.
  **
  **    0x00002    Run ANALYZE on tables that might benefit.  On by default.
  **               See below for additional information.
  **
  **    0x00010    Run all ANALYZE operations using an analysis_limit that
  **               is the lessor of the current analysis_limit and the
  **               SQLITE_DEFAULT_OPTIMIZE_LIMIT compile-time option.
  **               The default value of SQLITE_DEFAULT_OPTIMIZE_LIMIT is
  **               currently (2024-02-19) set to 2000, which is such that
  **               the worst case run-time for PRAGMA optimize on a 100MB
  **               database will usually be less than 100 milliseconds on
  **               a RaspberryPI-4 class machine.  On by default.
  **
  **    0x10000    Look at tables to see if they need to be reanalyzed
  **               due to growth or shrinkage even if they have not been
  **               queried during the current connection.  Off by default.
  **
  ** The default MASK is and always shall be 0x0fffe.  In the current
  ** implementation, the default mask only covers the 0x00002 optimization,
  ** though additional optimizations that are covered by 0x0fffe might be
  ** added in the future.  Optimizations that are off by default and must

  ** be explicitly requested have masks of 0x10000 or greater.
  **
  ** DETERMINATION OF WHEN TO RUN ANALYZE
  **
  ** In the current implementation, a table is analyzed if only if all of
  ** the following are true:
  **
  ** (1) MASK bit 0x00002 is set.
  **
  ** (2) The table is an ordinary table, not a virtual table or view.
  **
  ** (3) The table name does not begin with "sqlite_".
  **
  ** (4) One or more of the following is true:
  **      (4a) The 0x10000 MASK bit is set.
  **      (4b) One or more indexes on the table lacks an entry
  **           in the sqlite_stat1 table.
  **      (4c) The query planner used sqlite_stat1-style statistics for one
  **           or more indexes of the table at some point during the lifetime
  **           of the current connection.
  **
  ** (5) One or more of the following is true:
  **      (5a) One or more indexes on the table lacks an entry
  **           in the sqlite_stat1 table.  (Same as 4a)
  **      (5b) The number of rows in the table has increased or decreased by
  **           10-fold.  In other words, the current size of the table is
  **           10 times larger than the size in sqlite_stat1 or else the
  **           current size is less than 1/10th the size in sqlite_stat1.
  **
  ** The rules for when tables are analyzed are likely to change in
  ** future releases.  Future versions of SQLite might accept a string
  ** literal argument to this pragma that contains a mnemonic description
  ** of the options rather than a bitmap.
  */
  case PragTyp_OPTIMIZE: {
    int iDbLast;           /* Loop termination point for the schema loop */
    int iTabCur;           /* Cursor for a table whose size needs checking */
    HashElem *k;           /* Loop over tables of a schema */
    Schema *pSchema;       /* The current schema */
    Table *pTab;           /* A table in the schema */
    Index *pIdx;           /* An index of the table */
    LogEst szThreshold;    /* Size threshold above which reanalysis needed */
    char *zSubSql;         /* SQL statement for the OP_SqlExec opcode */
    u32 opMask;            /* Mask of operations to perform */
    int nLimit;            /* Analysis limit to use */
    int nCheck = 0;        /* Number of tables to be optimized */
    int nBtree = 0;        /* Number of btrees to scan */
    int nIndex;            /* Number of indexes on the current table */

    if( zRight ){
      opMask = (u32)sqlite3Atoi(zRight);
      if( (opMask & 0x02)==0 ) break;
    }else{
      opMask = 0xfffe;
    }
    if( (opMask & 0x10)==0 ){
      nLimit = 0;
    }else if( db->nAnalysisLimit>0
           && db->nAnalysisLimit<SQLITE_DEFAULT_OPTIMIZE_LIMIT ){
      nLimit = 0;
    }else{
      nLimit = SQLITE_DEFAULT_OPTIMIZE_LIMIT;
    }
    iTabCur = pParse->nTab++;
    for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
      if( iDb==1 ) continue;
      sqlite3CodeVerifySchema(pParse, iDb);
      pSchema = db->aDb[iDb].pSchema;
      for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
        pTab = (Table*)sqliteHashData(k);

        /* This only works for ordinary tables */
        if( !IsOrdinaryTable(pTab) ) continue;

        /* Do not scan system tables */
        if( 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ) continue;

        /* Find the size of the table as last recorded in sqlite_stat1.
        ** If any index is unanalyzed, then the threshold is -1 to
        ** indicate a new, unanalyzed index
        */
        szThreshold = pTab->nRowLogEst;
        nIndex = 0;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          nIndex++;
          if( !pIdx->hasStat1 ){
            szThreshold = -1; /* Always analyze if any index lacks statistics */
          }
        }

        /* If table pTab has not been used in a way that would benefit from
        ** having analysis statistics during the current session, then skip it,
        ** unless the 0x10000 MASK bit is set. */
        if( (pTab->tabFlags & TF_MaybeReanalyze)!=0 ){
          /* Check for size change if stat1 has been used for a query */
        }else if( opMask & 0x10000 ){
          /* Check for size change if 0x10000 is set */
        }else if( pTab->pIndex!=0 && szThreshold<0 ){
          /* Do analysis if unanalyzed indexes exists */
        }else{
          /* Otherwise, we can skip this table */
          continue;
        }

        nCheck++;
        if( nCheck==2 ){
          /* If ANALYZE might be invoked two or more times, hold a write
          ** transaction for efficiency */
          sqlite3BeginWriteOperation(pParse, 0, iDb);
        }
        nBtree += nIndex+1;

        /* Reanalyze if the table is 10 times larger or smaller than
        ** the last analysis.  Unconditional reanalysis if there are
        ** unanalyzed indexes. */
        sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
        if( szThreshold>=0 ){
          const LogEst iRange = 33;   /* 10x size change */
          sqlite3VdbeAddOp4Int(v, OP_IfSizeBetween, iTabCur,
                         sqlite3VdbeCurrentAddr(v)+2+(opMask&1),
                         szThreshold>=iRange ? szThreshold-iRange : -1,
                         szThreshold+iRange);
          VdbeCoverage(v);
        }else{
          sqlite3VdbeAddOp2(v, OP_Rewind, iTabCur,
                         sqlite3VdbeCurrentAddr(v)+2+(opMask&1));
          VdbeCoverage(v);
        }
        zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
                                 db->aDb[iDb].zDbSName, pTab->zName);
        if( opMask & 0x01 ){
          int r1 = sqlite3GetTempReg(pParse);
          sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
          sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
        }else{
          sqlite3VdbeAddOp4(v, OP_SqlExec, nLimit ? 0x02 : 00, nLimit, 0,
                            zSubSql, P4_DYNAMIC);
        }
      }
    }
    sqlite3VdbeAddOp0(v, OP_Expire);

    /* In a schema with a large number of tables and indexes, scale back
    ** the analysis_limit to avoid excess run-time in the worst case.
    */
    if( !db->mallocFailed && nLimit>0 && nBtree>100 ){
      int iAddr, iEnd;
      VdbeOp *aOp;
      nLimit = 100*nLimit/nBtree;
      if( nLimit<100 ) nLimit = 100;
      aOp = sqlite3VdbeGetOp(v, 0);
      iEnd = sqlite3VdbeCurrentAddr(v);
      for(iAddr=0; iAddr<iEnd; iAddr++){
        if( aOp[iAddr].opcode==OP_SqlExec ) aOp[iAddr].p2 = nLimit;
      }
    }
    break;
  }

  /*
  **   PRAGMA busy_timeout
  **   PRAGMA busy_timeout = N
  **
148173
148174
148175
148176
148177
148178
148179


148180
148181
148182
148183
148184
148185
148186

#if TREETRACE_ENABLED
/*
** Display all information about an AggInfo object
*/
static void printAggInfo(AggInfo *pAggInfo){
  int ii;


  for(ii=0; ii<pAggInfo->nColumn; ii++){
    struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
    sqlite3DebugPrintf(
       "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
       " iSorterColumn=%d %s\n",
       ii, pCol->pTab ? pCol->pTab->zName : "NULL",
       pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii,







>
>







148535
148536
148537
148538
148539
148540
148541
148542
148543
148544
148545
148546
148547
148548
148549
148550

#if TREETRACE_ENABLED
/*
** Display all information about an AggInfo object
*/
static void printAggInfo(AggInfo *pAggInfo){
  int ii;
  sqlite3DebugPrintf("AggInfo %d/%p:\n",
     pAggInfo->selId, pAggInfo);
  for(ii=0; ii<pAggInfo->nColumn; ii++){
    struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
    sqlite3DebugPrintf(
       "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
       " iSorterColumn=%d %s\n",
       ii, pCol->pTab ? pCol->pTab->zName : "NULL",
       pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii,
150275
150276
150277
150278
150279
150280
150281






150282
150283
150284
150285
150286
150287
150288
  */
select_end:
  assert( db->mallocFailed==0 || db->mallocFailed==1 );
  assert( db->mallocFailed==0 || pParse->nErr!=0 );
  sqlite3ExprListDelete(db, pMinMaxOrderBy);
#ifdef SQLITE_DEBUG
  if( pAggInfo && !db->mallocFailed ){






    for(i=0; i<pAggInfo->nColumn; i++){
      Expr *pExpr = pAggInfo->aCol[i].pCExpr;
      if( pExpr==0 ) continue;
      assert( pExpr->pAggInfo==pAggInfo );
      assert( pExpr->iAgg==i );
    }
    for(i=0; i<pAggInfo->nFunc; i++){







>
>
>
>
>
>







150639
150640
150641
150642
150643
150644
150645
150646
150647
150648
150649
150650
150651
150652
150653
150654
150655
150656
150657
150658
  */
select_end:
  assert( db->mallocFailed==0 || db->mallocFailed==1 );
  assert( db->mallocFailed==0 || pParse->nErr!=0 );
  sqlite3ExprListDelete(db, pMinMaxOrderBy);
#ifdef SQLITE_DEBUG
  if( pAggInfo && !db->mallocFailed ){
#if TREETRACE_ENABLED
    if( sqlite3TreeTrace & 0x20 ){
      TREETRACE(0x20,pParse,p,("Finished with AggInfo\n"));
      printAggInfo(pAggInfo);
    }
#endif
    for(i=0; i<pAggInfo->nColumn; i++){
      Expr *pExpr = pAggInfo->aCol[i].pCExpr;
      if( pExpr==0 ) continue;
      assert( pExpr->pAggInfo==pAggInfo );
      assert( pExpr->iAgg==i );
    }
    for(i=0; i<pAggInfo->nFunc; i++){
154712
154713
154714
154715
154716
154717
154718


154719
154720
154721
154722
154723
154724
154725
  sCtx.pTab = pTab;
  sCtx.pVTable = pVTable;
  sCtx.pPrior = db->pVtabCtx;
  sCtx.bDeclared = 0;
  db->pVtabCtx = &sCtx;
  pTab->nTabRef++;
  rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);


  sqlite3DeleteTable(db, pTab);
  db->pVtabCtx = sCtx.pPrior;
  if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
  assert( sCtx.pTab==pTab );

  if( SQLITE_OK!=rc ){
    if( zErr==0 ){







>
>







155082
155083
155084
155085
155086
155087
155088
155089
155090
155091
155092
155093
155094
155095
155096
155097
  sCtx.pTab = pTab;
  sCtx.pVTable = pVTable;
  sCtx.pPrior = db->pVtabCtx;
  sCtx.bDeclared = 0;
  db->pVtabCtx = &sCtx;
  pTab->nTabRef++;
  rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
  assert( pTab!=0 );
  assert( pTab->nTabRef>1 || rc!=SQLITE_OK );
  sqlite3DeleteTable(db, pTab);
  db->pVtabCtx = sCtx.pPrior;
  if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
  assert( sCtx.pTab==pTab );

  if( SQLITE_OK!=rc ){
    if( zErr==0 ){
154734
154735
154736
154737
154738
154739
154740
154741
154742
154743
154744
154745
154746
154747
154748
    ** the sqlite3_vtab object if successful.  */
    memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
    pVTable->pVtab->pModule = pMod->pModule;
    pMod->nRefModule++;
    pVTable->nRef = 1;
    if( sCtx.bDeclared==0 ){
      const char *zFormat = "vtable constructor did not declare schema: %s";
      *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
      sqlite3VtabUnlock(pVTable);
      rc = SQLITE_ERROR;
    }else{
      int iCol;
      u16 oooHidden = 0;
      /* If everything went according to plan, link the new VTable structure
      ** into the linked list headed by pTab->u.vtab.p. Then loop through the







|







155106
155107
155108
155109
155110
155111
155112
155113
155114
155115
155116
155117
155118
155119
155120
    ** the sqlite3_vtab object if successful.  */
    memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
    pVTable->pVtab->pModule = pMod->pModule;
    pMod->nRefModule++;
    pVTable->nRef = 1;
    if( sCtx.bDeclared==0 ){
      const char *zFormat = "vtable constructor did not declare schema: %s";
      *pzErr = sqlite3MPrintf(db, zFormat, zModuleName);
      sqlite3VtabUnlock(pVTable);
      rc = SQLITE_ERROR;
    }else{
      int iCol;
      u16 oooHidden = 0;
      /* If everything went according to plan, link the new VTable structure
      ** into the linked list headed by pTab->u.vtab.p. Then loop through the
164127
164128
164129
164130
164131
164132
164133

164134

164135
164136
164137
164138
164139
164140
164141
  int ii, jj;

  if( pIndex->bUnordered ) return 0;
  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
  for(ii=0; ii<pOB->nExpr; ii++){
    Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
    if( NEVER(pExpr==0) ) continue;

    if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){

      if( pExpr->iColumn<0 ) return 1;
      for(jj=0; jj<pIndex->nKeyCol; jj++){
        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
      }
    }else if( (aColExpr = pIndex->aColExpr)!=0 ){
      for(jj=0; jj<pIndex->nKeyCol; jj++){
        if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;







>
|
>







164499
164500
164501
164502
164503
164504
164505
164506
164507
164508
164509
164510
164511
164512
164513
164514
164515
  int ii, jj;

  if( pIndex->bUnordered ) return 0;
  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
  for(ii=0; ii<pOB->nExpr; ii++){
    Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
    if( NEVER(pExpr==0) ) continue;
    if( (pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN)
     && pExpr->iTable==iCursor
    ){
      if( pExpr->iColumn<0 ) return 1;
      for(jj=0; jj<pIndex->nKeyCol; jj++){
        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
      }
    }else if( (aColExpr = pIndex->aColExpr)!=0 ){
      for(jj=0; jj<pIndex->nKeyCol; jj++){
        if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
164733
164734
164735
164736
164737
164738
164739
164740
164741
164742
164743
164744
164745
164746
164747
    pBuilder->bldFlags1 = 0;
    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
    if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
      /* If a non-unique index is used, or if a prefix of the key for
      ** unique index is used (making the index functionally non-unique)
      ** then the sqlite_stat1 data becomes important for scoring the
      ** plan */
      pTab->tabFlags |= TF_StatsUsed;
    }
#ifdef SQLITE_ENABLE_STAT4
    sqlite3Stat4ProbeFree(pBuilder->pRec);
    pBuilder->nRecValid = 0;
    pBuilder->pRec = 0;
#endif
  }







|







165107
165108
165109
165110
165111
165112
165113
165114
165115
165116
165117
165118
165119
165120
165121
    pBuilder->bldFlags1 = 0;
    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
    if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
      /* If a non-unique index is used, or if a prefix of the key for
      ** unique index is used (making the index functionally non-unique)
      ** then the sqlite_stat1 data becomes important for scoring the
      ** plan */
      pTab->tabFlags |= TF_MaybeReanalyze;
    }
#ifdef SQLITE_ENABLE_STAT4
    sqlite3Stat4ProbeFree(pBuilder->pRec);
    pBuilder->nRecValid = 0;
    pBuilder->pRec = 0;
#endif
  }
166227
166228
166229
166230
166231
166232
166233

166234
166235
166236
166237
166238
166239
166240
166241
166242
166243
166244
  pWInfo->bOrderedInnerLoop = 0;
  if( pWInfo->pOrderBy ){
    pWInfo->nOBSat = pFrom->isOrdered;
    if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
      if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
        pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
      }

      if( pWInfo->pSelect->pOrderBy
       && pWInfo->nOBSat > pWInfo->pSelect->pOrderBy->nExpr ){
        pWInfo->nOBSat = pWInfo->pSelect->pOrderBy->nExpr;
      }
    }else{
      pWInfo->revMask = pFrom->revLoop;
      if( pWInfo->nOBSat<=0 ){
        pWInfo->nOBSat = 0;
        if( nLoop>0 ){
          u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
          if( (wsFlags & WHERE_ONEROW)==0







>
|
<
|
<







166601
166602
166603
166604
166605
166606
166607
166608
166609

166610

166611
166612
166613
166614
166615
166616
166617
  pWInfo->bOrderedInnerLoop = 0;
  if( pWInfo->pOrderBy ){
    pWInfo->nOBSat = pFrom->isOrdered;
    if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
      if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
        pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
      }
      /* vvv--- See check-in [12ad822d9b827777] on 2023-03-16 ---vvv */
      assert( pWInfo->pSelect->pOrderBy==0

           || pWInfo->nOBSat <= pWInfo->pSelect->pOrderBy->nExpr );

    }else{
      pWInfo->revMask = pFrom->revLoop;
      if( pWInfo->nOBSat<=0 ){
        pWInfo->nOBSat = 0;
        if( nLoop>0 ){
          u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
          if( (wsFlags & WHERE_ONEROW)==0
166569
166570
166571
166572
166573
166574
166575
166576
166577
166578
166579
166580
166581
166582
166583
  assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
  for(i=0; i<pWInfo->nLevel; i++){
    WhereLoop *pLoop = pWInfo->a[i].pWLoop;
    const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
    SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
    Table *pTab = pItem->pTab;
    if( (pTab->tabFlags & TF_HasStat1)==0 ) break;
    pTab->tabFlags |= TF_StatsUsed;
    if( i>=1
     && (pLoop->wsFlags & reqFlags)==reqFlags
     /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
     && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
    ){
      if( nSearch > pTab->nRowLogEst ){
        testcase( pItem->fg.jointype & JT_LEFT );







|







166942
166943
166944
166945
166946
166947
166948
166949
166950
166951
166952
166953
166954
166955
166956
  assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
  for(i=0; i<pWInfo->nLevel; i++){
    WhereLoop *pLoop = pWInfo->a[i].pWLoop;
    const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
    SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
    Table *pTab = pItem->pTab;
    if( (pTab->tabFlags & TF_HasStat1)==0 ) break;
    pTab->tabFlags |= TF_MaybeReanalyze;
    if( i>=1
     && (pLoop->wsFlags & reqFlags)==reqFlags
     /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
     && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
    ){
      if( nSearch > pTab->nRowLogEst ){
        testcase( pItem->fg.jointype & JT_LEFT );
171054
171055
171056
171057
171058
171059
171060








171061
171062
171063
171064
171065
171066
171067
      parserDoubleLinkSelect(pParse, pSelect);
    }else{
      sqlite3WithDelete(pParse->db, pWith);
    }
    return pSelect;
  }










  /* Construct a new Expr object from a single token */
  static Expr *tokenExpr(Parse *pParse, int op, Token t){
    Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
    if( p ){
      /* memset(p, 0, sizeof(Expr)); */
      p->op = (u8)op;







>
>
>
>
>
>
>
>







171427
171428
171429
171430
171431
171432
171433
171434
171435
171436
171437
171438
171439
171440
171441
171442
171443
171444
171445
171446
171447
171448
      parserDoubleLinkSelect(pParse, pSelect);
    }else{
      sqlite3WithDelete(pParse->db, pWith);
    }
    return pSelect;
  }

  /* Memory allocator for parser stack resizing.  This is a thin wrapper around
  ** sqlite3_realloc() that includes a call to sqlite3FaultSim() to facilitate
  ** testing.
  */
  static void *parserStackRealloc(void *pOld, sqlite3_uint64 newSize){
    return sqlite3FaultSim(700) ? 0 : sqlite3_realloc(pOld, newSize);
  }


  /* Construct a new Expr object from a single token */
  static Expr *tokenExpr(Parse *pParse, int op, Token t){
    Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
    if( p ){
      /* memset(p, 0, sizeof(Expr)); */
      p->op = (u8)op;
171355
171356
171357
171358
171359
171360
171361



171362
171363
171364
171365
171366
171367
171368
171369
171370
171371
171372
171373
171374


171375
171376
171377
171378
171379
171380
171381
**                       zero the stack is dynamically sized using realloc()
**    sqlite3ParserARG_SDECL     A static variable declaration for the %extra_argument
**    sqlite3ParserARG_PDECL     A parameter declaration for the %extra_argument
**    sqlite3ParserARG_PARAM     Code to pass %extra_argument as a subroutine parameter
**    sqlite3ParserARG_STORE     Code to store %extra_argument into yypParser
**    sqlite3ParserARG_FETCH     Code to extract %extra_argument from yypParser
**    sqlite3ParserCTX_*         As sqlite3ParserARG_ except for %extra_context



**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YYNTOKEN           Number of terminal symbols
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    YY_ERROR_ACTION    The yy_action[] code for syntax error
**    YY_ACCEPT_ACTION   The yy_action[] code for accept
**    YY_NO_ACTION       The yy_action[] code for no-op
**    YY_MIN_REDUCE      Minimum value for reduce actions
**    YY_MAX_REDUCE      Maximum value for reduce actions


*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
#define YYCODETYPE unsigned short int
#define YYNOCODE 319







>
>
>













>
>







171736
171737
171738
171739
171740
171741
171742
171743
171744
171745
171746
171747
171748
171749
171750
171751
171752
171753
171754
171755
171756
171757
171758
171759
171760
171761
171762
171763
171764
171765
171766
171767
**                       zero the stack is dynamically sized using realloc()
**    sqlite3ParserARG_SDECL     A static variable declaration for the %extra_argument
**    sqlite3ParserARG_PDECL     A parameter declaration for the %extra_argument
**    sqlite3ParserARG_PARAM     Code to pass %extra_argument as a subroutine parameter
**    sqlite3ParserARG_STORE     Code to store %extra_argument into yypParser
**    sqlite3ParserARG_FETCH     Code to extract %extra_argument from yypParser
**    sqlite3ParserCTX_*         As sqlite3ParserARG_ except for %extra_context
**    YYREALLOC          Name of the realloc() function to use
**    YYFREE             Name of the free() function to use
**    YYDYNSTACK         True if stack space should be extended on heap
**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YYNTOKEN           Number of terminal symbols
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    YY_ERROR_ACTION    The yy_action[] code for syntax error
**    YY_ACCEPT_ACTION   The yy_action[] code for accept
**    YY_NO_ACTION       The yy_action[] code for no-op
**    YY_MIN_REDUCE      Minimum value for reduce actions
**    YY_MAX_REDUCE      Maximum value for reduce actions
**    YY_MIN_DSTRCTR     Minimum symbol value that has a destructor
**    YY_MAX_DSTRCTR     Maximum symbol value that has a destructor
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
#define YYCODETYPE unsigned short int
#define YYNOCODE 319
171408
171409
171410
171411
171412
171413
171414



171415
171416
171417
171418
171419
171420
171421
171422
171423
171424
171425
171426
171427
171428
171429
171430
171431
171432


171433
171434
171435
171436
171437
171438
171439
171440
171441
171442
171443
171444
171445
171446
















171447
171448
171449
171450
171451
171452
171453
#define YYSTACKDEPTH 100
#endif
#define sqlite3ParserARG_SDECL
#define sqlite3ParserARG_PDECL
#define sqlite3ParserARG_PARAM
#define sqlite3ParserARG_FETCH
#define sqlite3ParserARG_STORE



#define sqlite3ParserCTX_SDECL Parse *pParse;
#define sqlite3ParserCTX_PDECL ,Parse *pParse
#define sqlite3ParserCTX_PARAM ,pParse
#define sqlite3ParserCTX_FETCH Parse *pParse=yypParser->pParse;
#define sqlite3ParserCTX_STORE yypParser->pParse=pParse;
#define YYFALLBACK 1
#define YYNSTATE             579
#define YYNRULE              405
#define YYNRULE_WITH_ACTION  340
#define YYNTOKEN             185
#define YY_MAX_SHIFT         578
#define YY_MIN_SHIFTREDUCE   838
#define YY_MAX_SHIFTREDUCE   1242
#define YY_ERROR_ACTION      1243
#define YY_ACCEPT_ACTION     1244
#define YY_NO_ACTION         1245
#define YY_MIN_REDUCE        1246
#define YY_MAX_REDUCE        1650


/************* End control #defines *******************************************/
#define YY_NLOOKAHEAD ((int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0])))

/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define yytestcase() in the %include section
** to a macro that can assist in verifying code coverage.  For production
** code the yytestcase() macro should be turned off.  But it is useful
** for testing.
*/
#ifndef yytestcase
# define yytestcase(X)
#endif


















/* Next are the tables used to determine what action to take based on the
** current state and lookahead token.  These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**







>
>
>


















>
>














>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







171794
171795
171796
171797
171798
171799
171800
171801
171802
171803
171804
171805
171806
171807
171808
171809
171810
171811
171812
171813
171814
171815
171816
171817
171818
171819
171820
171821
171822
171823
171824
171825
171826
171827
171828
171829
171830
171831
171832
171833
171834
171835
171836
171837
171838
171839
171840
171841
171842
171843
171844
171845
171846
171847
171848
171849
171850
171851
171852
171853
171854
171855
171856
171857
171858
171859
171860
#define YYSTACKDEPTH 100
#endif
#define sqlite3ParserARG_SDECL
#define sqlite3ParserARG_PDECL
#define sqlite3ParserARG_PARAM
#define sqlite3ParserARG_FETCH
#define sqlite3ParserARG_STORE
#define YYREALLOC parserStackRealloc
#define YYFREE sqlite3_free
#define YYDYNSTACK 1
#define sqlite3ParserCTX_SDECL Parse *pParse;
#define sqlite3ParserCTX_PDECL ,Parse *pParse
#define sqlite3ParserCTX_PARAM ,pParse
#define sqlite3ParserCTX_FETCH Parse *pParse=yypParser->pParse;
#define sqlite3ParserCTX_STORE yypParser->pParse=pParse;
#define YYFALLBACK 1
#define YYNSTATE             579
#define YYNRULE              405
#define YYNRULE_WITH_ACTION  340
#define YYNTOKEN             185
#define YY_MAX_SHIFT         578
#define YY_MIN_SHIFTREDUCE   838
#define YY_MAX_SHIFTREDUCE   1242
#define YY_ERROR_ACTION      1243
#define YY_ACCEPT_ACTION     1244
#define YY_NO_ACTION         1245
#define YY_MIN_REDUCE        1246
#define YY_MAX_REDUCE        1650
#define YY_MIN_DSTRCTR       204
#define YY_MAX_DSTRCTR       316
/************* End control #defines *******************************************/
#define YY_NLOOKAHEAD ((int)(sizeof(yy_lookahead)/sizeof(yy_lookahead[0])))

/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define yytestcase() in the %include section
** to a macro that can assist in verifying code coverage.  For production
** code the yytestcase() macro should be turned off.  But it is useful
** for testing.
*/
#ifndef yytestcase
# define yytestcase(X)
#endif

/* Macro to determine if stack space has the ability to grow using
** heap memory.
*/
#if YYSTACKDEPTH<=0 || YYDYNSTACK
# define YYGROWABLESTACK 1
#else
# define YYGROWABLESTACK 0
#endif

/* Guarantee a minimum number of initial stack slots.
*/
#if YYSTACKDEPTH<=0
# undef YYSTACKDEPTH
# define YYSTACKDEPTH 2  /* Need a minimum stack size */
#endif


/* Next are the tables used to determine what action to take based on the
** current state and lookahead token.  These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
172349
172350
172351
172352
172353
172354
172355
172356
172357
172358
172359
172360
172361
172362
172363
172364
172365
172366
172367
172368
172369
172370
  int yyhwm;                    /* High-water mark of the stack */
#endif
#ifndef YYNOERRORRECOVERY
  int yyerrcnt;                 /* Shifts left before out of the error */
#endif
  sqlite3ParserARG_SDECL                /* A place to hold %extra_argument */
  sqlite3ParserCTX_SDECL                /* A place to hold %extra_context */
#if YYSTACKDEPTH<=0
  int yystksz;                  /* Current side of the stack */
  yyStackEntry *yystack;        /* The parser's stack */
  yyStackEntry yystk0;          /* First stack entry */
#else
  yyStackEntry yystack[YYSTACKDEPTH];  /* The parser's stack */
  yyStackEntry *yystackEnd;            /* Last entry in the stack */
#endif
};
typedef struct yyParser yyParser;

/* #include <assert.h> */
#ifndef NDEBUG
/* #include <stdio.h> */
static FILE *yyTraceFILE = 0;







<
|
|
|
<
<
<
<







172756
172757
172758
172759
172760
172761
172762

172763
172764
172765




172766
172767
172768
172769
172770
172771
172772
  int yyhwm;                    /* High-water mark of the stack */
#endif
#ifndef YYNOERRORRECOVERY
  int yyerrcnt;                 /* Shifts left before out of the error */
#endif
  sqlite3ParserARG_SDECL                /* A place to hold %extra_argument */
  sqlite3ParserCTX_SDECL                /* A place to hold %extra_context */

  yyStackEntry *yystackEnd;           /* Last entry in the stack */
  yyStackEntry *yystack;              /* The parser stack */
  yyStackEntry yystk0[YYSTACKDEPTH];  /* Initial stack space */




};
typedef struct yyParser yyParser;

/* #include <assert.h> */
#ifndef NDEBUG
/* #include <stdio.h> */
static FILE *yyTraceFILE = 0;
173132
173133
173134
173135
173136
173137
173138
173139
173140
173141
173142
173143
173144

173145
173146
173147
173148
173149
173150
173151
173152
173153

173154
173155

173156
173157
173158
173159
173160
173161
173162
173163
173164
173165
173166

173167
173168

173169





173170
173171
173172
173173
173174
173175
173176
173177
173178
173179
173180
173181
173182
173183
173184
173185
173186
173187
173188
173189
173190
173191
173192
173193
173194
173195
173196
173197
173198
173199
173200
173201
173202
173203
173204
173205
173206
173207
173208
173209
173210
173211
173212
173213
 /* 402 */ "with ::=",
 /* 403 */ "windowdefn_list ::= windowdefn",
 /* 404 */ "window ::= frame_opt",
};
#endif /* NDEBUG */


#if YYSTACKDEPTH<=0
/*
** Try to increase the size of the parser stack.  Return the number
** of errors.  Return 0 on success.
*/
static int yyGrowStack(yyParser *p){

  int newSize;
  int idx;
  yyStackEntry *pNew;

  newSize = p->yystksz*2 + 100;
  idx = p->yytos ? (int)(p->yytos - p->yystack) : 0;
  if( p->yystack==&p->yystk0 ){
    pNew = malloc(newSize*sizeof(pNew[0]));
    if( pNew ) pNew[0] = p->yystk0;

  }else{
    pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));

  }
  if( pNew ){
    p->yystack = pNew;
    p->yytos = &p->yystack[idx];
#ifndef NDEBUG
    if( yyTraceFILE ){
      fprintf(yyTraceFILE,"%sStack grows from %d to %d entries.\n",
              yyTracePrompt, p->yystksz, newSize);
    }
#endif
    p->yystksz = newSize;

  }
  return pNew==0;

}





#endif

/* Datatype of the argument to the memory allocated passed as the
** second argument to sqlite3ParserAlloc() below.  This can be changed by
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif

/* Initialize a new parser that has already been allocated.
*/
SQLITE_PRIVATE void sqlite3ParserInit(void *yypRawParser sqlite3ParserCTX_PDECL){
  yyParser *yypParser = (yyParser*)yypRawParser;
  sqlite3ParserCTX_STORE
#ifdef YYTRACKMAXSTACKDEPTH
  yypParser->yyhwm = 0;
#endif
#if YYSTACKDEPTH<=0
  yypParser->yytos = NULL;
  yypParser->yystack = NULL;
  yypParser->yystksz = 0;
  if( yyGrowStack(yypParser) ){
    yypParser->yystack = &yypParser->yystk0;
    yypParser->yystksz = 1;
  }
#endif
#ifndef YYNOERRORRECOVERY
  yypParser->yyerrcnt = -1;
#endif
  yypParser->yytos = yypParser->yystack;
  yypParser->yystack[0].stateno = 0;
  yypParser->yystack[0].major = 0;
#if YYSTACKDEPTH>0
  yypParser->yystackEnd = &yypParser->yystack[YYSTACKDEPTH-1];
#endif
}

#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
/*
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.







|





>




|
|
|
|
|
>

|
>

<
|
|

|
|
|
|

|
>
|
<
>
|
>
>
>
>
>



















<
<
|
|
<
<
<
<
<






<
<
<







173534
173535
173536
173537
173538
173539
173540
173541
173542
173543
173544
173545
173546
173547
173548
173549
173550
173551
173552
173553
173554
173555
173556
173557
173558
173559
173560
173561

173562
173563
173564
173565
173566
173567
173568
173569
173570
173571
173572

173573
173574
173575
173576
173577
173578
173579
173580
173581
173582
173583
173584
173585
173586
173587
173588
173589
173590
173591
173592
173593
173594
173595
173596
173597
173598


173599
173600





173601
173602
173603
173604
173605
173606



173607
173608
173609
173610
173611
173612
173613
 /* 402 */ "with ::=",
 /* 403 */ "windowdefn_list ::= windowdefn",
 /* 404 */ "window ::= frame_opt",
};
#endif /* NDEBUG */


#if YYGROWABLESTACK
/*
** Try to increase the size of the parser stack.  Return the number
** of errors.  Return 0 on success.
*/
static int yyGrowStack(yyParser *p){
  int oldSize = 1 + (int)(p->yystackEnd - p->yystack);
  int newSize;
  int idx;
  yyStackEntry *pNew;

  newSize = oldSize*2 + 100;
  idx = (int)(p->yytos - p->yystack);
  if( p->yystack==p->yystk0 ){
    pNew = YYREALLOC(0, newSize*sizeof(pNew[0]));
    if( pNew==0 ) return 1;
    memcpy(pNew, p->yystack, oldSize*sizeof(pNew[0]));
  }else{
    pNew = YYREALLOC(p->yystack, newSize*sizeof(pNew[0]));
    if( pNew==0 ) return 1;
  }

  p->yystack = pNew;
  p->yytos = &p->yystack[idx];
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sStack grows from %d to %d entries.\n",
            yyTracePrompt, oldSize, newSize);
  }
#endif
  p->yystackEnd = &p->yystack[newSize-1];
  return 0;
}

#endif /* YYGROWABLESTACK */

#if !YYGROWABLESTACK
/* For builds that do no have a growable stack, yyGrowStack always
** returns an error.
*/
# define yyGrowStack(X) 1
#endif

/* Datatype of the argument to the memory allocated passed as the
** second argument to sqlite3ParserAlloc() below.  This can be changed by
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif

/* Initialize a new parser that has already been allocated.
*/
SQLITE_PRIVATE void sqlite3ParserInit(void *yypRawParser sqlite3ParserCTX_PDECL){
  yyParser *yypParser = (yyParser*)yypRawParser;
  sqlite3ParserCTX_STORE
#ifdef YYTRACKMAXSTACKDEPTH
  yypParser->yyhwm = 0;
#endif


  yypParser->yystack = yypParser->yystk0;
  yypParser->yystackEnd = &yypParser->yystack[YYSTACKDEPTH-1];





#ifndef YYNOERRORRECOVERY
  yypParser->yyerrcnt = -1;
#endif
  yypParser->yytos = yypParser->yystack;
  yypParser->yystack[0].stateno = 0;
  yypParser->yystack[0].major = 0;



}

#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
/*
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
173377
173378
173379
173380
173381
173382
173383




173384












173385

173386
173387
173388
173389
173390
173391
173392
173393
}

/*
** Clear all secondary memory allocations from the parser
*/
SQLITE_PRIVATE void sqlite3ParserFinalize(void *p){
  yyParser *pParser = (yyParser*)p;




  while( pParser->yytos>pParser->yystack ) yy_pop_parser_stack(pParser);












#if YYSTACKDEPTH<=0

  if( pParser->yystack!=&pParser->yystk0 ) free(pParser->yystack);
#endif
}

#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
/*
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.







>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|







173777
173778
173779
173780
173781
173782
173783
173784
173785
173786
173787
173788
173789
173790
173791
173792
173793
173794
173795
173796
173797
173798
173799
173800
173801
173802
173803
173804
173805
173806
173807
173808
173809
173810
}

/*
** Clear all secondary memory allocations from the parser
*/
SQLITE_PRIVATE void sqlite3ParserFinalize(void *p){
  yyParser *pParser = (yyParser*)p;

  /* In-lined version of calling yy_pop_parser_stack() for each
  ** element left in the stack */
  yyStackEntry *yytos = pParser->yytos;
  while( yytos>pParser->yystack ){
#ifndef NDEBUG
    if( yyTraceFILE ){
      fprintf(yyTraceFILE,"%sPopping %s\n",
        yyTracePrompt,
        yyTokenName[yytos->major]);
    }
#endif
    if( yytos->major>=YY_MIN_DSTRCTR ){
      yy_destructor(pParser, yytos->major, &yytos->minor);
    }
    yytos--;
  }

#if YYGROWABLESTACK
  if( pParser->yystack!=pParser->yystk0 ) YYFREE(pParser->yystack);
#endif
}

#ifndef sqlite3Parser_ENGINEALWAYSONSTACK
/*
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.
173562
173563
173564
173565
173566
173567
173568
173569
173570
173571
173572
173573
173574
173575
173576
   }
#endif
   while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/

  sqlite3ErrorMsg(pParse, "parser stack overflow");
/******** End %stack_overflow code ********************************************/
   sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument var */
   sqlite3ParserCTX_STORE
}

/*
** Print tracing information for a SHIFT action







|







173979
173980
173981
173982
173983
173984
173985
173986
173987
173988
173989
173990
173991
173992
173993
   }
#endif
   while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/

  sqlite3OomFault(pParse->db);
/******** End %stack_overflow code ********************************************/
   sqlite3ParserARG_STORE /* Suppress warning about unused %extra_argument var */
   sqlite3ParserCTX_STORE
}

/*
** Print tracing information for a SHIFT action
173606
173607
173608
173609
173610
173611
173612
173613
173614
173615
173616
173617
173618
173619
173620
173621
173622
173623
173624
173625


173626
173627
173628
173629
173630
173631
173632
173633
173634
173635
173636
173637
173638
  yypParser->yytos++;
#ifdef YYTRACKMAXSTACKDEPTH
  if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
    yypParser->yyhwm++;
    assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) );
  }
#endif
#if YYSTACKDEPTH>0
  if( yypParser->yytos>yypParser->yystackEnd ){
    yypParser->yytos--;
    yyStackOverflow(yypParser);
    return;
  }
#else
  if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz] ){
    if( yyGrowStack(yypParser) ){
      yypParser->yytos--;
      yyStackOverflow(yypParser);
      return;
    }


  }
#endif
  if( yyNewState > YY_MAX_SHIFT ){
    yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
  }
  yytos = yypParser->yytos;
  yytos->stateno = yyNewState;
  yytos->major = yyMajor;
  yytos->minor.yy0 = yyMinor;
  yyTraceShift(yypParser, yyNewState, "Shift");
}

/* For rule J, yyRuleInfoLhs[J] contains the symbol on the left-hand side







<
<
|
<
<
<
<
|





>
>

<



<







174023
174024
174025
174026
174027
174028
174029


174030




174031
174032
174033
174034
174035
174036
174037
174038
174039

174040
174041
174042

174043
174044
174045
174046
174047
174048
174049
  yypParser->yytos++;
#ifdef YYTRACKMAXSTACKDEPTH
  if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
    yypParser->yyhwm++;
    assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) );
  }
#endif


  yytos = yypParser->yytos;




  if( yytos>yypParser->yystackEnd ){
    if( yyGrowStack(yypParser) ){
      yypParser->yytos--;
      yyStackOverflow(yypParser);
      return;
    }
    yytos = yypParser->yytos;
    assert( yytos <= yypParser->yystackEnd );
  }

  if( yyNewState > YY_MAX_SHIFT ){
    yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
  }

  yytos->stateno = yyNewState;
  yytos->major = yyMajor;
  yytos->minor.yy0 = yyMinor;
  yyTraceShift(yypParser, yyNewState, "Shift");
}

/* For rule J, yyRuleInfoLhs[J] contains the symbol on the left-hand side
176206
176207
176208
176209
176210
176211
176212
176213
176214
176215
176216
176217
176218
176219
176220
176221
176222
176223
176224
176225
176226
176227
176228
176229
176230
176231
176232
#ifdef YYTRACKMAXSTACKDEPTH
        if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
          yypParser->yyhwm++;
          assert( yypParser->yyhwm ==
                  (int)(yypParser->yytos - yypParser->yystack));
        }
#endif
#if YYSTACKDEPTH>0
        if( yypParser->yytos>=yypParser->yystackEnd ){
          yyStackOverflow(yypParser);
          break;
        }
#else
        if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){
          if( yyGrowStack(yypParser) ){
            yyStackOverflow(yypParser);
            break;
          }
        }
#endif
      }
      yyact = yy_reduce(yypParser,yyruleno,yymajor,yyminor sqlite3ParserCTX_PARAM);
    }else if( yyact <= YY_MAX_SHIFTREDUCE ){
      yy_shift(yypParser,yyact,(YYCODETYPE)yymajor,yyminor);
#ifndef YYNOERRORRECOVERY
      yypParser->yyerrcnt--;
#endif







<

<
<
<
<
<





<







176617
176618
176619
176620
176621
176622
176623

176624





176625
176626
176627
176628
176629

176630
176631
176632
176633
176634
176635
176636
#ifdef YYTRACKMAXSTACKDEPTH
        if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
          yypParser->yyhwm++;
          assert( yypParser->yyhwm ==
                  (int)(yypParser->yytos - yypParser->yystack));
        }
#endif

        if( yypParser->yytos>=yypParser->yystackEnd ){





          if( yyGrowStack(yypParser) ){
            yyStackOverflow(yypParser);
            break;
          }
        }

      }
      yyact = yy_reduce(yypParser,yyruleno,yymajor,yyminor sqlite3ParserCTX_PARAM);
    }else if( yyact <= YY_MAX_SHIFTREDUCE ){
      yy_shift(yypParser,yyact,(YYCODETYPE)yymajor,yyminor);
#ifndef YYNOERRORRECOVERY
      yypParser->yyerrcnt--;
#endif
188493
188494
188495
188496
188497
188498
188499
188500
188501
188502
188503
188504
188505
188506
188507
188508
188509

188510
188511
188512

188513
188514
188515
188516
188517
188518
188519
188520
188521
188522
  sqlite3_vtab *pVtab,      /* The virtual table to be checked */
  const char *zSchema,      /* Name of schema in which pVtab lives */
  const char *zTabname,     /* Name of the pVTab table */
  int isQuick,              /* True if this is a quick_check */
  char **pzErr              /* Write error message here */
){
  Fts3Table *p = (Fts3Table*)pVtab;
  int rc;
  int bOk = 0;

  UNUSED_PARAMETER(isQuick);
  rc = sqlite3Fts3IntegrityCheck(p, &bOk);
  assert( rc!=SQLITE_CORRUPT_VTAB || bOk==0 );
  if( rc!=SQLITE_OK && rc!=SQLITE_CORRUPT_VTAB ){
    *pzErr = sqlite3_mprintf("unable to validate the inverted index for"
                             " FTS%d table %s.%s: %s",
                p->bFts4 ? 4 : 3, zSchema, zTabname, sqlite3_errstr(rc));

  }else if( bOk==0 ){
    *pzErr = sqlite3_mprintf("malformed inverted index for FTS%d table %s.%s",
                p->bFts4 ? 4 : 3, zSchema, zTabname);

  }
  sqlite3Fts3SegmentsClose(p);
  return SQLITE_OK;
}



static const sqlite3_module fts3Module = {
  /* iVersion      */ 4,
  /* xCreate       */ fts3CreateMethod,







|




|
|



>
|


>


|







188897
188898
188899
188900
188901
188902
188903
188904
188905
188906
188907
188908
188909
188910
188911
188912
188913
188914
188915
188916
188917
188918
188919
188920
188921
188922
188923
188924
188925
188926
188927
188928
  sqlite3_vtab *pVtab,      /* The virtual table to be checked */
  const char *zSchema,      /* Name of schema in which pVtab lives */
  const char *zTabname,     /* Name of the pVTab table */
  int isQuick,              /* True if this is a quick_check */
  char **pzErr              /* Write error message here */
){
  Fts3Table *p = (Fts3Table*)pVtab;
  int rc = SQLITE_OK;
  int bOk = 0;

  UNUSED_PARAMETER(isQuick);
  rc = sqlite3Fts3IntegrityCheck(p, &bOk);
  assert( rc!=SQLITE_CORRUPT_VTAB );
  if( rc==SQLITE_ERROR || (rc&0xFF)==SQLITE_CORRUPT ){
    *pzErr = sqlite3_mprintf("unable to validate the inverted index for"
                             " FTS%d table %s.%s: %s",
                p->bFts4 ? 4 : 3, zSchema, zTabname, sqlite3_errstr(rc));
    if( *pzErr ) rc = SQLITE_OK;
  }else if( rc==SQLITE_OK && bOk==0 ){
    *pzErr = sqlite3_mprintf("malformed inverted index for FTS%d table %s.%s",
                p->bFts4 ? 4 : 3, zSchema, zTabname);
    if( *pzErr==0 ) rc = SQLITE_NOMEM;
  }
  sqlite3Fts3SegmentsClose(p);
  return rc;
}



static const sqlite3_module fts3Module = {
  /* iVersion      */ 4,
  /* xCreate       */ fts3CreateMethod,
200170
200171
200172
200173
200174
200175
200176




200177

200178
200179
200180
200181
200182
200183
200184
        }
      }
    }

    sqlite3_finalize(pStmt);
  }





  *pbOk = (rc==SQLITE_OK && cksum1==cksum2);

  return rc;
}

/*
** Run the integrity-check. If no error occurs and the current contents of
** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.







>
>
>
>
|
>







200576
200577
200578
200579
200580
200581
200582
200583
200584
200585
200586
200587
200588
200589
200590
200591
200592
200593
200594
200595
        }
      }
    }

    sqlite3_finalize(pStmt);
  }

  if( rc==SQLITE_CORRUPT_VTAB ){
    rc = SQLITE_OK;
    *pbOk = 0;
  }else{
    *pbOk = (rc==SQLITE_OK && cksum1==cksum2);
  }
  return rc;
}

/*
** Run the integrity-check. If no error occurs and the current contents of
** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
203794
203795
203796
203797
203798
203799
203800


































203801
203802
203803
203804
203805
203806
203807
static void jsonAppendSeparator(JsonString *p){
  char c;
  if( p->nUsed==0 ) return;
  c = p->zBuf[p->nUsed-1];
  if( c=='[' || c=='{' ) return;
  jsonAppendChar(p, ',');
}



































/* Append the N-byte string in zIn to the end of the JsonString string
** under construction.  Enclose the string in double-quotes ("...") and
** escape any double-quotes or backslash characters contained within the
** string.
**
** This routine is a high-runner.  There is a measurable performance







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







204205
204206
204207
204208
204209
204210
204211
204212
204213
204214
204215
204216
204217
204218
204219
204220
204221
204222
204223
204224
204225
204226
204227
204228
204229
204230
204231
204232
204233
204234
204235
204236
204237
204238
204239
204240
204241
204242
204243
204244
204245
204246
204247
204248
204249
204250
204251
204252
static void jsonAppendSeparator(JsonString *p){
  char c;
  if( p->nUsed==0 ) return;
  c = p->zBuf[p->nUsed-1];
  if( c=='[' || c=='{' ) return;
  jsonAppendChar(p, ',');
}

/* c is a control character.  Append the canonical JSON representation
** of that control character to p.
**
** This routine assumes that the output buffer has already been enlarged
** sufficiently to hold the worst-case encoding plus a nul terminator.
*/
static void jsonAppendControlChar(JsonString *p, u8 c){
  static const char aSpecial[] = {
     0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0,
     0, 0, 0, 0, 0, 0, 0, 0,   0,   0,   0, 0,   0,   0, 0, 0
  };
  assert( sizeof(aSpecial)==32 );
  assert( aSpecial['\b']=='b' );
  assert( aSpecial['\f']=='f' );
  assert( aSpecial['\n']=='n' );
  assert( aSpecial['\r']=='r' );
  assert( aSpecial['\t']=='t' );
  assert( c>=0 && c<sizeof(aSpecial) );
  assert( p->nUsed+7 <= p->nAlloc );
  if( aSpecial[c] ){
    p->zBuf[p->nUsed] = '\\';
    p->zBuf[p->nUsed+1] = aSpecial[c];
    p->nUsed += 2;
  }else{
    p->zBuf[p->nUsed] = '\\';
    p->zBuf[p->nUsed+1] = 'u';
    p->zBuf[p->nUsed+2] = '0';
    p->zBuf[p->nUsed+3] = '0';
    p->zBuf[p->nUsed+4] = "0123456789abcdef"[c>>4];
    p->zBuf[p->nUsed+5] = "0123456789abcdef"[c&0xf];
    p->nUsed += 6;
  }
}

/* Append the N-byte string in zIn to the end of the JsonString string
** under construction.  Enclose the string in double-quotes ("...") and
** escape any double-quotes or backslash characters contained within the
** string.
**
** This routine is a high-runner.  There is a measurable performance
203854
203855
203856
203857
203858
203859
203860
203861
203862
203863
203864
203865
203866
203867
203868
203869
203870
203871
203872
203873
203874
203875
203876
203877
203878
203879
203880
203881
203882
203883
203884
203885
203886
203887
203888
203889

203890
203891
203892
203893
203894
203895
203896
      memcpy(&p->zBuf[p->nUsed], z, k);
      p->nUsed += k;
      z += k;
      N -= k;
    }
    c = z[0];
    if( c=='"' || c=='\\' ){
      json_simple_escape:
      if( (p->nUsed+N+3 > p->nAlloc) && jsonStringGrow(p,N+3)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';
      p->zBuf[p->nUsed++] = c;
    }else if( c=='\'' ){
      p->zBuf[p->nUsed++] = c;
    }else{
      static const char aSpecial[] = {
         0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0,   0,   0,   0, 0,   0,   0, 0, 0
      };
      assert( sizeof(aSpecial)==32 );
      assert( aSpecial['\b']=='b' );
      assert( aSpecial['\f']=='f' );
      assert( aSpecial['\n']=='n' );
      assert( aSpecial['\r']=='r' );
      assert( aSpecial['\t']=='t' );
      assert( c>=0 && c<sizeof(aSpecial) );
      if( aSpecial[c] ){
        c = aSpecial[c];
        goto json_simple_escape;
      }
      if( (p->nUsed+N+7 > p->nAlloc) && jsonStringGrow(p,N+7)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';
      p->zBuf[p->nUsed++] = 'u';
      p->zBuf[p->nUsed++] = '0';
      p->zBuf[p->nUsed++] = '0';
      p->zBuf[p->nUsed++] = "0123456789abcdef"[c>>4];
      p->zBuf[p->nUsed++] = "0123456789abcdef"[c&0xf];

    }
    z++;
    N--;
  }
  p->zBuf[p->nUsed++] = '"';
  assert( p->nUsed<p->nAlloc );
}







<






<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
>







204299
204300
204301
204302
204303
204304
204305

204306
204307
204308
204309
204310
204311















204312






204313
204314
204315
204316
204317
204318
204319
204320
      memcpy(&p->zBuf[p->nUsed], z, k);
      p->nUsed += k;
      z += k;
      N -= k;
    }
    c = z[0];
    if( c=='"' || c=='\\' ){

      if( (p->nUsed+N+3 > p->nAlloc) && jsonStringGrow(p,N+3)!=0 ) return;
      p->zBuf[p->nUsed++] = '\\';
      p->zBuf[p->nUsed++] = c;
    }else if( c=='\'' ){
      p->zBuf[p->nUsed++] = c;
    }else{















      if( (p->nUsed+N+7 > p->nAlloc) && jsonStringGrow(p,N+7)!=0 ) return;






      jsonAppendControlChar(p, c);
    }
    z++;
    N--;
  }
  p->zBuf[p->nUsed++] = '"';
  assert( p->nUsed<p->nAlloc );
}
204583
204584
204585
204586
204587
204588
204589
204590



204591
204592
204593
204594
204595
204596
204597
    case JSONB_TEXT5: {
      j = i+n;
      k = j+sz;
      while( j<k ){
        if( !jsonIsOk[z[j]] && z[j]!='\'' ){
          if( z[j]=='"' ){
            if( x==JSONB_TEXTJ ) return j+1;
          }else if( z[j]!='\\' || j+1>=k ){



            return j+1;
          }else if( strchr("\"\\/bfnrt",z[j+1])!=0 ){
            j++;
          }else if( z[j+1]=='u' ){
            if( j+5>=k ) return j+1;
            if( !jsonIs4Hex((const char*)&z[j+2]) ) return j+1;
            j++;







|
>
>
>







205007
205008
205009
205010
205011
205012
205013
205014
205015
205016
205017
205018
205019
205020
205021
205022
205023
205024
    case JSONB_TEXT5: {
      j = i+n;
      k = j+sz;
      while( j<k ){
        if( !jsonIsOk[z[j]] && z[j]!='\'' ){
          if( z[j]=='"' ){
            if( x==JSONB_TEXTJ ) return j+1;
          }else if( z[j]<=0x1f ){
            /* Control characters in JSON5 string literals are ok */
            if( x==JSONB_TEXTJ ) return j+1;
          }else if( NEVER(z[j]!='\\') || j+1>=k ){
            return j+1;
          }else if( strchr("\"\\/bfnrt",z[j+1])!=0 ){
            j++;
          }else if( z[j+1]=='u' ){
            if( j+5>=k ) return j+1;
            if( !jsonIs4Hex((const char*)&z[j+2]) ) return j+1;
            j++;
204781
204782
204783
204784
204785
204786
204787

204788
204789
204790
204791
204792
204793
204794
    jsonBlobChangePayloadSize(pParse, iThis, pParse->nBlob - iStart);
    pParse->iDepth--;
    return j+1;
  }
  case '[': {
    /* Parse array */
    iThis = pParse->nBlob;

    jsonBlobAppendNode(pParse, JSONB_ARRAY, pParse->nJson - i, 0);
    iStart = pParse->nBlob;
    if( pParse->oom ) return -1;
    if( ++pParse->iDepth > JSON_MAX_DEPTH ){
      pParse->iErr = i;
      return -1;
    }







>







205208
205209
205210
205211
205212
205213
205214
205215
205216
205217
205218
205219
205220
205221
205222
    jsonBlobChangePayloadSize(pParse, iThis, pParse->nBlob - iStart);
    pParse->iDepth--;
    return j+1;
  }
  case '[': {
    /* Parse array */
    iThis = pParse->nBlob;
    assert( i<=pParse->nJson );
    jsonBlobAppendNode(pParse, JSONB_ARRAY, pParse->nJson - i, 0);
    iStart = pParse->nBlob;
    if( pParse->oom ) return -1;
    if( ++pParse->iDepth > JSON_MAX_DEPTH ){
      pParse->iErr = i;
      return -1;
    }
204877
204878
204879
204880
204881
204882
204883
204884
204885
204886





204887
204888
204889
204890
204891
204892
204893
          opcode = JSONB_TEXT5;
          pParse->hasNonstd = 1;
        }else{
          pParse->iErr = j;
          return -1;
        }
      }else if( c<=0x1f ){
        /* Control characters are not allowed in strings */
        pParse->iErr = j;
        return -1;





      }else if( c=='"' ){
        opcode = JSONB_TEXT5;
      }
      j++;
    }
    jsonBlobAppendNode(pParse, opcode, j-1-i, &z[i+1]);
    return j+1;







|
|
|
>
>
>
>
>







205305
205306
205307
205308
205309
205310
205311
205312
205313
205314
205315
205316
205317
205318
205319
205320
205321
205322
205323
205324
205325
205326
          opcode = JSONB_TEXT5;
          pParse->hasNonstd = 1;
        }else{
          pParse->iErr = j;
          return -1;
        }
      }else if( c<=0x1f ){
        if( c==0 ){
          pParse->iErr = j;
          return -1;
        }
        /* Control characters are not allowed in canonical JSON string
        ** literals, but are allowed in JSON5 string literals. */
        opcode = JSONB_TEXT5;
        pParse->hasNonstd = 1;
      }else if( c=='"' ){
        opcode = JSONB_TEXT5;
      }
      j++;
    }
    jsonBlobAppendNode(pParse, opcode, j-1-i, &z[i+1]);
    return j+1;
205095
205096
205097
205098
205099
205100
205101

205102
205103
205104
205105
205106
205107
205108
  }
  case 'n': {
    if( strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){
      jsonBlobAppendOneByte(pParse, JSONB_NULL);
      return i+4;
    }
    /* fall-through into the default case that checks for NaN */

  }
  default: {
    u32 k;
    int nn;
    c = z[i];
    for(k=0; k<sizeof(aNanInfName)/sizeof(aNanInfName[0]); k++){
      if( c!=aNanInfName[k].c1 && c!=aNanInfName[k].c2 ) continue;







>







205528
205529
205530
205531
205532
205533
205534
205535
205536
205537
205538
205539
205540
205541
205542
  }
  case 'n': {
    if( strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){
      jsonBlobAppendOneByte(pParse, JSONB_NULL);
      return i+4;
    }
    /* fall-through into the default case that checks for NaN */
    /* no break */ deliberate_fall_through
  }
  default: {
    u32 k;
    int nn;
    c = z[i];
    for(k=0; k<sizeof(aNanInfName)/sizeof(aNanInfName[0]); k++){
      if( c!=aNanInfName[k].c1 && c!=aNanInfName[k].c2 ) continue;
205179
205180
205181
205182
205183
205184
205185




205186
205187
205188
205189
205190
205191
205192
** this into the JSONB format and make it the return value of the
** SQL function.
*/
static void jsonReturnStringAsBlob(JsonString *pStr){
  JsonParse px;
  memset(&px, 0, sizeof(px));
  jsonStringTerminate(pStr);




  px.zJson = pStr->zBuf;
  px.nJson = pStr->nUsed;
  px.db = sqlite3_context_db_handle(pStr->pCtx);
  (void)jsonTranslateTextToBlob(&px, 0);
  if( px.oom ){
    sqlite3DbFree(px.db, px.aBlob);
    sqlite3_result_error_nomem(pStr->pCtx);







>
>
>
>







205613
205614
205615
205616
205617
205618
205619
205620
205621
205622
205623
205624
205625
205626
205627
205628
205629
205630
** this into the JSONB format and make it the return value of the
** SQL function.
*/
static void jsonReturnStringAsBlob(JsonString *pStr){
  JsonParse px;
  memset(&px, 0, sizeof(px));
  jsonStringTerminate(pStr);
  if( pStr->eErr ){
    sqlite3_result_error_nomem(pStr->pCtx);
    return;
  }
  px.zJson = pStr->zBuf;
  px.nJson = pStr->nUsed;
  px.db = sqlite3_context_db_handle(pStr->pCtx);
  (void)jsonTranslateTextToBlob(&px, 0);
  if( px.oom ){
    sqlite3DbFree(px.db, px.aBlob);
    sqlite3_result_error_nomem(pStr->pCtx);
205359
205360
205361
205362
205363
205364
205365
205366
205367
205368
205369
205370
205371
205372
205373
205374
205375
205376
205377







205378
205379
205380
205381
205382
205383
205384
    case JSONB_TEXT5: {
      const char *zIn;
      u32 k;
      u32 sz2 = sz;
      zIn = (const char*)&pParse->aBlob[i+n];
      jsonAppendChar(pOut, '"');
      while( sz2>0 ){
        for(k=0; k<sz2 && zIn[k]!='\\' && zIn[k]!='"'; k++){}
        if( k>0 ){
          jsonAppendRawNZ(pOut, zIn, k);
          if( k>=sz2 ){
            break;
          }
          zIn += k;
          sz2 -= k;
        }
        if( zIn[0]=='"' ){
          jsonAppendRawNZ(pOut, "\\\"", 2);
          zIn++;







          sz2--;
          continue;
        }
        assert( zIn[0]=='\\' );
        assert( sz2>=1 );
        if( sz2<2 ){
          pOut->eErr |= JSTRING_MALFORMED;







|











>
>
>
>
>
>
>







205797
205798
205799
205800
205801
205802
205803
205804
205805
205806
205807
205808
205809
205810
205811
205812
205813
205814
205815
205816
205817
205818
205819
205820
205821
205822
205823
205824
205825
205826
205827
205828
205829
    case JSONB_TEXT5: {
      const char *zIn;
      u32 k;
      u32 sz2 = sz;
      zIn = (const char*)&pParse->aBlob[i+n];
      jsonAppendChar(pOut, '"');
      while( sz2>0 ){
        for(k=0; k<sz2 && (jsonIsOk[(u8)zIn[k]] || zIn[k]=='\''); k++){}
        if( k>0 ){
          jsonAppendRawNZ(pOut, zIn, k);
          if( k>=sz2 ){
            break;
          }
          zIn += k;
          sz2 -= k;
        }
        if( zIn[0]=='"' ){
          jsonAppendRawNZ(pOut, "\\\"", 2);
          zIn++;
          sz2--;
          continue;
        }
        if( zIn[0]<=0x1f ){
          if( pOut->nUsed+7>pOut->nAlloc && jsonStringGrow(pOut,7) ) break;
          jsonAppendControlChar(pOut, zIn[0]);
          zIn++;
          sz2--;
          continue;
        }
        assert( zIn[0]=='\\' );
        assert( sz2>=1 );
        if( sz2<2 ){
          pOut->eErr |= JSTRING_MALFORMED;
206504
206505
206506
206507
206508
206509
206510

206511
206512
206513
206514
206515
206516
206517
206518
206519
    ** JSON text using readfile(), which returns a blob.  For this reason
    ** we will continue to support the bug moving forward.
    ** See for example https://sqlite.org/forum/forumpost/012136abd5292b8d
    */
  }
  p->zJson = (char*)sqlite3_value_text(pArg);
  p->nJson = sqlite3_value_bytes(pArg);

  if( p->nJson==0 ) goto json_pfa_malformed;
  if( NEVER(p->zJson==0) ) goto json_pfa_oom;
  if( jsonConvertTextToBlob(p, (flgs & JSON_KEEPERROR) ? 0 : ctx) ){
    if( flgs & JSON_KEEPERROR ){
      p->nErr = 1;
      return p;
    }else{
      jsonParseFree(p);
      return 0;







>

|







206949
206950
206951
206952
206953
206954
206955
206956
206957
206958
206959
206960
206961
206962
206963
206964
206965
    ** JSON text using readfile(), which returns a blob.  For this reason
    ** we will continue to support the bug moving forward.
    ** See for example https://sqlite.org/forum/forumpost/012136abd5292b8d
    */
  }
  p->zJson = (char*)sqlite3_value_text(pArg);
  p->nJson = sqlite3_value_bytes(pArg);
  if( db->mallocFailed ) goto json_pfa_oom;
  if( p->nJson==0 ) goto json_pfa_malformed;
  assert( p->zJson!=0 );
  if( jsonConvertTextToBlob(p, (flgs & JSON_KEEPERROR) ? 0 : ctx) ){
    if( flgs & JSON_KEEPERROR ){
      p->nErr = 1;
      return p;
    }else{
      jsonParseFree(p);
      return 0;
206671
206672
206673
206674
206675
206676
206677
206678
206679
206680
206681
206682
206683
206684
206685
206686
206687
206688
        break;
      }
    }
    if( showContent ){
      if( sz==0 && x<=JSONB_FALSE ){
        sqlite3_str_append(pOut, "\n", 1);
      }else{
        u32 i;
        sqlite3_str_appendall(pOut, ": \"");
        for(i=iStart+n; i<iStart+n+sz; i++){
          u8 c = pParse->aBlob[i];
          if( c<0x20 || c>=0x7f ) c = '.';
          sqlite3_str_append(pOut, (char*)&c, 1);
        }
        sqlite3_str_append(pOut, "\"\n", 2);
      }
    }
    iStart += n + sz;







|

|
|







207117
207118
207119
207120
207121
207122
207123
207124
207125
207126
207127
207128
207129
207130
207131
207132
207133
207134
        break;
      }
    }
    if( showContent ){
      if( sz==0 && x<=JSONB_FALSE ){
        sqlite3_str_append(pOut, "\n", 1);
      }else{
        u32 j;
        sqlite3_str_appendall(pOut, ": \"");
        for(j=iStart+n; j<iStart+n+sz; j++){
          u8 c = pParse->aBlob[j];
          if( c<0x20 || c>=0x7f ) c = '.';
          sqlite3_str_append(pOut, (char*)&c, 1);
        }
        sqlite3_str_append(pOut, "\"\n", 2);
      }
    }
    iStart += n + sz;
206725
206726
206727
206728
206729
206730
206731
206732
206733
206734
206735
206736

206737
206738
206739
206740
206741
206742
206743

  assert( argc>=1 );
  sqlite3StrAccumInit(&out, 0, 0, 0, 1000000);
  p = jsonParseFuncArg(ctx, argv[0], 0);
  if( p==0 ) return;
  if( argc==1 ){
    jsonDebugPrintBlob(p, 0, p->nBlob, 0, &out);
    sqlite3_result_text64(ctx, out.zText, out.nChar, SQLITE_DYNAMIC, SQLITE_UTF8);
  }else{
    jsonShowParse(p);
  }
  jsonParseFree(p);

}
#endif /* SQLITE_DEBUG */

/****************************************************************************
** Scalar SQL function implementations
****************************************************************************/








|




>







207171
207172
207173
207174
207175
207176
207177
207178
207179
207180
207181
207182
207183
207184
207185
207186
207187
207188
207189
207190

  assert( argc>=1 );
  sqlite3StrAccumInit(&out, 0, 0, 0, 1000000);
  p = jsonParseFuncArg(ctx, argv[0], 0);
  if( p==0 ) return;
  if( argc==1 ){
    jsonDebugPrintBlob(p, 0, p->nBlob, 0, &out);
    sqlite3_result_text64(ctx,out.zText,out.nChar,SQLITE_TRANSIENT,SQLITE_UTF8);
  }else{
    jsonShowParse(p);
  }
  jsonParseFree(p);
  sqlite3_str_reset(&out);
}
#endif /* SQLITE_DEBUG */

/****************************************************************************
** Scalar SQL function implementations
****************************************************************************/

208082
208083
208084
208085
208086
208087
208088



208089
208090
208091
208092
208093
208094
208095
        sqlite3_result_int64(ctx, p->aParent[p->nParent-1].iKey);
      }
      break;
    }
    case JEACH_VALUE: {
      u32 i = jsonSkipLabel(p);
      jsonReturnFromBlob(&p->sParse, i, ctx, 1);



      break;
    }
    case JEACH_TYPE: {
      u32 i = jsonSkipLabel(p);
      u8 eType = p->sParse.aBlob[i] & 0x0f;
      sqlite3_result_text(ctx, jsonbType[eType], -1, SQLITE_STATIC);
      break;







>
>
>







208529
208530
208531
208532
208533
208534
208535
208536
208537
208538
208539
208540
208541
208542
208543
208544
208545
        sqlite3_result_int64(ctx, p->aParent[p->nParent-1].iKey);
      }
      break;
    }
    case JEACH_VALUE: {
      u32 i = jsonSkipLabel(p);
      jsonReturnFromBlob(&p->sParse, i, ctx, 1);
      if( (p->sParse.aBlob[i] & 0x0f)>=JSONB_ARRAY ){
        sqlite3_result_subtype(ctx, JSON_SUBTYPE);
      }
      break;
    }
    case JEACH_TYPE: {
      u32 i = jsonSkipLabel(p);
      u8 eType = p->sParse.aBlob[i] & 0x0f;
      sqlite3_result_text(ctx, jsonbType[eType], -1, SQLITE_STATIC);
      break;
209156
209157
209158
209159
209160
209161
209162
209163
209164
209165
209166
209167
209168
209169
209170
209171
209172
209173
209174
  return pNode;
}

/*
** Clear the Rtree.pNodeBlob object
*/
static void nodeBlobReset(Rtree *pRtree){
  if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){
    sqlite3_blob *pBlob = pRtree->pNodeBlob;
    pRtree->pNodeBlob = 0;
    sqlite3_blob_close(pBlob);
  }
}

/*
** Obtain a reference to an r-tree node.
*/
static int nodeAcquire(
  Rtree *pRtree,             /* R-tree structure */







<
|
|
|
<







209606
209607
209608
209609
209610
209611
209612

209613
209614
209615

209616
209617
209618
209619
209620
209621
209622
  return pNode;
}

/*
** Clear the Rtree.pNodeBlob object
*/
static void nodeBlobReset(Rtree *pRtree){

  sqlite3_blob *pBlob = pRtree->pNodeBlob;
  pRtree->pNodeBlob = 0;
  sqlite3_blob_close(pBlob);

}

/*
** Obtain a reference to an r-tree node.
*/
static int nodeAcquire(
  Rtree *pRtree,             /* R-tree structure */
209204
209205
209206
209207
209208
209209
209210
209211
209212
209213
209214
209215
209216
209217
209218
  }
  if( pRtree->pNodeBlob==0 ){
    rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, pRtree->zNodeName,
                           "data", iNode, 0,
                           &pRtree->pNodeBlob);
  }
  if( rc ){
    nodeBlobReset(pRtree);
    *ppNode = 0;
    /* If unable to open an sqlite3_blob on the desired row, that can only
    ** be because the shadow tables hold erroneous data. */
    if( rc==SQLITE_ERROR ){
      rc = SQLITE_CORRUPT_VTAB;
      RTREE_IS_CORRUPT(pRtree);
    }







<







209652
209653
209654
209655
209656
209657
209658

209659
209660
209661
209662
209663
209664
209665
  }
  if( pRtree->pNodeBlob==0 ){
    rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, pRtree->zNodeName,
                           "data", iNode, 0,
                           &pRtree->pNodeBlob);
  }
  if( rc ){

    *ppNode = 0;
    /* If unable to open an sqlite3_blob on the desired row, that can only
    ** be because the shadow tables hold erroneous data. */
    if( rc==SQLITE_ERROR ){
      rc = SQLITE_CORRUPT_VTAB;
      RTREE_IS_CORRUPT(pRtree);
    }
209264
209265
209266
209267
209268
209269
209270

209271
209272
209273
209274
209275
209276
209277
      nodeHashInsert(pRtree, pNode);
    }else{
      rc = SQLITE_CORRUPT_VTAB;
      RTREE_IS_CORRUPT(pRtree);
    }
    *ppNode = pNode;
  }else{

    if( pNode ){
      pRtree->nNodeRef--;
      sqlite3_free(pNode);
    }
    *ppNode = 0;
  }








>







209711
209712
209713
209714
209715
209716
209717
209718
209719
209720
209721
209722
209723
209724
209725
      nodeHashInsert(pRtree, pNode);
    }else{
      rc = SQLITE_CORRUPT_VTAB;
      RTREE_IS_CORRUPT(pRtree);
    }
    *ppNode = pNode;
  }else{
    nodeBlobReset(pRtree);
    if( pNode ){
      pRtree->nNodeRef--;
      sqlite3_free(pNode);
    }
    *ppNode = 0;
  }

209408
209409
209410
209411
209412
209413
209414

209415
209416
209417
209418
209419
209420
209421
static void nodeGetCoord(
  Rtree *pRtree,               /* The overall R-Tree */
  RtreeNode *pNode,            /* The node from which to extract a coordinate */
  int iCell,                   /* The index of the cell within the node */
  int iCoord,                  /* Which coordinate to extract */
  RtreeCoord *pCoord           /* OUT: Space to write result to */
){

  readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
}

/*
** Deserialize cell iCell of node pNode. Populate the structure pointed
** to by pCell with the results.
*/







>







209856
209857
209858
209859
209860
209861
209862
209863
209864
209865
209866
209867
209868
209869
209870
static void nodeGetCoord(
  Rtree *pRtree,               /* The overall R-Tree */
  RtreeNode *pNode,            /* The node from which to extract a coordinate */
  int iCell,                   /* The index of the cell within the node */
  int iCoord,                  /* Which coordinate to extract */
  RtreeCoord *pCoord           /* OUT: Space to write result to */
){
  assert( iCell<NCELL(pNode) );
  readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
}

/*
** Deserialize cell iCell of node pNode. Populate the structure pointed
** to by pCell with the results.
*/
209597
209598
209599
209600
209601
209602
209603

209604

209605
209606
209607
209608
209609
209610
209611
  Rtree *pRtree = (Rtree *)(cur->pVtab);
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  assert( pRtree->nCursor>0 );
  resetCursor(pCsr);
  sqlite3_finalize(pCsr->pReadAux);
  sqlite3_free(pCsr);
  pRtree->nCursor--;

  nodeBlobReset(pRtree);

  return SQLITE_OK;
}

/*
** Rtree virtual table module xEof method.
**
** Return non-zero if the cursor does not currently point to a valid







>
|
>







210046
210047
210048
210049
210050
210051
210052
210053
210054
210055
210056
210057
210058
210059
210060
210061
210062
  Rtree *pRtree = (Rtree *)(cur->pVtab);
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  assert( pRtree->nCursor>0 );
  resetCursor(pCsr);
  sqlite3_finalize(pCsr->pReadAux);
  sqlite3_free(pCsr);
  pRtree->nCursor--;
  if( pRtree->nCursor==0 && pRtree->inWrTrans==0 ){
    nodeBlobReset(pRtree);
  }
  return SQLITE_OK;
}

/*
** Rtree virtual table module xEof method.
**
** Return non-zero if the cursor does not currently point to a valid
210182
210183
210184
210185
210186
210187
210188



210189

210190
210191
210192
210193
210194
210195
210196
210197
210198
210199
210200
210201
210202
210203
210204
210205
210206

210207
210208
210209
210210
210211
210212
210213
*/
static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
  int rc = SQLITE_OK;
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
  if( rc==SQLITE_OK && ALWAYS(p) ){



    *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);

  }
  return rc;
}

/*
** Rtree virtual table module xColumn method.
*/
static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
  Rtree *pRtree = (Rtree *)cur->pVtab;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
  RtreeCoord c;
  int rc = SQLITE_OK;
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);

  if( rc ) return rc;
  if( NEVER(p==0) ) return SQLITE_OK;

  if( i==0 ){
    sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
  }else if( i<=pRtree->nDim2 ){
    nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);







>
>
>
|
>

















>







210633
210634
210635
210636
210637
210638
210639
210640
210641
210642
210643
210644
210645
210646
210647
210648
210649
210650
210651
210652
210653
210654
210655
210656
210657
210658
210659
210660
210661
210662
210663
210664
210665
210666
210667
210668
210669
*/
static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
  RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
  int rc = SQLITE_OK;
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
  if( rc==SQLITE_OK && ALWAYS(p) ){
    if( p->iCell>=NCELL(pNode) ){
      rc = SQLITE_ABORT;
    }else{
      *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
    }
  }
  return rc;
}

/*
** Rtree virtual table module xColumn method.
*/
static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
  Rtree *pRtree = (Rtree *)cur->pVtab;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
  RtreeCoord c;
  int rc = SQLITE_OK;
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);

  if( rc ) return rc;
  if( NEVER(p==0) ) return SQLITE_OK;
  if( p->iCell>=NCELL(pNode) ) return SQLITE_ABORT;
  if( i==0 ){
    sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
  }else if( i<=pRtree->nDim2 ){
    nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
211682
211683
211684
211685
211686
211687
211688
211689
211690
211691
211692
211693
211694
211695
211696
211697
211698
211699
211700
211701



211702
211703
211704
211705
211706
211707
211708

/*
** Called when a transaction starts.
*/
static int rtreeBeginTransaction(sqlite3_vtab *pVtab){
  Rtree *pRtree = (Rtree *)pVtab;
  assert( pRtree->inWrTrans==0 );
  pRtree->inWrTrans++;
  return SQLITE_OK;
}

/*
** Called when a transaction completes (either by COMMIT or ROLLBACK).
** The sqlite3_blob object should be released at this point.
*/
static int rtreeEndTransaction(sqlite3_vtab *pVtab){
  Rtree *pRtree = (Rtree *)pVtab;
  pRtree->inWrTrans = 0;
  nodeBlobReset(pRtree);
  return SQLITE_OK;



}

/*
** The xRename method for rtree module virtual tables.
*/
static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
  Rtree *pRtree = (Rtree *)pVtab;







|












>
>
>







212138
212139
212140
212141
212142
212143
212144
212145
212146
212147
212148
212149
212150
212151
212152
212153
212154
212155
212156
212157
212158
212159
212160
212161
212162
212163
212164
212165
212166
212167

/*
** Called when a transaction starts.
*/
static int rtreeBeginTransaction(sqlite3_vtab *pVtab){
  Rtree *pRtree = (Rtree *)pVtab;
  assert( pRtree->inWrTrans==0 );
  pRtree->inWrTrans = 1;
  return SQLITE_OK;
}

/*
** Called when a transaction completes (either by COMMIT or ROLLBACK).
** The sqlite3_blob object should be released at this point.
*/
static int rtreeEndTransaction(sqlite3_vtab *pVtab){
  Rtree *pRtree = (Rtree *)pVtab;
  pRtree->inWrTrans = 0;
  nodeBlobReset(pRtree);
  return SQLITE_OK;
}
static int rtreeRollback(sqlite3_vtab *pVtab){
  return rtreeEndTransaction(pVtab);
}

/*
** The xRename method for rtree module virtual tables.
*/
static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
  Rtree *pRtree = (Rtree *)pVtab;
211814
211815
211816
211817
211818
211819
211820
211821
211822
211823
211824
211825
211826
211827
211828
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  rtreeBeginTransaction,      /* xBegin - begin transaction */
  rtreeEndTransaction,        /* xSync - sync transaction */
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  rtreeSavepoint,             /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */
  rtreeShadowName,            /* xShadowName */
  rtreeIntegrity              /* xIntegrity */







|







212273
212274
212275
212276
212277
212278
212279
212280
212281
212282
212283
212284
212285
212286
212287
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  rtreeBeginTransaction,      /* xBegin - begin transaction */
  rtreeEndTransaction,        /* xSync - sync transaction */
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeRollback,              /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  rtreeSavepoint,             /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */
  rtreeShadowName,            /* xShadowName */
  rtreeIntegrity              /* xIntegrity */
231112
231113
231114
231115
231116
231117
231118



231119
231120
231121
231122
231123
231124
231125
231126
231127
231128
231129
231130
231131


231132
231133
231134
231135
231136
231137
231138
**                       zero the stack is dynamically sized using realloc()
**    sqlite3Fts5ParserARG_SDECL     A static variable declaration for the %extra_argument
**    sqlite3Fts5ParserARG_PDECL     A parameter declaration for the %extra_argument
**    sqlite3Fts5ParserARG_PARAM     Code to pass %extra_argument as a subroutine parameter
**    sqlite3Fts5ParserARG_STORE     Code to store %extra_argument into fts5yypParser
**    sqlite3Fts5ParserARG_FETCH     Code to extract %extra_argument from fts5yypParser
**    sqlite3Fts5ParserCTX_*         As sqlite3Fts5ParserARG_ except for %extra_context



**    fts5YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    fts5YYNSTATE           the combined number of states.
**    fts5YYNRULE            the number of rules in the grammar
**    fts5YYNFTS5TOKEN           Number of terminal symbols
**    fts5YY_MAX_SHIFT       Maximum value for shift actions
**    fts5YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    fts5YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    fts5YY_ERROR_ACTION    The fts5yy_action[] code for syntax error
**    fts5YY_ACCEPT_ACTION   The fts5yy_action[] code for accept
**    fts5YY_NO_ACTION       The fts5yy_action[] code for no-op
**    fts5YY_MIN_REDUCE      Minimum value for reduce actions
**    fts5YY_MAX_REDUCE      Maximum value for reduce actions


*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
#define fts5YYCODETYPE unsigned char
#define fts5YYNOCODE 27







>
>
>













>
>







231571
231572
231573
231574
231575
231576
231577
231578
231579
231580
231581
231582
231583
231584
231585
231586
231587
231588
231589
231590
231591
231592
231593
231594
231595
231596
231597
231598
231599
231600
231601
231602
**                       zero the stack is dynamically sized using realloc()
**    sqlite3Fts5ParserARG_SDECL     A static variable declaration for the %extra_argument
**    sqlite3Fts5ParserARG_PDECL     A parameter declaration for the %extra_argument
**    sqlite3Fts5ParserARG_PARAM     Code to pass %extra_argument as a subroutine parameter
**    sqlite3Fts5ParserARG_STORE     Code to store %extra_argument into fts5yypParser
**    sqlite3Fts5ParserARG_FETCH     Code to extract %extra_argument from fts5yypParser
**    sqlite3Fts5ParserCTX_*         As sqlite3Fts5ParserARG_ except for %extra_context
**    fts5YYREALLOC          Name of the realloc() function to use
**    fts5YYFREE             Name of the free() function to use
**    fts5YYDYNSTACK         True if stack space should be extended on heap
**    fts5YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    fts5YYNSTATE           the combined number of states.
**    fts5YYNRULE            the number of rules in the grammar
**    fts5YYNFTS5TOKEN           Number of terminal symbols
**    fts5YY_MAX_SHIFT       Maximum value for shift actions
**    fts5YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    fts5YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    fts5YY_ERROR_ACTION    The fts5yy_action[] code for syntax error
**    fts5YY_ACCEPT_ACTION   The fts5yy_action[] code for accept
**    fts5YY_NO_ACTION       The fts5yy_action[] code for no-op
**    fts5YY_MIN_REDUCE      Minimum value for reduce actions
**    fts5YY_MAX_REDUCE      Maximum value for reduce actions
**    fts5YY_MIN_DSTRCTR     Minimum symbol value that has a destructor
**    fts5YY_MAX_DSTRCTR     Maximum symbol value that has a destructor
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
#define fts5YYCODETYPE unsigned char
#define fts5YYNOCODE 27
231151
231152
231153
231154
231155
231156
231157



231158
231159
231160
231161
231162
231163
231164
231165
231166
231167
231168
231169
231170
231171
231172
231173
231174


231175
231176
231177
231178
231179
231180
231181
231182
231183
231184
231185
231186
231187
231188
















231189
231190
231191
231192
231193
231194
231195
#define fts5YYSTACKDEPTH 100
#endif
#define sqlite3Fts5ParserARG_SDECL Fts5Parse *pParse;
#define sqlite3Fts5ParserARG_PDECL ,Fts5Parse *pParse
#define sqlite3Fts5ParserARG_PARAM ,pParse
#define sqlite3Fts5ParserARG_FETCH Fts5Parse *pParse=fts5yypParser->pParse;
#define sqlite3Fts5ParserARG_STORE fts5yypParser->pParse=pParse;



#define sqlite3Fts5ParserCTX_SDECL
#define sqlite3Fts5ParserCTX_PDECL
#define sqlite3Fts5ParserCTX_PARAM
#define sqlite3Fts5ParserCTX_FETCH
#define sqlite3Fts5ParserCTX_STORE
#define fts5YYNSTATE             35
#define fts5YYNRULE              28
#define fts5YYNRULE_WITH_ACTION  28
#define fts5YYNFTS5TOKEN             16
#define fts5YY_MAX_SHIFT         34
#define fts5YY_MIN_SHIFTREDUCE   52
#define fts5YY_MAX_SHIFTREDUCE   79
#define fts5YY_ERROR_ACTION      80
#define fts5YY_ACCEPT_ACTION     81
#define fts5YY_NO_ACTION         82
#define fts5YY_MIN_REDUCE        83
#define fts5YY_MAX_REDUCE        110


/************* End control #defines *******************************************/
#define fts5YY_NLOOKAHEAD ((int)(sizeof(fts5yy_lookahead)/sizeof(fts5yy_lookahead[0])))

/* Define the fts5yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define fts5yytestcase() in the %include section
** to a macro that can assist in verifying code coverage.  For production
** code the fts5yytestcase() macro should be turned off.  But it is useful
** for testing.
*/
#ifndef fts5yytestcase
# define fts5yytestcase(X)
#endif


















/* Next are the tables used to determine what action to take based on the
** current state and lookahead token.  These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**







>
>
>

















>
>














>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







231615
231616
231617
231618
231619
231620
231621
231622
231623
231624
231625
231626
231627
231628
231629
231630
231631
231632
231633
231634
231635
231636
231637
231638
231639
231640
231641
231642
231643
231644
231645
231646
231647
231648
231649
231650
231651
231652
231653
231654
231655
231656
231657
231658
231659
231660
231661
231662
231663
231664
231665
231666
231667
231668
231669
231670
231671
231672
231673
231674
231675
231676
231677
231678
231679
231680
#define fts5YYSTACKDEPTH 100
#endif
#define sqlite3Fts5ParserARG_SDECL Fts5Parse *pParse;
#define sqlite3Fts5ParserARG_PDECL ,Fts5Parse *pParse
#define sqlite3Fts5ParserARG_PARAM ,pParse
#define sqlite3Fts5ParserARG_FETCH Fts5Parse *pParse=fts5yypParser->pParse;
#define sqlite3Fts5ParserARG_STORE fts5yypParser->pParse=pParse;
#define fts5YYREALLOC realloc
#define fts5YYFREE free
#define fts5YYDYNSTACK 0
#define sqlite3Fts5ParserCTX_SDECL
#define sqlite3Fts5ParserCTX_PDECL
#define sqlite3Fts5ParserCTX_PARAM
#define sqlite3Fts5ParserCTX_FETCH
#define sqlite3Fts5ParserCTX_STORE
#define fts5YYNSTATE             35
#define fts5YYNRULE              28
#define fts5YYNRULE_WITH_ACTION  28
#define fts5YYNFTS5TOKEN             16
#define fts5YY_MAX_SHIFT         34
#define fts5YY_MIN_SHIFTREDUCE   52
#define fts5YY_MAX_SHIFTREDUCE   79
#define fts5YY_ERROR_ACTION      80
#define fts5YY_ACCEPT_ACTION     81
#define fts5YY_NO_ACTION         82
#define fts5YY_MIN_REDUCE        83
#define fts5YY_MAX_REDUCE        110
#define fts5YY_MIN_DSTRCTR       16
#define fts5YY_MAX_DSTRCTR       24
/************* End control #defines *******************************************/
#define fts5YY_NLOOKAHEAD ((int)(sizeof(fts5yy_lookahead)/sizeof(fts5yy_lookahead[0])))

/* Define the fts5yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define fts5yytestcase() in the %include section
** to a macro that can assist in verifying code coverage.  For production
** code the fts5yytestcase() macro should be turned off.  But it is useful
** for testing.
*/
#ifndef fts5yytestcase
# define fts5yytestcase(X)
#endif

/* Macro to determine if stack space has the ability to grow using
** heap memory.
*/
#if fts5YYSTACKDEPTH<=0 || fts5YYDYNSTACK
# define fts5YYGROWABLESTACK 1
#else
# define fts5YYGROWABLESTACK 0
#endif

/* Guarantee a minimum number of initial stack slots.
*/
#if fts5YYSTACKDEPTH<=0
# undef fts5YYSTACKDEPTH
# define fts5YYSTACKDEPTH 2  /* Need a minimum stack size */
#endif


/* Next are the tables used to determine what action to take based on the
** current state and lookahead token.  These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
231343
231344
231345
231346
231347
231348
231349
231350
231351
231352
231353
231354
231355
231356
231357
231358
231359
231360
231361
231362
231363
231364
  int fts5yyhwm;                    /* High-water mark of the stack */
#endif
#ifndef fts5YYNOERRORRECOVERY
  int fts5yyerrcnt;                 /* Shifts left before out of the error */
#endif
  sqlite3Fts5ParserARG_SDECL                /* A place to hold %extra_argument */
  sqlite3Fts5ParserCTX_SDECL                /* A place to hold %extra_context */
#if fts5YYSTACKDEPTH<=0
  int fts5yystksz;                  /* Current side of the stack */
  fts5yyStackEntry *fts5yystack;        /* The parser's stack */
  fts5yyStackEntry fts5yystk0;          /* First stack entry */
#else
  fts5yyStackEntry fts5yystack[fts5YYSTACKDEPTH];  /* The parser's stack */
  fts5yyStackEntry *fts5yystackEnd;            /* Last entry in the stack */
#endif
};
typedef struct fts5yyParser fts5yyParser;

/* #include <assert.h> */
#ifndef NDEBUG
/* #include <stdio.h> */
static FILE *fts5yyTraceFILE = 0;







<
|
|
|
<
<
<
<







231828
231829
231830
231831
231832
231833
231834

231835
231836
231837




231838
231839
231840
231841
231842
231843
231844
  int fts5yyhwm;                    /* High-water mark of the stack */
#endif
#ifndef fts5YYNOERRORRECOVERY
  int fts5yyerrcnt;                 /* Shifts left before out of the error */
#endif
  sqlite3Fts5ParserARG_SDECL                /* A place to hold %extra_argument */
  sqlite3Fts5ParserCTX_SDECL                /* A place to hold %extra_context */

  fts5yyStackEntry *fts5yystackEnd;           /* Last entry in the stack */
  fts5yyStackEntry *fts5yystack;              /* The parser stack */
  fts5yyStackEntry fts5yystk0[fts5YYSTACKDEPTH];  /* Initial stack space */




};
typedef struct fts5yyParser fts5yyParser;

/* #include <assert.h> */
#ifndef NDEBUG
/* #include <stdio.h> */
static FILE *fts5yyTraceFILE = 0;
231457
231458
231459
231460
231461
231462
231463
231464
231465
231466
231467
231468
231469

231470
231471
231472
231473
231474
231475
231476
231477
231478

231479
231480

231481
231482
231483
231484
231485
231486
231487
231488
231489
231490
231491

231492
231493

231494





231495
231496
231497
231498
231499
231500
231501
231502
231503
231504
231505
231506
231507
231508
231509
231510
231511
231512
231513
231514
231515
231516
231517
231518
231519
231520
231521
231522
231523
231524
231525
231526
231527
231528
231529
231530
231531
231532
231533
231534
231535
231536
231537
231538
 /*  25 */ "phrase ::= STRING star_opt",
 /*  26 */ "star_opt ::= STAR",
 /*  27 */ "star_opt ::=",
};
#endif /* NDEBUG */


#if fts5YYSTACKDEPTH<=0
/*
** Try to increase the size of the parser stack.  Return the number
** of errors.  Return 0 on success.
*/
static int fts5yyGrowStack(fts5yyParser *p){

  int newSize;
  int idx;
  fts5yyStackEntry *pNew;

  newSize = p->fts5yystksz*2 + 100;
  idx = p->fts5yytos ? (int)(p->fts5yytos - p->fts5yystack) : 0;
  if( p->fts5yystack==&p->fts5yystk0 ){
    pNew = malloc(newSize*sizeof(pNew[0]));
    if( pNew ) pNew[0] = p->fts5yystk0;

  }else{
    pNew = realloc(p->fts5yystack, newSize*sizeof(pNew[0]));

  }
  if( pNew ){
    p->fts5yystack = pNew;
    p->fts5yytos = &p->fts5yystack[idx];
#ifndef NDEBUG
    if( fts5yyTraceFILE ){
      fprintf(fts5yyTraceFILE,"%sStack grows from %d to %d entries.\n",
              fts5yyTracePrompt, p->fts5yystksz, newSize);
    }
#endif
    p->fts5yystksz = newSize;

  }
  return pNew==0;

}





#endif

/* Datatype of the argument to the memory allocated passed as the
** second argument to sqlite3Fts5ParserAlloc() below.  This can be changed by
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef fts5YYMALLOCARGTYPE
# define fts5YYMALLOCARGTYPE size_t
#endif

/* Initialize a new parser that has already been allocated.
*/
static void sqlite3Fts5ParserInit(void *fts5yypRawParser sqlite3Fts5ParserCTX_PDECL){
  fts5yyParser *fts5yypParser = (fts5yyParser*)fts5yypRawParser;
  sqlite3Fts5ParserCTX_STORE
#ifdef fts5YYTRACKMAXSTACKDEPTH
  fts5yypParser->fts5yyhwm = 0;
#endif
#if fts5YYSTACKDEPTH<=0
  fts5yypParser->fts5yytos = NULL;
  fts5yypParser->fts5yystack = NULL;
  fts5yypParser->fts5yystksz = 0;
  if( fts5yyGrowStack(fts5yypParser) ){
    fts5yypParser->fts5yystack = &fts5yypParser->fts5yystk0;
    fts5yypParser->fts5yystksz = 1;
  }
#endif
#ifndef fts5YYNOERRORRECOVERY
  fts5yypParser->fts5yyerrcnt = -1;
#endif
  fts5yypParser->fts5yytos = fts5yypParser->fts5yystack;
  fts5yypParser->fts5yystack[0].stateno = 0;
  fts5yypParser->fts5yystack[0].major = 0;
#if fts5YYSTACKDEPTH>0
  fts5yypParser->fts5yystackEnd = &fts5yypParser->fts5yystack[fts5YYSTACKDEPTH-1];
#endif
}

#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
/*
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.







|





>




|
|
|
|
|
>

|
>

<
|
|

|
|
|
|

|
>
|
<
>
|
>
>
>
>
>



















<
<
|
|
<
<
<
<
<






<
<
<







231937
231938
231939
231940
231941
231942
231943
231944
231945
231946
231947
231948
231949
231950
231951
231952
231953
231954
231955
231956
231957
231958
231959
231960
231961
231962
231963
231964

231965
231966
231967
231968
231969
231970
231971
231972
231973
231974
231975

231976
231977
231978
231979
231980
231981
231982
231983
231984
231985
231986
231987
231988
231989
231990
231991
231992
231993
231994
231995
231996
231997
231998
231999
232000
232001


232002
232003





232004
232005
232006
232007
232008
232009



232010
232011
232012
232013
232014
232015
232016
 /*  25 */ "phrase ::= STRING star_opt",
 /*  26 */ "star_opt ::= STAR",
 /*  27 */ "star_opt ::=",
};
#endif /* NDEBUG */


#if fts5YYGROWABLESTACK
/*
** Try to increase the size of the parser stack.  Return the number
** of errors.  Return 0 on success.
*/
static int fts5yyGrowStack(fts5yyParser *p){
  int oldSize = 1 + (int)(p->fts5yystackEnd - p->fts5yystack);
  int newSize;
  int idx;
  fts5yyStackEntry *pNew;

  newSize = oldSize*2 + 100;
  idx = (int)(p->fts5yytos - p->fts5yystack);
  if( p->fts5yystack==p->fts5yystk0 ){
    pNew = fts5YYREALLOC(0, newSize*sizeof(pNew[0]));
    if( pNew==0 ) return 1;
    memcpy(pNew, p->fts5yystack, oldSize*sizeof(pNew[0]));
  }else{
    pNew = fts5YYREALLOC(p->fts5yystack, newSize*sizeof(pNew[0]));
    if( pNew==0 ) return 1;
  }

  p->fts5yystack = pNew;
  p->fts5yytos = &p->fts5yystack[idx];
#ifndef NDEBUG
  if( fts5yyTraceFILE ){
    fprintf(fts5yyTraceFILE,"%sStack grows from %d to %d entries.\n",
            fts5yyTracePrompt, oldSize, newSize);
  }
#endif
  p->fts5yystackEnd = &p->fts5yystack[newSize-1];
  return 0;
}

#endif /* fts5YYGROWABLESTACK */

#if !fts5YYGROWABLESTACK
/* For builds that do no have a growable stack, fts5yyGrowStack always
** returns an error.
*/
# define fts5yyGrowStack(X) 1
#endif

/* Datatype of the argument to the memory allocated passed as the
** second argument to sqlite3Fts5ParserAlloc() below.  This can be changed by
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef fts5YYMALLOCARGTYPE
# define fts5YYMALLOCARGTYPE size_t
#endif

/* Initialize a new parser that has already been allocated.
*/
static void sqlite3Fts5ParserInit(void *fts5yypRawParser sqlite3Fts5ParserCTX_PDECL){
  fts5yyParser *fts5yypParser = (fts5yyParser*)fts5yypRawParser;
  sqlite3Fts5ParserCTX_STORE
#ifdef fts5YYTRACKMAXSTACKDEPTH
  fts5yypParser->fts5yyhwm = 0;
#endif


  fts5yypParser->fts5yystack = fts5yypParser->fts5yystk0;
  fts5yypParser->fts5yystackEnd = &fts5yypParser->fts5yystack[fts5YYSTACKDEPTH-1];





#ifndef fts5YYNOERRORRECOVERY
  fts5yypParser->fts5yyerrcnt = -1;
#endif
  fts5yypParser->fts5yytos = fts5yypParser->fts5yystack;
  fts5yypParser->fts5yystack[0].stateno = 0;
  fts5yypParser->fts5yystack[0].major = 0;



}

#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
/*
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
231638
231639
231640
231641
231642
231643
231644




231645













231646
231647
231648
231649
231650
231651
231652
231653
231654
}

/*
** Clear all secondary memory allocations from the parser
*/
static void sqlite3Fts5ParserFinalize(void *p){
  fts5yyParser *pParser = (fts5yyParser*)p;




  while( pParser->fts5yytos>pParser->fts5yystack ) fts5yy_pop_parser_stack(pParser);













#if fts5YYSTACKDEPTH<=0
  if( pParser->fts5yystack!=&pParser->fts5yystk0 ) free(pParser->fts5yystack);
#endif
}

#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
/*
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.







>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|







232116
232117
232118
232119
232120
232121
232122
232123
232124
232125
232126
232127
232128
232129
232130
232131
232132
232133
232134
232135
232136
232137
232138
232139
232140
232141
232142
232143
232144
232145
232146
232147
232148
232149
}

/*
** Clear all secondary memory allocations from the parser
*/
static void sqlite3Fts5ParserFinalize(void *p){
  fts5yyParser *pParser = (fts5yyParser*)p;

  /* In-lined version of calling fts5yy_pop_parser_stack() for each
  ** element left in the stack */
  fts5yyStackEntry *fts5yytos = pParser->fts5yytos;
  while( fts5yytos>pParser->fts5yystack ){
#ifndef NDEBUG
    if( fts5yyTraceFILE ){
      fprintf(fts5yyTraceFILE,"%sPopping %s\n",
        fts5yyTracePrompt,
        fts5yyTokenName[fts5yytos->major]);
    }
#endif
    if( fts5yytos->major>=fts5YY_MIN_DSTRCTR ){
      fts5yy_destructor(pParser, fts5yytos->major, &fts5yytos->minor);
    }
    fts5yytos--;
  }

#if fts5YYGROWABLESTACK
  if( pParser->fts5yystack!=pParser->fts5yystk0 ) fts5YYFREE(pParser->fts5yystack);
#endif
}

#ifndef sqlite3Fts5Parser_ENGINEALWAYSONSTACK
/*
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.
231867
231868
231869
231870
231871
231872
231873
231874
231875
231876
231877
231878
231879
231880
231881
231882
231883
231884
231885
231886


231887
231888
231889
231890
231891
231892
231893
231894
231895
231896
231897
231898
231899
  fts5yypParser->fts5yytos++;
#ifdef fts5YYTRACKMAXSTACKDEPTH
  if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){
    fts5yypParser->fts5yyhwm++;
    assert( fts5yypParser->fts5yyhwm == (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack) );
  }
#endif
#if fts5YYSTACKDEPTH>0
  if( fts5yypParser->fts5yytos>fts5yypParser->fts5yystackEnd ){
    fts5yypParser->fts5yytos--;
    fts5yyStackOverflow(fts5yypParser);
    return;
  }
#else
  if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5yypParser->fts5yystksz] ){
    if( fts5yyGrowStack(fts5yypParser) ){
      fts5yypParser->fts5yytos--;
      fts5yyStackOverflow(fts5yypParser);
      return;
    }


  }
#endif
  if( fts5yyNewState > fts5YY_MAX_SHIFT ){
    fts5yyNewState += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE;
  }
  fts5yytos = fts5yypParser->fts5yytos;
  fts5yytos->stateno = fts5yyNewState;
  fts5yytos->major = fts5yyMajor;
  fts5yytos->minor.fts5yy0 = fts5yyMinor;
  fts5yyTraceShift(fts5yypParser, fts5yyNewState, "Shift");
}

/* For rule J, fts5yyRuleInfoLhs[J] contains the symbol on the left-hand side







<
|
|
<
<
<
<
<





>
>

<



<







232362
232363
232364
232365
232366
232367
232368

232369
232370





232371
232372
232373
232374
232375
232376
232377
232378

232379
232380
232381

232382
232383
232384
232385
232386
232387
232388
  fts5yypParser->fts5yytos++;
#ifdef fts5YYTRACKMAXSTACKDEPTH
  if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){
    fts5yypParser->fts5yyhwm++;
    assert( fts5yypParser->fts5yyhwm == (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack) );
  }
#endif

  fts5yytos = fts5yypParser->fts5yytos;
  if( fts5yytos>fts5yypParser->fts5yystackEnd ){





    if( fts5yyGrowStack(fts5yypParser) ){
      fts5yypParser->fts5yytos--;
      fts5yyStackOverflow(fts5yypParser);
      return;
    }
    fts5yytos = fts5yypParser->fts5yytos;
    assert( fts5yytos <= fts5yypParser->fts5yystackEnd );
  }

  if( fts5yyNewState > fts5YY_MAX_SHIFT ){
    fts5yyNewState += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE;
  }

  fts5yytos->stateno = fts5yyNewState;
  fts5yytos->major = fts5yyMajor;
  fts5yytos->minor.fts5yy0 = fts5yyMinor;
  fts5yyTraceShift(fts5yypParser, fts5yyNewState, "Shift");
}

/* For rule J, fts5yyRuleInfoLhs[J] contains the symbol on the left-hand side
232322
232323
232324
232325
232326
232327
232328
232329
232330
232331
232332
232333
232334
232335
232336
232337
232338
232339
232340
232341
232342
232343
232344
232345
232346
232347
232348
#ifdef fts5YYTRACKMAXSTACKDEPTH
        if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){
          fts5yypParser->fts5yyhwm++;
          assert( fts5yypParser->fts5yyhwm ==
                  (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack));
        }
#endif
#if fts5YYSTACKDEPTH>0
        if( fts5yypParser->fts5yytos>=fts5yypParser->fts5yystackEnd ){
          fts5yyStackOverflow(fts5yypParser);
          break;
        }
#else
        if( fts5yypParser->fts5yytos>=&fts5yypParser->fts5yystack[fts5yypParser->fts5yystksz-1] ){
          if( fts5yyGrowStack(fts5yypParser) ){
            fts5yyStackOverflow(fts5yypParser);
            break;
          }
        }
#endif
      }
      fts5yyact = fts5yy_reduce(fts5yypParser,fts5yyruleno,fts5yymajor,fts5yyminor sqlite3Fts5ParserCTX_PARAM);
    }else if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
      fts5yy_shift(fts5yypParser,fts5yyact,(fts5YYCODETYPE)fts5yymajor,fts5yyminor);
#ifndef fts5YYNOERRORRECOVERY
      fts5yypParser->fts5yyerrcnt--;
#endif







<

<
<
<
<
<





<







232811
232812
232813
232814
232815
232816
232817

232818





232819
232820
232821
232822
232823

232824
232825
232826
232827
232828
232829
232830
#ifdef fts5YYTRACKMAXSTACKDEPTH
        if( (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack)>fts5yypParser->fts5yyhwm ){
          fts5yypParser->fts5yyhwm++;
          assert( fts5yypParser->fts5yyhwm ==
                  (int)(fts5yypParser->fts5yytos - fts5yypParser->fts5yystack));
        }
#endif

        if( fts5yypParser->fts5yytos>=fts5yypParser->fts5yystackEnd ){





          if( fts5yyGrowStack(fts5yypParser) ){
            fts5yyStackOverflow(fts5yypParser);
            break;
          }
        }

      }
      fts5yyact = fts5yy_reduce(fts5yypParser,fts5yyruleno,fts5yymajor,fts5yyminor sqlite3Fts5ParserCTX_PARAM);
    }else if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
      fts5yy_shift(fts5yypParser,fts5yyact,(fts5YYCODETYPE)fts5yymajor,fts5yyminor);
#ifndef fts5YYNOERRORRECOVERY
      fts5yypParser->fts5yyerrcnt--;
#endif
245373
245374
245375
245376
245377
245378
245379

245380
245381
245382
245383
245384
245385
245386
245387
245388
245389
245390
245391
245392
245393
245394
245395

245396

245397
245398
245399
245400
245401
245402
245403
** argument bFrom is false, then the iterator is advanced to the next
** entry. Or, if bFrom is true, it is advanced to the first entry with
** a rowid of iFrom or greater.
*/
static void fts5TokendataIterNext(Fts5Iter *pIter, int bFrom, i64 iFrom){
  int ii;
  Fts5TokenDataIter *pT = pIter->pTokenDataIter;


  for(ii=0; ii<pT->nIter; ii++){
    Fts5Iter *p = pT->apIter[ii];
    if( p->base.bEof==0
     && (p->base.iRowid==pIter->base.iRowid || (bFrom && p->base.iRowid<iFrom))
    ){
      fts5MultiIterNext(p->pIndex, p, bFrom, iFrom);
      while( bFrom && p->base.bEof==0
          && p->base.iRowid<iFrom
          && p->pIndex->rc==SQLITE_OK
      ){
        fts5MultiIterNext(p->pIndex, p, 0, 0);
      }
    }
  }


  fts5IterSetOutputsTokendata(pIter);

}

/*
** If the segment-iterator passed as the first argument is at EOF, then
** set pIter->term to a copy of buffer pTerm.
*/
static void fts5TokendataSetTermIfEof(Fts5Iter *pIter, Fts5Buffer *pTerm){







>






|


|

|




>
|
>







245855
245856
245857
245858
245859
245860
245861
245862
245863
245864
245865
245866
245867
245868
245869
245870
245871
245872
245873
245874
245875
245876
245877
245878
245879
245880
245881
245882
245883
245884
245885
245886
245887
245888
** argument bFrom is false, then the iterator is advanced to the next
** entry. Or, if bFrom is true, it is advanced to the first entry with
** a rowid of iFrom or greater.
*/
static void fts5TokendataIterNext(Fts5Iter *pIter, int bFrom, i64 iFrom){
  int ii;
  Fts5TokenDataIter *pT = pIter->pTokenDataIter;
  Fts5Index *pIndex = pIter->pIndex;

  for(ii=0; ii<pT->nIter; ii++){
    Fts5Iter *p = pT->apIter[ii];
    if( p->base.bEof==0
     && (p->base.iRowid==pIter->base.iRowid || (bFrom && p->base.iRowid<iFrom))
    ){
      fts5MultiIterNext(pIndex, p, bFrom, iFrom);
      while( bFrom && p->base.bEof==0
          && p->base.iRowid<iFrom
          && pIndex->rc==SQLITE_OK
      ){
        fts5MultiIterNext(pIndex, p, 0, 0);
      }
    }
  }

  if( pIndex->rc==SQLITE_OK ){
    fts5IterSetOutputsTokendata(pIter);
  }
}

/*
** If the segment-iterator passed as the first argument is at EOF, then
** set pIter->term to a copy of buffer pTerm.
*/
static void fts5TokendataSetTermIfEof(Fts5Iter *pIter, Fts5Buffer *pTerm){
250543
250544
250545
250546
250547
250548
250549
250550
250551
250552
250553
250554
250555
250556
250557
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2024-01-30 16:01:20 e876e51a0ed5c5b3126f52e532044363a014bc594cfefa87ffb5b82257cc467a", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){







|







251028
251029
251030
251031
251032
251033
251034
251035
251036
251037
251038
251039
251040
251041
251042
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2024-02-20 12:14:07 6c5a0c85454e3c658e51fab611c169c034447174022eebc52fd8619b528a4765", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){
250582
250583
250584
250585
250586
250587
250588

250589
250590
250591
250592
250593
250594
250595
250596
250597
250598
250599
250600
250601
250602
250603

  assert( pzErr!=0 && *pzErr==0 );
  UNUSED_PARAM(isQuick);
  rc = sqlite3Fts5StorageIntegrity(pTab->pStorage, 0);
  if( (rc&0xff)==SQLITE_CORRUPT ){
    *pzErr = sqlite3_mprintf("malformed inverted index for FTS5 table %s.%s",
                zSchema, zTabname);

  }else if( rc!=SQLITE_OK ){
    *pzErr = sqlite3_mprintf("unable to validate the inverted index for"
                             " FTS5 table %s.%s: %s",
                zSchema, zTabname, sqlite3_errstr(rc));
  }
  sqlite3Fts5IndexCloseReader(pTab->p.pIndex);

  return SQLITE_OK;
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 4,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,







>







|







251067
251068
251069
251070
251071
251072
251073
251074
251075
251076
251077
251078
251079
251080
251081
251082
251083
251084
251085
251086
251087
251088
251089

  assert( pzErr!=0 && *pzErr==0 );
  UNUSED_PARAM(isQuick);
  rc = sqlite3Fts5StorageIntegrity(pTab->pStorage, 0);
  if( (rc&0xff)==SQLITE_CORRUPT ){
    *pzErr = sqlite3_mprintf("malformed inverted index for FTS5 table %s.%s",
                zSchema, zTabname);
     rc = (*pzErr) ? SQLITE_OK : SQLITE_NOMEM;
  }else if( rc!=SQLITE_OK ){
    *pzErr = sqlite3_mprintf("unable to validate the inverted index for"
                             " FTS5 table %s.%s: %s",
                zSchema, zTabname, sqlite3_errstr(rc));
  }
  sqlite3Fts5IndexCloseReader(pTab->p.pIndex);

  return rc;
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 4,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,

Changes to extsrc/sqlite3.h.

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
** been edited in any way since it was last checked in, then the last
** four hexadecimal digits of the hash may be modified.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.45.1"
#define SQLITE_VERSION_NUMBER 3045001
#define SQLITE_SOURCE_ID      "2024-01-30 16:01:20 e876e51a0ed5c5b3126f52e532044363a014bc594cfefa87ffb5b82257cc467a"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
** been edited in any way since it was last checked in, then the last
** four hexadecimal digits of the hash may be modified.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.46.0"
#define SQLITE_VERSION_NUMBER 3046000
#define SQLITE_SOURCE_ID      "2024-02-20 15:38:36 27a2113d78b35e324e9aedda7403c96c56ad0bed8c6b139fc5a179e8800b9109"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
416
417
418
419
420
421
422


423
424
425
426
427
428
429
** <ul>
** <li> The application must ensure that the 1st parameter to sqlite3_exec()
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.


** </ul>
*/
SQLITE_API int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */







>
>







416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
** <ul>
** <li> The application must ensure that the 1st parameter to sqlite3_exec()
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not dereference the arrays or string pointers
**       passed as the 3rd and 4th callback parameters after it returns.
** </ul>
*/
SQLITE_API int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */