Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge updates from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | enhancedUndo |
Files: | files | file ages | folders |
SHA1: |
04b86407b019bf9ac19f5351bfc70ab8 |
User & Date: | mistachkin 2015-07-02 02:39:20.307 |
Context
2015-07-03
| ||
18:36 | Add 'no-prompt' option to the clean command (i.e. answers 'No' to every prompt). Add initial tests of enhanced clean command. ... (check-in: bc1504ee user: mistachkin tags: enhancedUndo) | |
2015-07-02
| ||
02:39 | Merge updates from trunk. ... (check-in: 04b86407 user: mistachkin tags: enhancedUndo) | |
02:35 | Add tags to the title and description for RSS feed items. ... (check-in: 66c3bc15 user: mistachkin tags: trunk) | |
2015-06-27
| ||
07:58 | Improve help text for the undo command. ... (check-in: ad7dd654 user: mistachkin tags: enhancedUndo) | |
Changes
Changes to src/checkin.c.
︙ | ︙ | |||
136 137 138 139 140 141 142 | free(zFullName); } blob_reset(&rewrittenPathname); db_finalize(&q); db_prepare(&q, "SELECT uuid, id FROM vmerge JOIN blob ON merge=rid" " WHERE id<=0"); while( db_step(&q)==SQLITE_ROW ){ | | | | 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | free(zFullName); } blob_reset(&rewrittenPathname); db_finalize(&q); db_prepare(&q, "SELECT uuid, id FROM vmerge JOIN blob ON merge=rid" " WHERE id<=0"); while( db_step(&q)==SQLITE_ROW ){ const char *zLabel = "MERGED_WITH "; switch( db_column_int(&q, 1) ){ case -1: zLabel = "CHERRYPICK "; break; case -2: zLabel = "BACKOUT "; break; case -4: zLabel = "INTEGRATE "; break; } blob_append(report, zPrefix, nPrefix); blob_appendf(report, "%s%s\n", zLabel, db_column_text(&q, 0)); } db_finalize(&q); if( nErr ){ fossil_fatal("aborting due to prior errors"); } } |
︙ | ︙ |
Changes to src/linenoise.c.
︙ | ︙ | |||
279 280 281 282 283 284 285 286 287 288 289 290 291 292 | if (sscanf(buf+2,"%d;%d",&rows,&cols) != 2) return -1; return cols; } /* Try to get the number of columns in the current terminal, or assume 80 * if it fails. */ static int getColumns(int ifd, int ofd) { struct winsize ws; if (ioctl(1, TIOCGWINSZ, &ws) == -1 || ws.ws_col == 0) { /* ioctl() failed. Try to query the terminal itself. */ int start, cols; /* Get the initial position so we can restore it later. */ | > | 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | if (sscanf(buf+2,"%d;%d",&rows,&cols) != 2) return -1; return cols; } /* Try to get the number of columns in the current terminal, or assume 80 * if it fails. */ static int getColumns(int ifd, int ofd) { #if !defined(__sun__) struct winsize ws; if (ioctl(1, TIOCGWINSZ, &ws) == -1 || ws.ws_col == 0) { /* ioctl() failed. Try to query the terminal itself. */ int start, cols; /* Get the initial position so we can restore it later. */ |
︙ | ︙ | |||
308 309 310 311 312 313 314 315 316 317 318 319 320 321 | } return cols; } else { return ws.ws_col; } failed: return 80; } /* Clear the screen. Used to handle ctrl+l */ void linenoiseClearScreen(void) { if (write(STDOUT_FILENO,"\x1b[H\x1b[2J",7) <= 0) { /* nothing to do, just to avoid warning. */ | > | 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | } return cols; } else { return ws.ws_col; } failed: #endif return 80; } /* Clear the screen. Used to handle ctrl+l */ void linenoiseClearScreen(void) { if (write(STDOUT_FILENO,"\x1b[H\x1b[2J",7) <= 0) { /* nothing to do, just to avoid warning. */ |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
1455 1456 1457 1458 1459 1460 1461 | assert( g.db==0 ); blob_init(&base, g.zRepositoryName, -1); sqlite3_open(":memory:", &g.db); db_multi_exec("CREATE TABLE sfile(x TEXT);"); db_multi_exec("CREATE TABLE vfile(pathname);"); vfile_scan(&base, blob_size(&base), 0, 0, 0); | | | 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 | assert( g.db==0 ); blob_init(&base, g.zRepositoryName, -1); sqlite3_open(":memory:", &g.db); db_multi_exec("CREATE TABLE sfile(x TEXT);"); db_multi_exec("CREATE TABLE vfile(pathname);"); vfile_scan(&base, blob_size(&base), 0, 0, 0); db_multi_exec("DELETE FROM sfile WHERE x NOT GLOB '*[^/].fossil'"); n = db_int(0, "SELECT count(*) FROM sfile"); if( n>0 ){ Stmt q; @ <html> @ <head> @ <title>Repository List</title> @ </head> |
︙ | ︙ | |||
1550 1551 1552 1553 1554 1555 1556 | if( c=='-' && zRepo[j-1]!='/' ) continue; if( c=='.' && fossil_isalnum(zRepo[j-1]) && fossil_isalnum(zRepo[j+1])){ continue; } szFile = 1; break; } | | | 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 | if( c=='-' && zRepo[j-1]!='/' ) continue; if( c=='.' && fossil_isalnum(zRepo[j-1]) && fossil_isalnum(zRepo[j+1])){ continue; } szFile = 1; break; } if( szFile==0 && sqlite3_strglob("*/.fossil",zRepo)!=0 ){ if( zRepo[0]=='/' && zRepo[1]=='/' ){ zRepo++; j--; } szFile = file_size(zRepo); /* this should only be set from the --baseurl option, not CGI */ if( g.zBaseURL && g.zBaseURL[0]!=0 && g.zTop && g.zTop[0]!=0 && file_isdir(g.zRepositoryName)==1 ){ g.zBaseURL = mprintf("%s%.*s", g.zBaseURL, i, zPathInfo); g.zTop = mprintf("%s%.*s", g.zTop, i, zPathInfo); |
︙ | ︙ |
Changes to src/rss.c.
︙ | ︙ | |||
57 58 59 60 61 62 63 | @ SELECT @ blob.rid, @ uuid, @ event.mtime, @ coalesce(ecomment,comment), @ coalesce(euser,user), @ (SELECT count(*) FROM plink WHERE pid=blob.rid AND isprim), | | > > > | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | @ SELECT @ blob.rid, @ uuid, @ event.mtime, @ coalesce(ecomment,comment), @ coalesce(euser,user), @ (SELECT count(*) FROM plink WHERE pid=blob.rid AND isprim), @ (SELECT count(*) FROM plink WHERE cid=blob.rid), @ (SELECT group_concat(substr(tagname,5), ', ') FROM tag, tagxref @ WHERE tagname GLOB 'sym-*' AND tag.tagid=tagxref.tagid @ AND tagxref.rid=blob.rid AND tagxref.tagtype>0) AS tags @ FROM event, blob @ WHERE blob.rid=event.objid ; login_check_credentials(); if( !g.perm.Read && !g.perm.RdTkt && !g.perm.RdWiki ){ return; |
︙ | ︙ | |||
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | db_prepare(&q, "%s", blob_sql_text(&bSQL)); blob_reset( &bSQL ); while( db_step(&q)==SQLITE_ROW && nLine<nLimit ){ const char *zId = db_column_text(&q, 1); const char *zCom = db_column_text(&q, 3); const char *zAuthor = db_column_text(&q, 4); char *zPrefix = ""; char *zDate; int nChild = db_column_int(&q, 5); int nParent = db_column_int(&q, 6); time_t ts; ts = (time_t)((db_column_double(&q,2) - 2440587.5)*86400.0); zDate = cgi_rfc822_datestamp(ts); if( nParent>1 && nChild>1 ){ zPrefix = "*MERGE/FORK* "; }else if( nParent>1 ){ zPrefix = "*MERGE* "; }else if( nChild>1 ){ zPrefix = "*FORK* "; } @ <item> | > > > > > > > | | > | 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | db_prepare(&q, "%s", blob_sql_text(&bSQL)); blob_reset( &bSQL ); while( db_step(&q)==SQLITE_ROW && nLine<nLimit ){ const char *zId = db_column_text(&q, 1); const char *zCom = db_column_text(&q, 3); const char *zAuthor = db_column_text(&q, 4); char *zPrefix = ""; char *zSuffix = 0; char *zDate; int nChild = db_column_int(&q, 5); int nParent = db_column_int(&q, 6); const char *zTagList = db_column_text(&q, 7); time_t ts; if( zTagList && zTagList[0]==0 ) zTagList = 0; ts = (time_t)((db_column_double(&q,2) - 2440587.5)*86400.0); zDate = cgi_rfc822_datestamp(ts); if( nParent>1 && nChild>1 ){ zPrefix = "*MERGE/FORK* "; }else if( nParent>1 ){ zPrefix = "*MERGE* "; }else if( nChild>1 ){ zPrefix = "*FORK* "; } if( zTagList ){ zSuffix = mprintf(" (tags: %s)", zTagList); } @ <item> @ <title>%s(zPrefix)%h(zCom)%h(zSuffix)</title> @ <link>%s(g.zBaseURL)/info/%s(zId)</link> @ <description>%s(zPrefix)%h(zCom)%h(zSuffix)</description> @ <pubDate>%s(zDate)</pubDate> @ <dc:creator>%h(zAuthor)</dc:creator> @ <guid>%s(g.zBaseURL)/info/%s(zId)</guid> @ </item> free(zDate); free(zSuffix); nLine++; } db_finalize(&q); @ </channel> @ </rss> |
︙ | ︙ | |||
258 259 260 261 262 263 264 | @ SELECT @ blob.rid, @ uuid, @ event.mtime, @ coalesce(ecomment,comment), @ coalesce(euser,user), @ (SELECT count(*) FROM plink WHERE pid=blob.rid AND isprim), | | > > > | 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | @ SELECT @ blob.rid, @ uuid, @ event.mtime, @ coalesce(ecomment,comment), @ coalesce(euser,user), @ (SELECT count(*) FROM plink WHERE pid=blob.rid AND isprim), @ (SELECT count(*) FROM plink WHERE cid=blob.rid), @ (SELECT group_concat(substr(tagname,5), ', ') FROM tag, tagxref @ WHERE tagname GLOB 'sym-*' AND tag.tagid=tagxref.tagid @ AND tagxref.rid=blob.rid AND tagxref.tagtype>0) AS tags @ FROM event, blob @ WHERE blob.rid=event.objid ; if(!zType || !*zType){ zType = "all"; } if(!zBaseURL || !*zBaseURL){ |
︙ | ︙ | |||
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | db_prepare(&q, "%s", blob_sql_text(&bSQL)); blob_reset( &bSQL ); while( db_step(&q)==SQLITE_ROW && nLine<nLimit ){ const char *zId = db_column_text(&q, 1); const char *zCom = db_column_text(&q, 3); const char *zAuthor = db_column_text(&q, 4); char *zPrefix = ""; char *zDate; int nChild = db_column_int(&q, 5); int nParent = db_column_int(&q, 6); time_t ts; ts = (time_t)((db_column_double(&q,2) - 2440587.5)*86400.0); zDate = cgi_rfc822_datestamp(ts); if( nParent>1 && nChild>1 ){ zPrefix = "*MERGE/FORK* "; }else if( nParent>1 ){ zPrefix = "*MERGE* "; }else if( nChild>1 ){ zPrefix = "*FORK* "; } fossil_print("<item>"); | > > > > > > > | | > | 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | db_prepare(&q, "%s", blob_sql_text(&bSQL)); blob_reset( &bSQL ); while( db_step(&q)==SQLITE_ROW && nLine<nLimit ){ const char *zId = db_column_text(&q, 1); const char *zCom = db_column_text(&q, 3); const char *zAuthor = db_column_text(&q, 4); char *zPrefix = ""; char *zSuffix = 0; char *zDate; int nChild = db_column_int(&q, 5); int nParent = db_column_int(&q, 6); const char *zTagList = db_column_text(&q, 7); time_t ts; if( zTagList && zTagList[0]==0 ) zTagList = 0; ts = (time_t)((db_column_double(&q,2) - 2440587.5)*86400.0); zDate = cgi_rfc822_datestamp(ts); if( nParent>1 && nChild>1 ){ zPrefix = "*MERGE/FORK* "; }else if( nParent>1 ){ zPrefix = "*MERGE* "; }else if( nChild>1 ){ zPrefix = "*FORK* "; } if( zTagList ){ zSuffix = mprintf(" (tags: %s)", zTagList); } fossil_print("<item>"); fossil_print("<title>%s%h%h</title>\n", zPrefix, zCom, zSuffix); fossil_print("<link>%s/info/%s</link>\n", zBaseURL, zId); fossil_print("<description>%s%h%h</description>\n", zPrefix, zCom, zSuffix); fossil_print("<pubDate>%s</pubDate>\n", zDate); fossil_print("<dc:creator>%h</dc:creator>\n", zAuthor); fossil_print("<guid>%s/info/%s</guid>\n", g.zBaseURL, zId); fossil_print("</item>\n"); free(zDate); free(zSuffix); nLine++; } db_finalize(&q); fossil_print("</channel>\n"); fossil_print("</rss>\n"); if( zFreeProjectName != 0 ){ free( zFreeProjectName ); } } |
Changes to src/shell.c.
︙ | ︙ | |||
97 98 99 100 101 102 103 | # define SHELL_USE_LOCAL_GETLINE 1 #endif #if defined(_WIN32) || defined(WIN32) # include <io.h> # include <fcntl.h> | | | | | | | | | | < | | | | | | | | | < | 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | # define SHELL_USE_LOCAL_GETLINE 1 #endif #if defined(_WIN32) || defined(WIN32) # include <io.h> # include <fcntl.h> # define isatty(h) _isatty(h) # ifndef access # define access(f,m) _access((f),(m)) # endif # undef popen # define popen _popen # undef pclose # define pclose _pclose #else /* Make sure isatty() has a prototype. */ extern int isatty(int); # if !defined(__RTP__) && !defined(_WRS_KERNEL) /* popen and pclose are not C89 functions and so are ** sometimes omitted from the <stdio.h> header */ extern FILE *popen(const char*,const char*); extern int pclose(FILE*); # else # define SQLITE_OMIT_POPEN 1 # endif #endif #if defined(_WIN32_WCE) /* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty() * thus we always assume that we have a console. That can be * overridden with the -batch command line option. */ |
︙ | ︙ | |||
1327 1328 1329 1330 1331 1332 1333 | /* ** Display scan stats. */ static void display_scanstats( sqlite3 *db, /* Database to query */ ShellState *pArg /* Pointer to ShellState */ ){ | | > > > | 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 | /* ** Display scan stats. */ static void display_scanstats( sqlite3 *db, /* Database to query */ ShellState *pArg /* Pointer to ShellState */ ){ #ifndef SQLITE_ENABLE_STMT_SCANSTATUS UNUSED_PARAMETER(db); UNUSED_PARAMETER(pArg); #else int i, k, n, mx; fprintf(pArg->out, "-------- scanstats --------\n"); mx = 0; for(k=0; k<=mx; k++){ double rEstLoop = 1.0; for(i=n=0; 1; i++){ sqlite3_stmt *p = pArg->pStmt; |
︙ | ︙ | |||
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 | sqlite3_value **argv ){ const char *zName; FILE *in; long nIn; void *pBuf; zName = (const char*)sqlite3_value_text(argv[0]); if( zName==0 ) return; in = fopen(zName, "rb"); if( in==0 ) return; fseek(in, 0, SEEK_END); nIn = ftell(in); rewind(in); | > | 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 | sqlite3_value **argv ){ const char *zName; FILE *in; long nIn; void *pBuf; UNUSED_PARAMETER(argc); zName = (const char*)sqlite3_value_text(argv[0]); if( zName==0 ) return; in = fopen(zName, "rb"); if( in==0 ) return; fseek(in, 0, SEEK_END); nIn = ftell(in); rewind(in); |
︙ | ︙ | |||
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 | sqlite3_value **argv ){ FILE *out; const char *z; sqlite3_int64 rc; const char *zFile; zFile = (const char*)sqlite3_value_text(argv[0]); if( zFile==0 ) return; out = fopen(zFile, "wb"); if( out==0 ) return; z = (const char*)sqlite3_value_blob(argv[1]); if( z==0 ){ rc = 0; | > | 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 | sqlite3_value **argv ){ FILE *out; const char *z; sqlite3_int64 rc; const char *zFile; UNUSED_PARAMETER(argc); zFile = (const char*)sqlite3_value_text(argv[0]); if( zFile==0 ) return; out = fopen(zFile, "wb"); if( out==0 ) return; z = (const char*)sqlite3_value_blob(argv[1]); if( z==0 ){ rc = 0; |
︙ | ︙ | |||
2573 2574 2575 2576 2577 2578 2579 | } i = get2byteInt(aHdr+16); if( i==1 ) i = 65536; fprintf(p->out, "%-20s %d\n", "database page size:", i); fprintf(p->out, "%-20s %d\n", "write format:", aHdr[18]); fprintf(p->out, "%-20s %d\n", "read format:", aHdr[19]); fprintf(p->out, "%-20s %d\n", "reserved bytes:", aHdr[20]); | | | | 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 | } i = get2byteInt(aHdr+16); if( i==1 ) i = 65536; fprintf(p->out, "%-20s %d\n", "database page size:", i); fprintf(p->out, "%-20s %d\n", "write format:", aHdr[18]); fprintf(p->out, "%-20s %d\n", "read format:", aHdr[19]); fprintf(p->out, "%-20s %d\n", "reserved bytes:", aHdr[20]); for(i=0; i<ArraySize(aField); i++){ int ofst = aField[i].ofst; unsigned int val = get4byteInt(aHdr + ofst); fprintf(p->out, "%-20s %u", aField[i].zName, val); switch( ofst ){ case 56: { if( val==1 ) fprintf(p->out, " (utf8)"); if( val==2 ) fprintf(p->out, " (utf16le)"); if( val==3 ) fprintf(p->out, " (utf16be)"); } } fprintf(p->out, "\n"); } if( zDb==0 ){ zSchemaTab = sqlite3_mprintf("main.sqlite_master"); }else if( strcmp(zDb,"temp")==0 ){ zSchemaTab = sqlite3_mprintf("%s", "sqlite_temp_master"); }else{ zSchemaTab = sqlite3_mprintf("\"%w\".sqlite_master", zDb); } for(i=0; i<ArraySize(aQuery); i++){ char *zSql = sqlite3_mprintf(aQuery[i].zSql, zSchemaTab); int val = db_int(p, zSql); sqlite3_free(zSql); fprintf(p->out, "%-20s %d\n", aQuery[i].zName, val); } sqlite3_free(zSchemaTab); return 0; |
︙ | ︙ | |||
3224 3225 3226 3227 3228 3229 3230 | { "variable_number", SQLITE_LIMIT_VARIABLE_NUMBER }, { "trigger_depth", SQLITE_LIMIT_TRIGGER_DEPTH }, { "worker_threads", SQLITE_LIMIT_WORKER_THREADS }, }; int i, n2; open_db(p, 0); if( nArg==1 ){ | | | | 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 | { "variable_number", SQLITE_LIMIT_VARIABLE_NUMBER }, { "trigger_depth", SQLITE_LIMIT_TRIGGER_DEPTH }, { "worker_threads", SQLITE_LIMIT_WORKER_THREADS }, }; int i, n2; open_db(p, 0); if( nArg==1 ){ for(i=0; i<ArraySize(aLimit); i++){ printf("%20s %d\n", aLimit[i].zLimitName, sqlite3_limit(p->db, aLimit[i].limitCode, -1)); } }else if( nArg>3 ){ fprintf(stderr, "Usage: .limit NAME ?NEW-VALUE?\n"); rc = 1; goto meta_command_exit; }else{ int iLimit = -1; n2 = strlen30(azArg[1]); for(i=0; i<ArraySize(aLimit); i++){ if( sqlite3_strnicmp(aLimit[i].zLimitName, azArg[1], n2)==0 ){ if( iLimit<0 ){ iLimit = i; }else{ fprintf(stderr, "ambiguous limit: \"%s\"\n", azArg[1]); rc = 1; goto meta_command_exit; |
︙ | ︙ | |||
3345 3346 3347 3348 3349 3350 3351 | }else if( c=='o' && strncmp(azArg[0], "open", n)==0 && n>=2 ){ sqlite3 *savedDb = p->db; const char *zSavedFilename = p->zDbFilename; char *zNewFilename = 0; p->db = 0; | | | < | 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 | }else if( c=='o' && strncmp(azArg[0], "open", n)==0 && n>=2 ){ sqlite3 *savedDb = p->db; const char *zSavedFilename = p->zDbFilename; char *zNewFilename = 0; p->db = 0; if( nArg>=2 ) zNewFilename = sqlite3_mprintf("%s", azArg[1]); p->zDbFilename = zNewFilename; open_db(p, 1); if( p->db!=0 ){ sqlite3_close(savedDb); sqlite3_free(p->zFreeOnClose); p->zFreeOnClose = zNewFilename; }else{ sqlite3_free(zNewFilename); |
︙ | ︙ | |||
3811 3812 3813 3814 3815 3816 3817 | int rc2 = 0; int i, n2; open_db(p, 0); /* convert testctrl text option to value. allow any unique prefix ** of the option name, or a numerical value. */ n2 = strlen30(azArg[1]); | | | 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 | int rc2 = 0; int i, n2; open_db(p, 0); /* convert testctrl text option to value. allow any unique prefix ** of the option name, or a numerical value. */ n2 = strlen30(azArg[1]); for(i=0; i<ArraySize(aCtrl); i++){ if( strncmp(azArg[1], aCtrl[i].zCtrlName, n2)==0 ){ if( testctrl<0 ){ testctrl = aCtrl[i].ctrlCode; }else{ fprintf(stderr, "ambiguous option name: \"%s\"\n", azArg[1]); testctrl = -1; break; |
︙ | ︙ | |||
4788 4789 4790 4791 4792 4793 4794 | zHome = find_home_dir(); if( zHome ){ nHistory = strlen30(zHome) + 20; if( (zHistory = malloc(nHistory))!=0 ){ sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome); } } | | | 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 | zHome = find_home_dir(); if( zHome ){ nHistory = strlen30(zHome) + 20; if( (zHistory = malloc(nHistory))!=0 ){ sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome); } } if( zHistory ){ shell_read_history(zHistory); } rc = process_input(&data, 0); if( zHistory ){ shell_stifle_history(100); shell_write_history(zHistory); free(zHistory); } }else{ |
︙ | ︙ |
Changes to src/sqlite3.c.
︙ | ︙ | |||
153 154 155 156 157 158 159 160 161 162 163 164 165 166 | #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* Needed for various definitions... */ #if defined(__GNUC__) && !defined(_GNU_SOURCE) # define _GNU_SOURCE #endif #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) | > > > > > > > | 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* What version of GCC is being used. 0 means GCC is not being used */ #ifdef __GNUC__ # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif /* Needed for various definitions... */ #if defined(__GNUC__) && !defined(_GNU_SOURCE) # define _GNU_SOURCE #endif #if defined(__OpenBSD__) && !defined(_BSD_SOURCE) |
︙ | ︙ | |||
226 227 228 229 230 231 232 | ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve the right to make minor changes ** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source | | | 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve the right to make minor changes ** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source ** on how SQLite interfaces are supposed to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. */ #ifndef _SQLITE3_H_ |
︙ | ︙ | |||
316 317 318 319 320 321 322 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 | | | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 #define SQLITE_SOURCE_ID "2015-06-30 15:10:29 8bfcda3d10aec864d71d12a1248c37e4db6f8899" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
1159 1160 1161 1162 1163 1164 1165 | ** ** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This ** opcode causes the xFileControl method to swap the file handle with the one ** pointed to by the pArg argument. This capability is used during testing ** and only needs to be supported when SQLITE_TEST is defined. ** | | | 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 | ** ** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This ** opcode causes the xFileControl method to swap the file handle with the one ** pointed to by the pArg argument. This capability is used during testing ** and only needs to be supported when SQLITE_TEST is defined. ** ** <li>[[SQLITE_FCNTL_WAL_BLOCK]] ** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might ** be advantageous to block on the next WAL lock if the lock is not immediately ** available. The WAL subsystem issues this signal during rare ** circumstances in order to fix a problem with priority inversion. ** Applications should <em>not</em> use this file-control. ** ** <li>[[SQLITE_FCNTL_ZIPVFS]] |
︙ | ︙ | |||
9687 9688 9689 9690 9691 9692 9693 | u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ | | > | 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 | u8 opcode; /* What operation to perform */ signed char p4type; /* One of the P4_xxx constants for p4 */ u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ union p4union { /* fourth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ int *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); |
︙ | ︙ | |||
9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 | #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ #define P4_ADVANCE (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 | > | 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 | #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */ #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */ #define P4_ADVANCE (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */ #define P4_FUNCCTX (-20) /* P4 is a pointer to an sqlite3_context object */ /* Error message codes for OP_Halt */ #define P5_ConstraintNotNull 1 #define P5_ConstraintUnique 2 #define P5_ConstraintCheck 3 #define P5_ConstraintFK 4 |
︙ | ︙ | |||
9802 9803 9804 9805 9806 9807 9808 | ** The makefile scans the vdbe.c source file and creates the "opcodes.h" ** header file that defines a number for each opcode used by the VDBE. */ /************** Include opcodes.h in the middle of vdbe.h ********************/ /************** Begin file opcodes.h *****************************************/ /* Automatically generated. Do not edit */ /* See the mkopcodeh.awk script for details */ | < | | | | | | | | < | | | | | | | | > > < < | | | | | | | | | | | | | | | > > | 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 | ** The makefile scans the vdbe.c source file and creates the "opcodes.h" ** header file that defines a number for each opcode used by the VDBE. */ /************** Include opcodes.h in the middle of vdbe.h ********************/ /************** Begin file opcodes.h *****************************************/ /* Automatically generated. Do not edit */ /* See the mkopcodeh.awk script for details */ #define OP_Savepoint 1 #define OP_AutoCommit 2 #define OP_Transaction 3 #define OP_SorterNext 4 #define OP_PrevIfOpen 5 #define OP_NextIfOpen 6 #define OP_Prev 7 #define OP_Next 8 #define OP_Checkpoint 9 #define OP_JournalMode 10 #define OP_Vacuum 11 #define OP_VFilter 12 /* synopsis: iplan=r[P3] zplan='P4' */ #define OP_VUpdate 13 /* synopsis: data=r[P3@P2] */ #define OP_Goto 14 #define OP_Gosub 15 #define OP_Return 16 #define OP_InitCoroutine 17 #define OP_EndCoroutine 18 #define OP_Not 19 /* same as TK_NOT, synopsis: r[P2]= !r[P1] */ #define OP_Yield 20 #define OP_HaltIfNull 21 /* synopsis: if r[P3]=null halt */ #define OP_Halt 22 #define OP_Integer 23 /* synopsis: r[P2]=P1 */ #define OP_Int64 24 /* synopsis: r[P2]=P4 */ #define OP_String 25 /* synopsis: r[P2]='P4' (len=P1) */ #define OP_Null 26 /* synopsis: r[P2..P3]=NULL */ #define OP_SoftNull 27 /* synopsis: r[P1]=NULL */ #define OP_Blob 28 /* synopsis: r[P2]=P4 (len=P1) */ #define OP_Variable 29 /* synopsis: r[P2]=parameter(P1,P4) */ #define OP_Move 30 /* synopsis: r[P2@P3]=r[P1@P3] */ #define OP_Copy 31 /* synopsis: r[P2@P3+1]=r[P1@P3+1] */ #define OP_SCopy 32 /* synopsis: r[P2]=r[P1] */ #define OP_ResultRow 33 /* synopsis: output=r[P1@P2] */ #define OP_CollSeq 34 #define OP_Function0 35 /* synopsis: r[P3]=func(r[P2@P5]) */ #define OP_Function 36 /* synopsis: r[P3]=func(r[P2@P5]) */ #define OP_AddImm 37 /* synopsis: r[P1]=r[P1]+P2 */ #define OP_MustBeInt 38 #define OP_RealAffinity 39 #define OP_Cast 40 /* synopsis: affinity(r[P1]) */ #define OP_Permutation 41 #define OP_Compare 42 /* synopsis: r[P1@P3] <-> r[P2@P3] */ #define OP_Jump 43 |
︙ | ︙ | |||
9863 9864 9865 9866 9867 9868 9869 | #define OP_OpenWrite 55 /* synopsis: root=P2 iDb=P3 */ #define OP_OpenAutoindex 56 /* synopsis: nColumn=P2 */ #define OP_OpenEphemeral 57 /* synopsis: nColumn=P2 */ #define OP_SorterOpen 58 #define OP_SequenceTest 59 /* synopsis: if( cursor[P1].ctr++ ) pc = P2 */ #define OP_OpenPseudo 60 /* synopsis: P3 columns in r[P2] */ #define OP_Close 61 | > | | | | | | | | < > | | < | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < > | | | | | | | | > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 | #define OP_OpenWrite 55 /* synopsis: root=P2 iDb=P3 */ #define OP_OpenAutoindex 56 /* synopsis: nColumn=P2 */ #define OP_OpenEphemeral 57 /* synopsis: nColumn=P2 */ #define OP_SorterOpen 58 #define OP_SequenceTest 59 /* synopsis: if( cursor[P1].ctr++ ) pc = P2 */ #define OP_OpenPseudo 60 /* synopsis: P3 columns in r[P2] */ #define OP_Close 61 #define OP_ColumnsUsed 62 #define OP_SeekLT 63 /* synopsis: key=r[P3@P4] */ #define OP_SeekLE 64 /* synopsis: key=r[P3@P4] */ #define OP_SeekGE 65 /* synopsis: key=r[P3@P4] */ #define OP_SeekGT 66 /* synopsis: key=r[P3@P4] */ #define OP_Seek 67 /* synopsis: intkey=r[P2] */ #define OP_NoConflict 68 /* synopsis: key=r[P3@P4] */ #define OP_NotFound 69 /* synopsis: key=r[P3@P4] */ #define OP_Found 70 /* synopsis: key=r[P3@P4] */ #define OP_Or 71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */ #define OP_And 72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */ #define OP_NotExists 73 /* synopsis: intkey=r[P3] */ #define OP_Sequence 74 /* synopsis: r[P2]=cursor[P1].ctr++ */ #define OP_NewRowid 75 /* synopsis: r[P2]=rowid */ #define OP_IsNull 76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */ #define OP_NotNull 77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */ #define OP_Ne 78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */ #define OP_Eq 79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */ #define OP_Gt 80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */ #define OP_Le 81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */ #define OP_Lt 82 /* same as TK_LT, synopsis: if r[P1]<r[P3] goto P2 */ #define OP_Ge 83 /* same as TK_GE, synopsis: if r[P1]>=r[P3] goto P2 */ #define OP_Insert 84 /* synopsis: intkey=r[P3] data=r[P2] */ #define OP_BitAnd 85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */ #define OP_BitOr 86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */ #define OP_ShiftLeft 87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */ #define OP_ShiftRight 88 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */ #define OP_Add 89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */ #define OP_Subtract 90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */ #define OP_Multiply 91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */ #define OP_Divide 92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */ #define OP_Remainder 93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */ #define OP_Concat 94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */ #define OP_InsertInt 95 /* synopsis: intkey=P3 data=r[P2] */ #define OP_BitNot 96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */ #define OP_String8 97 /* same as TK_STRING, synopsis: r[P2]='P4' */ #define OP_Delete 98 #define OP_ResetCount 99 #define OP_SorterCompare 100 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */ #define OP_SorterData 101 /* synopsis: r[P2]=data */ #define OP_RowKey 102 /* synopsis: r[P2]=key */ #define OP_RowData 103 /* synopsis: r[P2]=data */ #define OP_Rowid 104 /* synopsis: r[P2]=rowid */ #define OP_NullRow 105 #define OP_Last 106 #define OP_SorterSort 107 #define OP_Sort 108 #define OP_Rewind 109 #define OP_SorterInsert 110 #define OP_IdxInsert 111 /* synopsis: key=r[P2] */ #define OP_IdxDelete 112 /* synopsis: key=r[P2@P3] */ #define OP_IdxRowid 113 /* synopsis: r[P2]=rowid */ #define OP_IdxLE 114 /* synopsis: key=r[P3@P4] */ #define OP_IdxGT 115 /* synopsis: key=r[P3@P4] */ #define OP_IdxLT 116 /* synopsis: key=r[P3@P4] */ #define OP_IdxGE 117 /* synopsis: key=r[P3@P4] */ #define OP_Destroy 118 #define OP_Clear 119 #define OP_ResetSorter 120 #define OP_CreateIndex 121 /* synopsis: r[P2]=root iDb=P1 */ #define OP_CreateTable 122 /* synopsis: r[P2]=root iDb=P1 */ #define OP_ParseSchema 123 #define OP_LoadAnalysis 124 #define OP_DropTable 125 #define OP_DropIndex 126 #define OP_DropTrigger 127 #define OP_IntegrityCk 128 #define OP_RowSetAdd 129 /* synopsis: rowset(P1)=r[P2] */ #define OP_RowSetRead 130 /* synopsis: r[P3]=rowset(P1) */ #define OP_RowSetTest 131 /* synopsis: if r[P3] in rowset(P1) goto P2 */ #define OP_Program 132 #define OP_Real 133 /* same as TK_FLOAT, synopsis: r[P2]=P4 */ #define OP_Param 134 #define OP_FkCounter 135 /* synopsis: fkctr[P1]+=P2 */ #define OP_FkIfZero 136 /* synopsis: if fkctr[P1]==0 goto P2 */ #define OP_MemMax 137 /* synopsis: r[P1]=max(r[P1],r[P2]) */ #define OP_IfPos 138 /* synopsis: if r[P1]>0 goto P2 */ #define OP_IfNeg 139 /* synopsis: r[P1]+=P3, if r[P1]<0 goto P2 */ #define OP_IfNotZero 140 /* synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 */ #define OP_DecrJumpZero 141 /* synopsis: if (--r[P1])==0 goto P2 */ #define OP_JumpZeroIncr 142 /* synopsis: if (r[P1]++)==0 ) goto P2 */ #define OP_AggStep0 143 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggStep 144 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggFinal 145 /* synopsis: accum=r[P1] N=P2 */ #define OP_IncrVacuum 146 #define OP_Expire 147 #define OP_TableLock 148 /* synopsis: iDb=P1 root=P2 write=P3 */ #define OP_VBegin 149 #define OP_VCreate 150 #define OP_VDestroy 151 #define OP_VOpen 152 #define OP_VColumn 153 /* synopsis: r[P3]=vcolumn(P2) */ #define OP_VNext 154 #define OP_VRename 155 #define OP_Pagecount 156 #define OP_MaxPgcnt 157 #define OP_Init 158 /* synopsis: Start at P2 */ #define OP_Noop 159 #define OP_Explain 160 /* Properties such as "out2" or "jump" that are specified in ** comments following the "case" for each opcode in the vdbe.c ** are encoded into bitvectors as follows: */ #define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ #define OPFLG_IN1 0x0002 /* in1: P1 is an input */ #define OPFLG_IN2 0x0004 /* in2: P2 is an input */ #define OPFLG_IN3 0x0008 /* in3: P3 is an input */ #define OPFLG_OUT2 0x0010 /* out2: P2 is an output */ #define OPFLG_OUT3 0x0020 /* out3: P3 is an output */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01,\ /* 8 */ 0x01, 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01,\ /* 16 */ 0x02, 0x01, 0x02, 0x12, 0x03, 0x08, 0x00, 0x10,\ /* 24 */ 0x10, 0x10, 0x10, 0x00, 0x10, 0x10, 0x00, 0x00,\ /* 32 */ 0x10, 0x00, 0x00, 0x00, 0x00, 0x02, 0x03, 0x02,\ /* 40 */ 0x02, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03, 0x00,\ /* 48 */ 0x00, 0x00, 0x10, 0x10, 0x08, 0x00, 0x00, 0x00,\ /* 56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,\ /* 64 */ 0x09, 0x09, 0x09, 0x04, 0x09, 0x09, 0x09, 0x26,\ /* 72 */ 0x26, 0x09, 0x10, 0x10, 0x03, 0x03, 0x0b, 0x0b,\ /* 80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x00, 0x26, 0x26, 0x26,\ /* 88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\ /* 96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 104 */ 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04, 0x04,\ /* 112 */ 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10, 0x00,\ /* 120 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 128 */ 0x00, 0x06, 0x23, 0x0b, 0x01, 0x10, 0x10, 0x00,\ /* 136 */ 0x01, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x00,\ /* 144 */ 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 152 */ 0x00, 0x00, 0x01, 0x00, 0x10, 0x10, 0x01, 0x00,\ /* 160 */ 0x00,} /************** End of opcodes.h *********************************************/ /************** Continuing where we left off in vdbe.h ***********************/ /* ** Prototypes for the VDBE interface. See comments on the implementation ** for a description of what each of these routines does. */ SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(Parse*); SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8(Vdbe*,int,int,int,int,const u8*,int); SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno); SQLITE_PRIVATE void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*); SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1); SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2); SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3); SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); |
︙ | ︙ | |||
10398 10399 10400 10401 10402 10403 10404 | PCache *pCache; /* Cache that owns this page */ PgHdr *pDirtyNext; /* Next element in list of dirty pages */ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ }; /* Bit values for PgHdr.flags */ | > | > | | | < | < | | 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 | PCache *pCache; /* Cache that owns this page */ PgHdr *pDirtyNext; /* Next element in list of dirty pages */ PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */ }; /* Bit values for PgHdr.flags */ #define PGHDR_CLEAN 0x001 /* Page not on the PCache.pDirty list */ #define PGHDR_DIRTY 0x002 /* Page is on the PCache.pDirty list */ #define PGHDR_WRITEABLE 0x004 /* Journaled and ready to modify */ #define PGHDR_NEED_SYNC 0x008 /* Fsync the rollback journal before ** writing this page to the database */ #define PGHDR_NEED_READ 0x010 /* Content is unread */ #define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */ #define PGHDR_MMAP 0x040 /* This is an mmap page object */ /* Initialize and shutdown the page cache subsystem */ SQLITE_PRIVATE int sqlite3PcacheInitialize(void); SQLITE_PRIVATE void sqlite3PcacheShutdown(void); /* Page cache buffer management: ** These routines implement SQLITE_CONFIG_PAGECACHE. |
︙ | ︙ | |||
11437 11438 11439 11440 11441 11442 11443 | ** the speed a little by numbering the values consecutively. ** ** But rather than start with 0 or 1, we begin with 'A'. That way, ** when multiple affinity types are concatenated into a string and ** used as the P4 operand, they will be more readable. ** ** Note also that the numeric types are grouped together so that testing | | | | 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 | ** the speed a little by numbering the values consecutively. ** ** But rather than start with 0 or 1, we begin with 'A'. That way, ** when multiple affinity types are concatenated into a string and ** used as the P4 operand, they will be more readable. ** ** Note also that the numeric types are grouped together so that testing ** for a numeric type is a single comparison. And the BLOB type is first. */ #define SQLITE_AFF_BLOB 'A' #define SQLITE_AFF_TEXT 'B' #define SQLITE_AFF_NUMERIC 'C' #define SQLITE_AFF_INTEGER 'D' #define SQLITE_AFF_REAL 'E' #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) |
︙ | ︙ | |||
12196 12197 12198 12199 12200 12201 12202 | #ifndef SQLITE_OMIT_EXPLAIN u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ #endif int iCursor; /* The VDBE cursor number used to access this table */ Expr *pOn; /* The ON clause of a join */ IdList *pUsing; /* The USING clause of a join */ Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ | | | 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 | #ifndef SQLITE_OMIT_EXPLAIN u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ #endif int iCursor; /* The VDBE cursor number used to access this table */ Expr *pOn; /* The ON clause of a join */ IdList *pUsing; /* The USING clause of a join */ Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ char *zIndexedBy; /* Identifier from "INDEXED BY <zIndex>" clause */ Index *pIndex; /* Index structure corresponding to zIndex, if any */ } a[1]; /* One entry for each identifier on the list */ }; /* ** Permitted values of the SrcList.a.jointype field */ |
︙ | ︙ | |||
13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 | # define sqlite3Isspace(x) isspace((unsigned char)(x)) # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) # define sqlite3Tolower(x) tolower((unsigned char)(x)) #endif SQLITE_PRIVATE int sqlite3IsIdChar(u8); /* ** Internal function prototypes */ #define sqlite3StrICmp sqlite3_stricmp SQLITE_PRIVATE int sqlite3Strlen30(const char*); #define sqlite3StrNICmp sqlite3_strnicmp | > > | 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 | # define sqlite3Isspace(x) isspace((unsigned char)(x)) # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) # define sqlite3Tolower(x) tolower((unsigned char)(x)) #endif #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS SQLITE_PRIVATE int sqlite3IsIdChar(u8); #endif /* ** Internal function prototypes */ #define sqlite3StrICmp sqlite3_stricmp SQLITE_PRIVATE int sqlite3Strlen30(const char*); #define sqlite3StrNICmp sqlite3_strnicmp |
︙ | ︙ | |||
13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 | SQLITE_PRIVATE int sqlite3MallocSize(void*); SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*); SQLITE_PRIVATE void *sqlite3ScratchMalloc(int); SQLITE_PRIVATE void sqlite3ScratchFree(void*); SQLITE_PRIVATE void *sqlite3PageMalloc(int); SQLITE_PRIVATE void sqlite3PageFree(void*); SQLITE_PRIVATE void sqlite3MemSetDefault(void); SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); SQLITE_PRIVATE int sqlite3HeapNearlyFull(void); /* ** On systems with ample stack space and that support alloca(), make ** use of alloca() to obtain space for large automatic objects. By default, ** obtain space from malloc(). ** | > > | 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 | SQLITE_PRIVATE int sqlite3MallocSize(void*); SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*); SQLITE_PRIVATE void *sqlite3ScratchMalloc(int); SQLITE_PRIVATE void sqlite3ScratchFree(void*); SQLITE_PRIVATE void *sqlite3PageMalloc(int); SQLITE_PRIVATE void sqlite3PageFree(void*); SQLITE_PRIVATE void sqlite3MemSetDefault(void); #ifndef SQLITE_OMIT_BUILTIN_TEST SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); #endif SQLITE_PRIVATE int sqlite3HeapNearlyFull(void); /* ** On systems with ample stack space and that support alloca(), make ** use of alloca() to obtain space for large automatic objects. By default, ** obtain space from malloc(). ** |
︙ | ︙ | |||
13106 13107 13108 13109 13110 13111 13112 | SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); #endif #if defined(SQLITE_DEBUG) | < < < < | 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 | SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); #endif #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); SQLITE_PRIVATE void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView*, const Select*, u8); #endif SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*); |
︙ | ︙ | |||
13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 | # define sqlite3FaultSim(X) SQLITE_OK #else SQLITE_PRIVATE int sqlite3FaultSim(int); #endif SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*); SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*); SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); SQLITE_PRIVATE void sqlite3RowSetClear(RowSet*); SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64); SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, int iBatch, i64); SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*); | > > > | 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 | # define sqlite3FaultSim(X) SQLITE_OK #else SQLITE_PRIVATE int sqlite3FaultSim(int); #endif SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec*, u32); SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*); SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*); #ifndef SQLITE_OMIT_BUILTIN_TEST SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); #endif SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); SQLITE_PRIVATE void sqlite3RowSetClear(RowSet*); SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64); SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, int iBatch, i64); SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*); |
︙ | ︙ | |||
13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 | SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int); SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int); SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*); SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3Vacuum(Parse*); SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*); SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*); SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*, int); SQLITE_PRIVATE int sqlite3ExprImpliesExpr(Expr*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); SQLITE_PRIVATE void sqlite3PrngSaveState(void); SQLITE_PRIVATE void sqlite3PrngRestoreState(void); SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int); SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*); SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*); SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); | > > > | 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 | SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int); SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int); SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse*, Expr*, int, int); SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*); SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3Vacuum(Parse*); SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*); SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*); SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*, int); SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*, int); SQLITE_PRIVATE int sqlite3ExprImpliesExpr(Expr*, Expr*, int); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); #ifndef SQLITE_OMIT_BUILTIN_TEST SQLITE_PRIVATE void sqlite3PrngSaveState(void); SQLITE_PRIVATE void sqlite3PrngRestoreState(void); #endif SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int); SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*); SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*); SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*); |
︙ | ︙ | |||
13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 | SQLITE_PRIVATE void sqlite3AlterFunctions(void); SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int); SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); SQLITE_PRIVATE void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int); SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); | > | 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 | SQLITE_PRIVATE void sqlite3AlterFunctions(void); SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int); SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); SQLITE_PRIVATE void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*); SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int); SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); |
︙ | ︙ | |||
14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 | Bool isTable:1; /* True if a table requiring integer keys */ Bool isOrdered:1; /* True if the underlying table is BTREE_UNORDERED */ Pgno pgnoRoot; /* Root page of the open btree cursor */ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ i64 seqCount; /* Sequence counter */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ VdbeSorter *pSorter; /* Sorter object for OP_SorterOpen cursors */ /* Cached information about the header for the data record that the ** cursor is currently pointing to. Only valid if cacheStatus matches ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that ** the cache is out of date. ** | > > > | 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 | Bool isTable:1; /* True if a table requiring integer keys */ Bool isOrdered:1; /* True if the underlying table is BTREE_UNORDERED */ Pgno pgnoRoot; /* Root page of the open btree cursor */ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ i64 seqCount; /* Sequence counter */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ VdbeSorter *pSorter; /* Sorter object for OP_SorterOpen cursors */ #ifdef SQLITE_ENABLE_COLUMN_USED_MASK u64 maskUsed; /* Mask of columns used by this cursor */ #endif /* Cached information about the header for the data record that the ** cursor is currently pointing to. Only valid if cacheStatus matches ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that ** the cache is out of date. ** |
︙ | ︙ | |||
14811 14812 14813 14814 14815 14816 14817 | ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { | | | | | | | | | > > | 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 | ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { Mem *pOut; /* The return value is stored here */ FuncDef *pFunc; /* Pointer to function information */ Mem *pMem; /* Memory cell used to store aggregate context */ Vdbe *pVdbe; /* The VM that owns this context */ int iOp; /* Instruction number of OP_Function */ int isError; /* Error code returned by the function. */ u8 skipFlag; /* Skip accumulator loading if true */ u8 fErrorOrAux; /* isError!=0 or pVdbe->pAuxData modified */ u8 argc; /* Number of arguments */ sqlite3_value *argv[1]; /* Argument set */ }; /* ** An Explain object accumulates indented output which is helpful ** in describing recursive data structures. */ struct Explain { |
︙ | ︙ | |||
19191 19192 19193 19194 19195 19196 19197 | sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex; if( sqlite3GlobalConfig.bCoreMutex ){ pFrom = sqlite3DefaultMutex(); }else{ pFrom = sqlite3NoopMutex(); } | | | | > > > > > | 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 | sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex; if( sqlite3GlobalConfig.bCoreMutex ){ pFrom = sqlite3DefaultMutex(); }else{ pFrom = sqlite3NoopMutex(); } pTo->xMutexInit = pFrom->xMutexInit; pTo->xMutexEnd = pFrom->xMutexEnd; pTo->xMutexFree = pFrom->xMutexFree; pTo->xMutexEnter = pFrom->xMutexEnter; pTo->xMutexTry = pFrom->xMutexTry; pTo->xMutexLeave = pFrom->xMutexLeave; pTo->xMutexHeld = pFrom->xMutexHeld; pTo->xMutexNotheld = pFrom->xMutexNotheld; pTo->xMutexAlloc = pFrom->xMutexAlloc; } rc = sqlite3GlobalConfig.mutex.xMutexInit(); #ifdef SQLITE_DEBUG GLOBAL(int, mutexIsInit) = 1; #endif |
︙ | ︙ | |||
21351 21352 21353 21354 21355 21356 21357 | ** returning control to the user) that has called sqlite3_malloc or ** sqlite3_realloc. ** ** The returned value is normally a copy of the second argument to this ** function. However, if a malloc() failure has occurred since the previous ** invocation SQLITE_NOMEM is returned instead. ** | < | | | | > | < | < < < | | 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 | ** returning control to the user) that has called sqlite3_malloc or ** sqlite3_realloc. ** ** The returned value is normally a copy of the second argument to this ** function. However, if a malloc() failure has occurred since the previous ** invocation SQLITE_NOMEM is returned instead. ** ** If an OOM as occurred, then the connection error-code (the value ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. */ SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){ /* If the db handle must hold the connection handle mutex here. ** Otherwise the read (and possible write) of db->mallocFailed ** is unsafe, as is the call to sqlite3Error(). */ assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ return apiOomError(db); } return rc & db->errMask; } /************** End of malloc.c **********************************************/ /************** Begin file printf.c ******************************************/ /* ** The "printf" code that follows dates from the 1980's. It is in ** the public domain. ** ************************************************************************** ** ** This file contains code for a set of "printf"-like routines. These ** routines format strings much like the printf() from the standard C ** library, though the implementation here has enhancements to support ** SQLite. */ /* ** Conversion types fall into various categories as defined by the ** following enumeration. */ #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ |
︙ | ︙ | |||
22429 22430 22431 22432 22433 22434 22435 | va_end(ap); sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } #endif | | > > > > > > > > > > > > > > > > > > > > > > | < < < | < < | | > > > > > | | > | > > | > | > > | | > | > > | > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < < < < < < < < | | 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 | va_end(ap); sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } #endif /* ** variable-argument wrapper around sqlite3VXPrintf(). */ SQLITE_PRIVATE void sqlite3XPrintf(StrAccum *p, u32 bFlags, const char *zFormat, ...){ va_list ap; va_start(ap,zFormat); sqlite3VXPrintf(p, bFlags, zFormat, ap); va_end(ap); } /************** End of printf.c **********************************************/ /************** Begin file treeview.c ****************************************/ /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains C code to implement the TreeView debugging routines. ** These routines print a parse tree to standard output for debugging and ** analysis. ** ** The interfaces in this file is only available when compiling ** with SQLITE_DEBUG. */ #ifdef SQLITE_DEBUG /* ** Add a new subitem to the tree. The moreToFollow flag indicates that this ** is not the last item in the tree. */ static TreeView *sqlite3TreeViewPush(TreeView *p, u8 moreToFollow){ if( p==0 ){ p = sqlite3_malloc64( sizeof(*p) ); if( p==0 ) return 0; memset(p, 0, sizeof(*p)); }else{ p->iLevel++; } assert( moreToFollow==0 || moreToFollow==1 ); if( p->iLevel<sizeof(p->bLine) ) p->bLine[p->iLevel] = moreToFollow; return p; } /* ** Finished with one layer of the tree */ static void sqlite3TreeViewPop(TreeView *p){ if( p==0 ) return; p->iLevel--; if( p->iLevel<0 ) sqlite3_free(p); } /* ** Generate a single line of output for the tree, with a prefix that contains ** all the appropriate tree lines */ static void sqlite3TreeViewLine(TreeView *p, const char *zFormat, ...){ va_list ap; int i; StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); if( p ){ for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){ sqlite3StrAccumAppend(&acc, p->bLine[i] ? "| " : " ", 4); } sqlite3StrAccumAppend(&acc, p->bLine[i] ? "|-- " : "'-- ", 4); } va_start(ap, zFormat); sqlite3VXPrintf(&acc, 0, zFormat, ap); va_end(ap); if( zBuf[acc.nChar-1]!='\n' ) sqlite3StrAccumAppend(&acc, "\n", 1); sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } /* ** Shorthand for starting a new tree item that consists of a single label */ static void sqlite3TreeViewItem(TreeView *p, const char *zLabel,u8 moreFollows){ p = sqlite3TreeViewPush(p, moreFollows); sqlite3TreeViewLine(p, "%s", zLabel); } /* ** Generate a human-readable description of a the Select object. */ SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ int n = 0; pView = sqlite3TreeViewPush(pView, moreToFollow); sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p) selFlags=0x%x", ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""), ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p, p->selFlags ); if( p->pSrc && p->pSrc->nSrc ) n++; if( p->pWhere ) n++; if( p->pGroupBy ) n++; if( p->pHaving ) n++; if( p->pOrderBy ) n++; if( p->pLimit ) n++; if( p->pOffset ) n++; if( p->pPrior ) n++; sqlite3TreeViewExprList(pView, p->pEList, (n--)>0, "result-set"); if( p->pSrc && p->pSrc->nSrc ){ int i; pView = sqlite3TreeViewPush(pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; StrAccum x; char zLine[100]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); if( pItem->zDatabase ){ sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); }else if( pItem->zName ){ sqlite3XPrintf(&x, 0, " %s", pItem->zName); } if( pItem->pTab ){ sqlite3XPrintf(&x, 0, " tabname=%Q", pItem->pTab->zName); } if( pItem->zAlias ){ sqlite3XPrintf(&x, 0, " (AS %s)", pItem->zAlias); } if( pItem->jointype & JT_LEFT ){ sqlite3XPrintf(&x, 0, " LEFT-JOIN"); } sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); if( pItem->pSelect ){ sqlite3TreeViewSelect(pView, pItem->pSelect, 0); } sqlite3TreeViewPop(pView); } sqlite3TreeViewPop(pView); } if( p->pWhere ){ sqlite3TreeViewItem(pView, "WHERE", (n--)>0); sqlite3TreeViewExpr(pView, p->pWhere, 0); sqlite3TreeViewPop(pView); } if( p->pGroupBy ){ sqlite3TreeViewExprList(pView, p->pGroupBy, (n--)>0, "GROUPBY"); } if( p->pHaving ){ sqlite3TreeViewItem(pView, "HAVING", (n--)>0); sqlite3TreeViewExpr(pView, p->pHaving, 0); sqlite3TreeViewPop(pView); } if( p->pOrderBy ){ sqlite3TreeViewExprList(pView, p->pOrderBy, (n--)>0, "ORDERBY"); } if( p->pLimit ){ sqlite3TreeViewItem(pView, "LIMIT", (n--)>0); sqlite3TreeViewExpr(pView, p->pLimit, 0); sqlite3TreeViewPop(pView); } if( p->pOffset ){ sqlite3TreeViewItem(pView, "OFFSET", (n--)>0); sqlite3TreeViewExpr(pView, p->pOffset, 0); sqlite3TreeViewPop(pView); } if( p->pPrior ){ const char *zOp = "UNION"; switch( p->op ){ case TK_ALL: zOp = "UNION ALL"; break; case TK_INTERSECT: zOp = "INTERSECT"; break; case TK_EXCEPT: zOp = "EXCEPT"; break; } sqlite3TreeViewItem(pView, zOp, (n--)>0); sqlite3TreeViewSelect(pView, p->pPrior, 0); sqlite3TreeViewPop(pView); } sqlite3TreeViewPop(pView); } /* ** Generate a human-readable explanation of an expression tree. */ SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ const char *zBinOp = 0; /* Binary operator */ const char *zUniOp = 0; /* Unary operator */ char zFlgs[30]; pView = sqlite3TreeViewPush(pView, moreToFollow); if( pExpr==0 ){ sqlite3TreeViewLine(pView, "nil"); sqlite3TreeViewPop(pView); return; } if( pExpr->flags ){ sqlite3_snprintf(sizeof(zFlgs),zFlgs," flags=0x%x",pExpr->flags); }else{ zFlgs[0] = 0; } switch( pExpr->op ){ case TK_AGG_COLUMN: { sqlite3TreeViewLine(pView, "AGG{%d:%d}%s", pExpr->iTable, pExpr->iColumn, zFlgs); break; } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ sqlite3TreeViewLine(pView, "COLUMN(%d)%s", pExpr->iColumn, zFlgs); }else{ sqlite3TreeViewLine(pView, "{%d:%d}%s", pExpr->iTable, pExpr->iColumn, zFlgs); } break; } case TK_INTEGER: { if( pExpr->flags & EP_IntValue ){ sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); }else{ sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); } break; } #ifndef SQLITE_OMIT_FLOATING_POINT case TK_FLOAT: { sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); break; } #endif case TK_STRING: { sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); break; } case TK_NULL: { sqlite3TreeViewLine(pView,"NULL"); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); break; } #endif case TK_VARIABLE: { sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", pExpr->u.zToken, pExpr->iColumn); break; } case TK_REGISTER: { sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); break; } case TK_AS: { sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_ID: { sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: zBinOp = "LT"; break; case TK_LE: zBinOp = "LE"; break; case TK_GT: zBinOp = "GT"; break; case TK_GE: zBinOp = "GE"; break; case TK_NE: zBinOp = "NE"; break; case TK_EQ: zBinOp = "EQ"; break; case TK_IS: zBinOp = "IS"; break; case TK_ISNOT: zBinOp = "ISNOT"; break; case TK_AND: zBinOp = "AND"; break; case TK_OR: zBinOp = "OR"; break; case TK_PLUS: zBinOp = "ADD"; break; case TK_STAR: zBinOp = "MUL"; break; case TK_MINUS: zBinOp = "SUB"; break; case TK_REM: zBinOp = "REM"; break; case TK_BITAND: zBinOp = "BITAND"; break; case TK_BITOR: zBinOp = "BITOR"; break; case TK_SLASH: zBinOp = "DIV"; break; case TK_LSHIFT: zBinOp = "LSHIFT"; break; case TK_RSHIFT: zBinOp = "RSHIFT"; break; case TK_CONCAT: zBinOp = "CONCAT"; break; case TK_DOT: zBinOp = "DOT"; break; case TK_UMINUS: zUniOp = "UMINUS"; break; case TK_UPLUS: zUniOp = "UPLUS"; break; case TK_BITNOT: zUniOp = "BITNOT"; break; case TK_NOT: zUniOp = "NOT"; break; case TK_ISNULL: zUniOp = "ISNULL"; break; case TK_NOTNULL: zUniOp = "NOTNULL"; break; case TK_COLLATE: { sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); break; } case TK_AGG_FUNCTION: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; }else{ pFarg = pExpr->x.pList; } if( pExpr->op==TK_AGG_FUNCTION ){ sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q", pExpr->op2, pExpr->u.zToken); }else{ sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken); } if( pFarg ){ sqlite3TreeViewExprList(pView, pFarg, 0, 0); } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: { sqlite3TreeViewLine(pView, "EXISTS-expr"); sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); break; } case TK_SELECT: { sqlite3TreeViewLine(pView, "SELECT-expr"); sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); break; } case TK_IN: { sqlite3TreeViewLine(pView, "IN"); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); }else{ sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); } break; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** x BETWEEN y AND z ** ** This is equivalent to ** ** x>=y AND x<=z ** ** X is stored in pExpr->pLeft. ** Y is stored in pExpr->pList->a[0].pExpr. ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { Expr *pX = pExpr->pLeft; Expr *pY = pExpr->x.pList->a[0].pExpr; Expr *pZ = pExpr->x.pList->a[1].pExpr; sqlite3TreeViewLine(pView, "BETWEEN"); sqlite3TreeViewExpr(pView, pX, 1); sqlite3TreeViewExpr(pView, pY, 1); sqlite3TreeViewExpr(pView, pZ, 0); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn ** is set to the column of the pseudo-table to read, or to -1 to ** read the rowid field. */ sqlite3TreeViewLine(pView, "%s(%d)", pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); break; } case TK_CASE: { sqlite3TreeViewLine(pView, "CASE"); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { const char *zType = "unk"; switch( pExpr->affinity ){ case OE_Rollback: zType = "rollback"; break; case OE_Abort: zType = "abort"; break; case OE_Fail: zType = "fail"; break; case OE_Ignore: zType = "ignore"; break; } sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); break; } #endif default: { sqlite3TreeViewLine(pView, "op=%d", pExpr->op); break; } } if( zBinOp ){ sqlite3TreeViewLine(pView, "%s%s", zBinOp, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); sqlite3TreeViewExpr(pView, pExpr->pRight, 0); }else if( zUniOp ){ sqlite3TreeViewLine(pView, "%s%s", zUniOp, zFlgs); sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); } sqlite3TreeViewPop(pView); } /* ** Generate a human-readable explanation of an expression list. */ SQLITE_PRIVATE void sqlite3TreeViewExprList( TreeView *pView, const ExprList *pList, u8 moreToFollow, const char *zLabel ){ int i; pView = sqlite3TreeViewPush(pView, moreToFollow); if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; if( pList==0 ){ sqlite3TreeViewLine(pView, "%s (empty)", zLabel); }else{ sqlite3TreeViewLine(pView, "%s", zLabel); for(i=0; i<pList->nExpr; i++){ sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1); } } sqlite3TreeViewPop(pView); } #endif /* SQLITE_DEBUG */ /************** End of treeview.c ********************************************/ /************** Begin file random.c ******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** |
︙ | ︙ | |||
23542 23543 23544 23545 23546 23547 23548 | ** lower 30 bits of a 32-bit signed integer. ** ** The value returned will never be negative. Nor will it ever be greater ** than the actual length of the string. For very long strings (greater ** than 1GiB) the value returned might be less than the true string length. */ SQLITE_PRIVATE int sqlite3Strlen30(const char *z){ | < < | | 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 | ** lower 30 bits of a 32-bit signed integer. ** ** The value returned will never be negative. Nor will it ever be greater ** than the actual length of the string. For very long strings (greater ** than 1GiB) the value returned might be less than the true string length. */ SQLITE_PRIVATE int sqlite3Strlen30(const char *z){ if( z==0 ) return 0; return 0x3fffffff & (int)strlen(z); } /* ** Set the current error code to err_code and clear any prior error message. */ SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code){ assert( db!=0 ); |
︙ | ︙ | |||
24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 | } /* ** Read or write a four-byte big-endian integer value. */ SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ testcase( p[0]&0x80 ); return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; } SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ p[0] = (u8)(v>>24); p[1] = (u8)(v>>16); p[2] = (u8)(v>>8); p[3] = (u8)v; } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal | > > > > > > > > > > > > > > > > > | 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 | } /* ** Read or write a four-byte big-endian integer value. */ SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ #if SQLITE_BYTEORDER==4321 u32 x; memcpy(&x,p,4); return x; #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) u32 x; memcpy(&x,p,4); return __builtin_bswap32(x); #else testcase( p[0]&0x80 ); return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; #endif } SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ #if SQLITE_BYTEORDER==4321 memcpy(p,&v,4); #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) u32 x = __builtin_bswap32(v); memcpy(p,&x,4); #else p[0] = (u8)(v>>24); p[1] = (u8)(v>>16); p[2] = (u8)(v>>8); p[3] = (u8)v; #endif } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal |
︙ | ︙ | |||
25092 25093 25094 25095 25096 25097 25098 | #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG) # define OpHelp(X) "\0" X #else # define OpHelp(X) #endif SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ static const char *const azName[] = { "?", | < | | | | | | | | < | | | | | | | | > > < < | | | | | | | | | | | | | | | > > | 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 | #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG) # define OpHelp(X) "\0" X #else # define OpHelp(X) #endif SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ static const char *const azName[] = { "?", /* 1 */ "Savepoint" OpHelp(""), /* 2 */ "AutoCommit" OpHelp(""), /* 3 */ "Transaction" OpHelp(""), /* 4 */ "SorterNext" OpHelp(""), /* 5 */ "PrevIfOpen" OpHelp(""), /* 6 */ "NextIfOpen" OpHelp(""), /* 7 */ "Prev" OpHelp(""), /* 8 */ "Next" OpHelp(""), /* 9 */ "Checkpoint" OpHelp(""), /* 10 */ "JournalMode" OpHelp(""), /* 11 */ "Vacuum" OpHelp(""), /* 12 */ "VFilter" OpHelp("iplan=r[P3] zplan='P4'"), /* 13 */ "VUpdate" OpHelp("data=r[P3@P2]"), /* 14 */ "Goto" OpHelp(""), /* 15 */ "Gosub" OpHelp(""), /* 16 */ "Return" OpHelp(""), /* 17 */ "InitCoroutine" OpHelp(""), /* 18 */ "EndCoroutine" OpHelp(""), /* 19 */ "Not" OpHelp("r[P2]= !r[P1]"), /* 20 */ "Yield" OpHelp(""), /* 21 */ "HaltIfNull" OpHelp("if r[P3]=null halt"), /* 22 */ "Halt" OpHelp(""), /* 23 */ "Integer" OpHelp("r[P2]=P1"), /* 24 */ "Int64" OpHelp("r[P2]=P4"), /* 25 */ "String" OpHelp("r[P2]='P4' (len=P1)"), /* 26 */ "Null" OpHelp("r[P2..P3]=NULL"), /* 27 */ "SoftNull" OpHelp("r[P1]=NULL"), /* 28 */ "Blob" OpHelp("r[P2]=P4 (len=P1)"), /* 29 */ "Variable" OpHelp("r[P2]=parameter(P1,P4)"), /* 30 */ "Move" OpHelp("r[P2@P3]=r[P1@P3]"), /* 31 */ "Copy" OpHelp("r[P2@P3+1]=r[P1@P3+1]"), /* 32 */ "SCopy" OpHelp("r[P2]=r[P1]"), /* 33 */ "ResultRow" OpHelp("output=r[P1@P2]"), /* 34 */ "CollSeq" OpHelp(""), /* 35 */ "Function0" OpHelp("r[P3]=func(r[P2@P5])"), /* 36 */ "Function" OpHelp("r[P3]=func(r[P2@P5])"), /* 37 */ "AddImm" OpHelp("r[P1]=r[P1]+P2"), /* 38 */ "MustBeInt" OpHelp(""), /* 39 */ "RealAffinity" OpHelp(""), /* 40 */ "Cast" OpHelp("affinity(r[P1])"), /* 41 */ "Permutation" OpHelp(""), /* 42 */ "Compare" OpHelp("r[P1@P3] <-> r[P2@P3]"), /* 43 */ "Jump" OpHelp(""), |
︙ | ︙ | |||
25153 25154 25155 25156 25157 25158 25159 | /* 55 */ "OpenWrite" OpHelp("root=P2 iDb=P3"), /* 56 */ "OpenAutoindex" OpHelp("nColumn=P2"), /* 57 */ "OpenEphemeral" OpHelp("nColumn=P2"), /* 58 */ "SorterOpen" OpHelp(""), /* 59 */ "SequenceTest" OpHelp("if( cursor[P1].ctr++ ) pc = P2"), /* 60 */ "OpenPseudo" OpHelp("P3 columns in r[P2]"), /* 61 */ "Close" OpHelp(""), | > | | | | | | | | < > | | < | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < > | | | | | | | | > > | | | | | | | | | | | | | | | | | 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 | /* 55 */ "OpenWrite" OpHelp("root=P2 iDb=P3"), /* 56 */ "OpenAutoindex" OpHelp("nColumn=P2"), /* 57 */ "OpenEphemeral" OpHelp("nColumn=P2"), /* 58 */ "SorterOpen" OpHelp(""), /* 59 */ "SequenceTest" OpHelp("if( cursor[P1].ctr++ ) pc = P2"), /* 60 */ "OpenPseudo" OpHelp("P3 columns in r[P2]"), /* 61 */ "Close" OpHelp(""), /* 62 */ "ColumnsUsed" OpHelp(""), /* 63 */ "SeekLT" OpHelp("key=r[P3@P4]"), /* 64 */ "SeekLE" OpHelp("key=r[P3@P4]"), /* 65 */ "SeekGE" OpHelp("key=r[P3@P4]"), /* 66 */ "SeekGT" OpHelp("key=r[P3@P4]"), /* 67 */ "Seek" OpHelp("intkey=r[P2]"), /* 68 */ "NoConflict" OpHelp("key=r[P3@P4]"), /* 69 */ "NotFound" OpHelp("key=r[P3@P4]"), /* 70 */ "Found" OpHelp("key=r[P3@P4]"), /* 71 */ "Or" OpHelp("r[P3]=(r[P1] || r[P2])"), /* 72 */ "And" OpHelp("r[P3]=(r[P1] && r[P2])"), /* 73 */ "NotExists" OpHelp("intkey=r[P3]"), /* 74 */ "Sequence" OpHelp("r[P2]=cursor[P1].ctr++"), /* 75 */ "NewRowid" OpHelp("r[P2]=rowid"), /* 76 */ "IsNull" OpHelp("if r[P1]==NULL goto P2"), /* 77 */ "NotNull" OpHelp("if r[P1]!=NULL goto P2"), /* 78 */ "Ne" OpHelp("if r[P1]!=r[P3] goto P2"), /* 79 */ "Eq" OpHelp("if r[P1]==r[P3] goto P2"), /* 80 */ "Gt" OpHelp("if r[P1]>r[P3] goto P2"), /* 81 */ "Le" OpHelp("if r[P1]<=r[P3] goto P2"), /* 82 */ "Lt" OpHelp("if r[P1]<r[P3] goto P2"), /* 83 */ "Ge" OpHelp("if r[P1]>=r[P3] goto P2"), /* 84 */ "Insert" OpHelp("intkey=r[P3] data=r[P2]"), /* 85 */ "BitAnd" OpHelp("r[P3]=r[P1]&r[P2]"), /* 86 */ "BitOr" OpHelp("r[P3]=r[P1]|r[P2]"), /* 87 */ "ShiftLeft" OpHelp("r[P3]=r[P2]<<r[P1]"), /* 88 */ "ShiftRight" OpHelp("r[P3]=r[P2]>>r[P1]"), /* 89 */ "Add" OpHelp("r[P3]=r[P1]+r[P2]"), /* 90 */ "Subtract" OpHelp("r[P3]=r[P2]-r[P1]"), /* 91 */ "Multiply" OpHelp("r[P3]=r[P1]*r[P2]"), /* 92 */ "Divide" OpHelp("r[P3]=r[P2]/r[P1]"), /* 93 */ "Remainder" OpHelp("r[P3]=r[P2]%r[P1]"), /* 94 */ "Concat" OpHelp("r[P3]=r[P2]+r[P1]"), /* 95 */ "InsertInt" OpHelp("intkey=P3 data=r[P2]"), /* 96 */ "BitNot" OpHelp("r[P1]= ~r[P1]"), /* 97 */ "String8" OpHelp("r[P2]='P4'"), /* 98 */ "Delete" OpHelp(""), /* 99 */ "ResetCount" OpHelp(""), /* 100 */ "SorterCompare" OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"), /* 101 */ "SorterData" OpHelp("r[P2]=data"), /* 102 */ "RowKey" OpHelp("r[P2]=key"), /* 103 */ "RowData" OpHelp("r[P2]=data"), /* 104 */ "Rowid" OpHelp("r[P2]=rowid"), /* 105 */ "NullRow" OpHelp(""), /* 106 */ "Last" OpHelp(""), /* 107 */ "SorterSort" OpHelp(""), /* 108 */ "Sort" OpHelp(""), /* 109 */ "Rewind" OpHelp(""), /* 110 */ "SorterInsert" OpHelp(""), /* 111 */ "IdxInsert" OpHelp("key=r[P2]"), /* 112 */ "IdxDelete" OpHelp("key=r[P2@P3]"), /* 113 */ "IdxRowid" OpHelp("r[P2]=rowid"), /* 114 */ "IdxLE" OpHelp("key=r[P3@P4]"), /* 115 */ "IdxGT" OpHelp("key=r[P3@P4]"), /* 116 */ "IdxLT" OpHelp("key=r[P3@P4]"), /* 117 */ "IdxGE" OpHelp("key=r[P3@P4]"), /* 118 */ "Destroy" OpHelp(""), /* 119 */ "Clear" OpHelp(""), /* 120 */ "ResetSorter" OpHelp(""), /* 121 */ "CreateIndex" OpHelp("r[P2]=root iDb=P1"), /* 122 */ "CreateTable" OpHelp("r[P2]=root iDb=P1"), /* 123 */ "ParseSchema" OpHelp(""), /* 124 */ "LoadAnalysis" OpHelp(""), /* 125 */ "DropTable" OpHelp(""), /* 126 */ "DropIndex" OpHelp(""), /* 127 */ "DropTrigger" OpHelp(""), /* 128 */ "IntegrityCk" OpHelp(""), /* 129 */ "RowSetAdd" OpHelp("rowset(P1)=r[P2]"), /* 130 */ "RowSetRead" OpHelp("r[P3]=rowset(P1)"), /* 131 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"), /* 132 */ "Program" OpHelp(""), /* 133 */ "Real" OpHelp("r[P2]=P4"), /* 134 */ "Param" OpHelp(""), /* 135 */ "FkCounter" OpHelp("fkctr[P1]+=P2"), /* 136 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"), /* 137 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), /* 138 */ "IfPos" OpHelp("if r[P1]>0 goto P2"), /* 139 */ "IfNeg" OpHelp("r[P1]+=P3, if r[P1]<0 goto P2"), /* 140 */ "IfNotZero" OpHelp("if r[P1]!=0 then r[P1]+=P3, goto P2"), /* 141 */ "DecrJumpZero" OpHelp("if (--r[P1])==0 goto P2"), /* 142 */ "JumpZeroIncr" OpHelp("if (r[P1]++)==0 ) goto P2"), /* 143 */ "AggStep0" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 144 */ "AggStep" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 145 */ "AggFinal" OpHelp("accum=r[P1] N=P2"), /* 146 */ "IncrVacuum" OpHelp(""), /* 147 */ "Expire" OpHelp(""), /* 148 */ "TableLock" OpHelp("iDb=P1 root=P2 write=P3"), /* 149 */ "VBegin" OpHelp(""), /* 150 */ "VCreate" OpHelp(""), /* 151 */ "VDestroy" OpHelp(""), /* 152 */ "VOpen" OpHelp(""), /* 153 */ "VColumn" OpHelp("r[P3]=vcolumn(P2)"), /* 154 */ "VNext" OpHelp(""), /* 155 */ "VRename" OpHelp(""), /* 156 */ "Pagecount" OpHelp(""), /* 157 */ "MaxPgcnt" OpHelp(""), /* 158 */ "Init" OpHelp("Start at P2"), /* 159 */ "Noop" OpHelp(""), /* 160 */ "Explain" OpHelp(""), }; return azName[i]; } #endif /************** End of opcodes.c *********************************************/ /************** Begin file os_unix.c *****************************************/ |
︙ | ︙ | |||
38987 38988 38989 38990 38991 38992 38993 | } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ | | | < > > > > | 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 | } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ SQLITE_PRIVATE int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ assert( p!=0 ); i--; if( i>=p->iSize ) return 0; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return 0; } } if( p->iSize<=BITVEC_NBIT ){ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; } else{ u32 h = BITVEC_HASH(i++); while( p->u.aHash[h] ){ if( p->u.aHash[h]==i ) return 1; h = (h+1) % BITVEC_NINT; } return 0; } } SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){ return p!=0 && sqlite3BitvecTestNotNull(p,i); } /* ** Set the i-th bit. Return 0 on success and an error code if ** anything goes wrong. ** ** This routine might cause sub-bitmaps to be allocated. Failing |
︙ | ︙ | |||
39298 39299 39300 39301 39302 39303 39304 | int szPage; /* Size of every page in this cache */ int szExtra; /* Size of extra space for each page */ u8 bPurgeable; /* True if pages are on backing store */ u8 eCreate; /* eCreate value for for xFetch() */ int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ void *pStress; /* Argument to xStress */ sqlite3_pcache *pCache; /* Pluggable cache module */ | < | 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 | int szPage; /* Size of every page in this cache */ int szExtra; /* Size of extra space for each page */ u8 bPurgeable; /* True if pages are on backing store */ u8 eCreate; /* eCreate value for for xFetch() */ int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ void *pStress; /* Argument to xStress */ sqlite3_pcache *pCache; /* Pluggable cache module */ }; /********************************** Linked List Management ********************/ /* Allowed values for second argument to pcacheManageDirtyList() */ #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ |
︙ | ︙ | |||
39376 39377 39378 39379 39380 39381 39382 | /* ** Wrapper around the pluggable caches xUnpin method. If the cache is ** being used for an in-memory database, this function is a no-op. */ static void pcacheUnpin(PgHdr *p){ if( p->pCache->bPurgeable ){ | < < < | 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 | /* ** Wrapper around the pluggable caches xUnpin method. If the cache is ** being used for an in-memory database, this function is a no-op. */ static void pcacheUnpin(PgHdr *p){ if( p->pCache->bPurgeable ){ sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); } } /* ** Compute the number of pages of cache requested. p->szCache is the ** cache size requested by the "PRAGMA cache_size" statement. |
︙ | ︙ | |||
39471 39472 39473 39474 39475 39476 39477 | ); if( pNew==0 ) return SQLITE_NOMEM; sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); if( pCache->pCache ){ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); } pCache->pCache = pNew; | < | 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 | ); if( pNew==0 ) return SQLITE_NOMEM; sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); if( pCache->pCache ){ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); } pCache->pCache = pNew; pCache->szPage = szPage; } return SQLITE_OK; } /* ** Try to obtain a page from the cache. |
︙ | ︙ | |||
39596 39597 39598 39599 39600 39601 39602 | Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr*)pPage->pExtra; assert( pPgHdr->pPage==0 ); | | > | < < < | | 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 | Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr*)pPage->pExtra; assert( pPgHdr->pPage==0 ); memset(pPgHdr, 0, sizeof(PgHdr)); pPgHdr->pPage = pPage; pPgHdr->pData = pPage->pBuf; pPgHdr->pExtra = (void *)&pPgHdr[1]; memset(pPgHdr->pExtra, 0, pCache->szExtra); pPgHdr->pCache = pCache; pPgHdr->pgno = pgno; pPgHdr->flags = PGHDR_CLEAN; return sqlite3PcacheFetchFinish(pCache,pgno,pPage); } /* ** This routine converts the sqlite3_pcache_page object returned by ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine ** must be called after sqlite3PcacheFetch() in order to get a usable ** result. */ SQLITE_PRIVATE PgHdr *sqlite3PcacheFetchFinish( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr *)pPage->pExtra; if( !pPgHdr->pPage ){ return pcacheFetchFinishWithInit(pCache, pgno, pPage); } if( 0==pPgHdr->nRef ){ pCache->nRef++; } pPgHdr->nRef++; return pPgHdr; } /* ** Decrement the reference count on a page. If the page is clean and the ** reference count drops to 0, then it is made eligible for recycling. */ SQLITE_PRIVATE void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ assert( p->nRef>0 ); p->nRef--; if( p->nRef==0 ){ p->pCache->nRef--; if( p->flags&PGHDR_CLEAN ){ pcacheUnpin(p); }else if( p->pDirtyPrev!=0 ){ /* Move the page to the head of the dirty list. */ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); } } } |
︙ | ︙ | |||
39672 39673 39674 39675 39676 39677 39678 | */ SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){ assert( p->nRef==1 ); if( p->flags&PGHDR_DIRTY ){ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); } p->pCache->nRef--; | < < < < > > | | > | > > | > | 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 | */ SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){ assert( p->nRef==1 ); if( p->flags&PGHDR_DIRTY ){ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); } p->pCache->nRef--; sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); } /* ** Make sure the page is marked as dirty. If it isn't dirty already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){ assert( p->nRef>0 ); if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ p->flags &= ~PGHDR_DONT_WRITE; if( p->flags & PGHDR_CLEAN ){ p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); } } } /* ** Make sure the page is marked as clean. If it isn't clean already, ** make it so. */ SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){ if( (p->flags & PGHDR_DIRTY) ){ assert( (p->flags & PGHDR_CLEAN)==0 ); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); p->flags |= PGHDR_CLEAN; if( p->nRef==0 ){ pcacheUnpin(p); } } } /* |
︙ | ︙ | |||
39765 39766 39767 39768 39769 39770 39771 | */ assert( p->pgno>0 ); if( ALWAYS(p->pgno>pgno) ){ assert( p->flags&PGHDR_DIRTY ); sqlite3PcacheMakeClean(p); } } | | > > > > | | > | 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 | */ assert( p->pgno>0 ); if( ALWAYS(p->pgno>pgno) ){ assert( p->flags&PGHDR_DIRTY ); sqlite3PcacheMakeClean(p); } } if( pgno==0 && pCache->nRef ){ sqlite3_pcache_page *pPage1; pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because ** pCache->nRef>0 */ memset(pPage1->pBuf, 0, pCache->szPage); pgno = 1; } } sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); } } /* ** Close a cache. |
︙ | ︙ | |||
40090 40091 40092 40093 40094 40095 40096 | ** compiling for systems that do not support real WSD. */ #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) /* ** Macros to enter and leave the PCache LRU mutex. */ | > > > > > | | > > | 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 | ** compiling for systems that do not support real WSD. */ #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) /* ** Macros to enter and leave the PCache LRU mutex. */ #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 # define pcache1EnterMutex(X) assert((X)->mutex==0) # define pcache1LeaveMutex(X) assert((X)->mutex==0) # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 #else # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 #endif /******************************************************************************/ /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ /* ** This function is called during initialization if a static buffer is ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE |
︙ | ︙ | |||
40367 40368 40369 40370 40371 40372 40373 | /* ** This function is used internally to remove the page pPage from the ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup ** LRU list, then this function is a no-op. ** ** The PGroup mutex must be held when this function is called. */ | | < < | | | | | > > | > | < | 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 | /* ** This function is used internally to remove the page pPage from the ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup ** LRU list, then this function is a no-op. ** ** The PGroup mutex must be held when this function is called. */ static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ PCache1 *pCache; assert( pPage!=0 ); assert( pPage->isPinned==0 ); pCache = pPage->pCache; assert( pPage->pLruNext || pPage==pCache->pGroup->pLruTail ); assert( pPage->pLruPrev || pPage==pCache->pGroup->pLruHead ); assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); if( pPage->pLruPrev ){ pPage->pLruPrev->pLruNext = pPage->pLruNext; }else{ pCache->pGroup->pLruHead = pPage->pLruNext; } if( pPage->pLruNext ){ pPage->pLruNext->pLruPrev = pPage->pLruPrev; }else{ pCache->pGroup->pLruTail = pPage->pLruPrev; } pPage->pLruNext = 0; pPage->pLruPrev = 0; pPage->isPinned = 1; pCache->nRecyclable--; return pPage; } /* ** Remove the page supplied as an argument from the hash table ** (PCache1.apHash structure) that it is currently stored in. ** Also free the page if freePage is true. ** ** The PGroup mutex must be held when this function is called. */ static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ unsigned int h; PCache1 *pCache = pPage->pCache; PgHdr1 **pp; assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); h = pPage->iKey % pCache->nHash; for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); *pp = (*pp)->pNext; pCache->nPage--; if( freeFlag ) pcache1FreePage(pPage); } /* ** If there are currently more than nMaxPage pages allocated, try ** to recycle pages to reduce the number allocated to nMaxPage. */ static void pcache1EnforceMaxPage(PGroup *pGroup){ assert( sqlite3_mutex_held(pGroup->mutex) ); while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ PgHdr1 *p = pGroup->pLruTail; assert( p->pCache->pGroup==pGroup ); assert( p->isPinned==0 ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } } /* ** Discard all pages from cache pCache with a page number (key value) ** greater than or equal to iLimit. Any pinned pages that meet this ** criteria are unpinned before they are discarded. |
︙ | ︙ | |||
40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 | /* ** Implementation of the sqlite3_pcache.xInit method. */ static int pcache1Init(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( pcache1.isInit==0 ); memset(&pcache1, 0, sizeof(pcache1)); if( sqlite3GlobalConfig.bCoreMutex ){ pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); } pcache1.grp.mxPinned = 10; pcache1.isInit = 1; return SQLITE_OK; } /* ** Implementation of the sqlite3_pcache.xShutdown method. | > > | 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 | /* ** Implementation of the sqlite3_pcache.xInit method. */ static int pcache1Init(void *NotUsed){ UNUSED_PARAMETER(NotUsed); assert( pcache1.isInit==0 ); memset(&pcache1, 0, sizeof(pcache1)); #if SQLITE_THREADSAFE if( sqlite3GlobalConfig.bCoreMutex ){ pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); } #endif pcache1.grp.mxPinned = 10; pcache1.isInit = 1; return SQLITE_OK; } /* ** Implementation of the sqlite3_pcache.xShutdown method. |
︙ | ︙ | |||
40648 40649 40650 40651 40652 40653 40654 | (pCache->nPage+1>=pCache->nMax) || pGroup->nCurrentPage>=pGroup->nMaxPage || pcache1UnderMemoryPressure(pCache) )){ PCache1 *pOther; pPage = pGroup->pLruTail; assert( pPage->isPinned==0 ); | | | 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 | (pCache->nPage+1>=pCache->nMax) || pGroup->nCurrentPage>=pGroup->nMaxPage || pcache1UnderMemoryPressure(pCache) )){ PCache1 *pOther; pPage = pGroup->pLruTail; assert( pPage->isPinned==0 ); pcache1RemoveFromHash(pPage, 0); pcache1PinPage(pPage); pOther = pPage->pCache; /* We want to verify that szPage and szExtra are the same for pOther ** and pCache. Assert that we can verify this by comparing sums. */ assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 ); assert( pCache->szExtra<512 ); |
︙ | ︙ | |||
40671 40672 40673 40674 40675 40676 40677 | } } /* Step 5. If a usable page buffer has still not been found, ** attempt to allocate a new one. */ if( !pPage ){ | | | | 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 | } } /* Step 5. If a usable page buffer has still not been found, ** attempt to allocate a new one. */ if( !pPage ){ if( createFlag==1 ){ sqlite3BeginBenignMalloc(); } pPage = pcache1AllocPage(pCache); if( createFlag==1 ){ sqlite3EndBenignMalloc(); } } if( pPage ){ unsigned int h = iKey % pCache->nHash; pCache->nPage++; pPage->iKey = iKey; pPage->pNext = pCache->apHash[h]; |
︙ | ︙ | |||
40747 40748 40749 40750 40751 40752 40753 40754 | ** unnecessary pages cache entry allocations ** ** then attempt to recycle a page from the LRU list. If it is the right ** size, return the recycled buffer. Otherwise, free the buffer and ** proceed to step 5. ** ** 5. Otherwise, allocate and return a new page buffer. */ | > > > > > | < < < < < < < < | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 | ** unnecessary pages cache entry allocations ** ** then attempt to recycle a page from the LRU list. If it is the right ** size, return the recycled buffer. Otherwise, free the buffer and ** proceed to step 5. ** ** 5. Otherwise, allocate and return a new page buffer. ** ** There are two versions of this routine. pcache1FetchWithMutex() is ** the general case. pcache1FetchNoMutex() is a faster implementation for ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper ** invokes the appropriate routine. */ static PgHdr1 *pcache1FetchNoMutex( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage = 0; /* Step 1: Search the hash table for an existing entry. */ pPage = pCache->apHash[iKey % pCache->nHash]; while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } /* Step 2: Abort if no existing page is found and createFlag is 0 */ if( pPage ){ if( !pPage->isPinned ){ return pcache1PinPage(pPage); }else{ return pPage; } }else if( createFlag ){ /* Steps 3, 4, and 5 implemented by this subroutine */ return pcache1FetchStage2(pCache, iKey, createFlag); }else{ return 0; } } #if PCACHE1_MIGHT_USE_GROUP_MUTEX static PgHdr1 *pcache1FetchWithMutex( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ PCache1 *pCache = (PCache1 *)p; PgHdr1 *pPage; pcache1EnterMutex(pCache->pGroup); pPage = pcache1FetchNoMutex(p, iKey, createFlag); assert( pPage==0 || pCache->iMaxKey>=iKey ); pcache1LeaveMutex(pCache->pGroup); return pPage; } #endif static sqlite3_pcache_page *pcache1Fetch( sqlite3_pcache *p, unsigned int iKey, int createFlag ){ #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) PCache1 *pCache = (PCache1 *)p; #endif assert( offsetof(PgHdr1,page)==0 ); assert( pCache->bPurgeable || createFlag!=1 ); assert( pCache->bPurgeable || pCache->nMin==0 ); assert( pCache->bPurgeable==0 || pCache->nMin==10 ); assert( pCache->nMin==0 || pCache->bPurgeable ); assert( pCache->nHash>0 ); #if PCACHE1_MIGHT_USE_GROUP_MUTEX if( pCache->pGroup->mutex ){ return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); }else #endif { return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); } } /* ** Implementation of the sqlite3_pcache.xUnpin method. ** ** Mark a page as unpinned (eligible for asynchronous recycling). |
︙ | ︙ | |||
40806 40807 40808 40809 40810 40811 40812 | ** part of the PGroup LRU list. */ assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); assert( pPage->isPinned==1 ); if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ | | < | 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 | ** part of the PGroup LRU list. */ assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); assert( pPage->isPinned==1 ); if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ pcache1RemoveFromHash(pPage, 1); }else{ /* Add the page to the PGroup LRU list. */ if( pGroup->pLruHead ){ pGroup->pLruHead->pLruPrev = pPage; pPage->pLruNext = pGroup->pLruHead; pGroup->pLruHead = pPage; }else{ |
︙ | ︙ | |||
40961 40962 40963 40964 40965 40966 40967 | while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ nFree += pcache1MemSize(p->page.pBuf); #ifdef SQLITE_PCACHE_SEPARATE_HEADER nFree += sqlite3MemSize(p); #endif assert( p->isPinned==0 ); pcache1PinPage(p); | | < | 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 | while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ nFree += pcache1MemSize(p->page.pBuf); #ifdef SQLITE_PCACHE_SEPARATE_HEADER nFree += sqlite3MemSize(p); #endif assert( p->isPinned==0 ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } pcache1LeaveMutex(&pcache1.grp); } return nFree; } #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
︙ | ︙ | |||
42103 42104 42105 42106 42107 42108 42109 | u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* ** Bits of the Pager.doNotSpill flag. See further description below. */ | | | | | 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 | u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* ** Bits of the Pager.doNotSpill flag. See further description below. */ #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ /* ** An open page cache is an instance of struct Pager. A description of ** some of the more important member variables follows: ** ** eState ** |
︙ | ︙ | |||
42187 42188 42189 42190 42191 42192 42193 | ** writing to the database from pagerStress() is disabled altogether. ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that ** comes up during savepoint rollback that requires the pcache module ** to allocate a new page to prevent the journal file from being written ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF ** case is a user preference. ** | | | | | | | 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 | ** writing to the database from pagerStress() is disabled altogether. ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that ** comes up during savepoint rollback that requires the pcache module ** to allocate a new page to prevent the journal file from being written ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF ** case is a user preference. ** ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from ** pagerStress() is permitted, but syncing the journal file is not. ** This flag is set by sqlite3PagerWrite() when the file-system sector-size ** is larger than the database page-size in order to prevent a journal sync ** from happening in between the journalling of two pages on the same sector. ** ** subjInMemory ** ** This is a boolean variable. If true, then any required sub-journal ** is opened as an in-memory journal file. If false, then in-memory ** sub-journals are only used for in-memory pager files. ** |
︙ | ︙ | |||
42294 42295 42296 42297 42298 42299 42300 | u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setMaster; /* True if a m-j name has been written to jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 subjInMemory; /* True to use in-memory sub-journals */ u8 bUseFetch; /* True to use xFetch() */ | | | 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 | u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setMaster; /* True if a m-j name has been written to jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 subjInMemory; /* True to use in-memory sub-journals */ u8 bUseFetch; /* True to use xFetch() */ u8 hasBeenUsed; /* True if any content previously read */ Pgno dbSize; /* Number of pages in the database */ Pgno dbOrigSize; /* dbSize before the current transaction */ Pgno dbFileSize; /* Number of pages in the database file */ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ int errCode; /* One of several kinds of errors */ int nRec; /* Pages journalled since last j-header written */ u32 cksumInit; /* Quasi-random value added to every checksum */ |
︙ | ︙ | |||
42455 42456 42457 42458 42459 42460 42461 | ** ** if( isOpen(pPager->jfd) ){ ... ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ | | | 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 | ** ** if( isOpen(pPager->jfd) ){ ... ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ #define isOpen(pFd) ((pFd)->pMethods!=0) /* ** Return true if this pager uses a write-ahead log instead of the usual ** rollback journal. Otherwise false. */ #ifndef SQLITE_OMIT_WAL static int pagerUseWal(Pager *pPager){ |
︙ | ︙ | |||
42678 42679 42680 42681 42682 42683 42684 | static int subjRequiresPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; PagerSavepoint *p; Pgno pgno = pPg->pgno; int i; for(i=0; i<pPager->nSavepoint; i++){ p = &pPager->aSavepoint[i]; | | > > | 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 | static int subjRequiresPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; PagerSavepoint *p; Pgno pgno = pPg->pgno; int i; for(i=0; i<pPager->nSavepoint; i++){ p = &pPager->aSavepoint[i]; if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ return 1; } } return 0; } #ifdef SQLITE_DEBUG /* ** Return true if the page is already in the journal file. */ static int pageInJournal(Pager *pPager, PgHdr *pPg){ return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); } #endif /* ** Read a 32-bit integer from the given file descriptor. Store the integer ** that is read in *pRes. Return SQLITE_OK if everything worked, or an ** error code is something goes wrong. ** ** All values are stored on disk as big-endian. |
︙ | ︙ | |||
43302 43303 43304 43305 43306 43307 43308 | /* Write the master journal data to the end of the journal file. If ** an error occurs, return the error code to the caller. */ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) | | > | 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 | /* Write the master journal data to the end of the journal file. If ** an error occurs, return the error code to the caller. */ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8))) ){ return rc; } pPager->journalOff += (nMaster+20); /* If the pager is in peristent-journal mode, then the physical ** journal-file may extend past the end of the master-journal name |
︙ | ︙ | |||
43862 43863 43864 43865 43866 43867 43868 | rc = read32bits(jfd, (*pOffset)-4, &cksum); if( rc ) return rc; if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ return SQLITE_DONE; } } | | | 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 | rc = read32bits(jfd, (*pOffset)-4, &cksum); if( rc ) return rc; if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ return SQLITE_DONE; } } /* If this page has already been played back before during the current ** rollback, then don't bother to play it back again. */ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ return rc; } /* When playing back page 1, restore the nReserve setting |
︙ | ︙ | |||
45964 45965 45966 45967 45968 45969 45970 | } } return rc; } /* ** Append a record of the current state of page pPg to the sub-journal. | < < | 46434 46435 46436 46437 46438 46439 46440 46441 46442 46443 46444 46445 46446 46447 | } } return rc; } /* ** Append a record of the current state of page pPg to the sub-journal. ** ** If successful, set the bit corresponding to pPg->pgno in the bitvecs ** for all open savepoints before returning. ** ** This function returns SQLITE_OK if everything is successful, an IO ** error code if the attempt to write to the sub-journal fails, or ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint |
︙ | ︙ | |||
46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 | } if( rc==SQLITE_OK ){ pPager->nSubRec++; assert( pPager->nSavepoint>0 ); rc = addToSavepointBitvecs(pPager, pPg->pgno); } return rc; } /* ** This function is called by the pcache layer when it has reached some ** soft memory limit. The first argument is a pointer to a Pager object ** (cast as a void*). The pager is always 'purgeable' (not an in-memory ** database). The second argument is a reference to a page that is | > > > > > > > | 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 46498 46499 | } if( rc==SQLITE_OK ){ pPager->nSubRec++; assert( pPager->nSavepoint>0 ); rc = addToSavepointBitvecs(pPager, pPg->pgno); } return rc; } static int subjournalPageIfRequired(PgHdr *pPg){ if( subjRequiresPage(pPg) ){ return subjournalPage(pPg); }else{ return SQLITE_OK; } } /* ** This function is called by the pcache layer when it has reached some ** soft memory limit. The first argument is a pointer to a Pager object ** (cast as a void*). The pager is always 'purgeable' (not an in-memory ** database). The second argument is a reference to a page that is |
︙ | ︙ | |||
46069 46070 46071 46072 46073 46074 46075 | ){ return SQLITE_OK; } pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ | < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 46544 46545 46546 46547 46548 46549 46550 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 | ){ return SQLITE_OK; } pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ rc = subjournalPageIfRequired(pPg); if( rc==SQLITE_OK ){ rc = pagerWalFrames(pPager, pPg, 0, 0); } }else{ /* Sync the journal file if required. */ if( pPg->flags&PGHDR_NEED_SYNC || pPager->eState==PAGER_WRITER_CACHEMOD ){ rc = syncJournal(pPager, 1); } /* Write the contents of the page out to the database file. */ if( rc==SQLITE_OK ){ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); rc = pager_write_pagelist(pPager, pPg); } } |
︙ | ︙ | |||
46372 46373 46374 46375 46376 46377 46378 | ** disk and uses an in-memory rollback journal. ** ** This branch also runs for files marked as immutable. */ act_like_temp_file: tempFile = 1; pPager->eState = PAGER_READER; /* Pretend we already have a lock */ | | | | 46812 46813 46814 46815 46816 46817 46818 46819 46820 46821 46822 46823 46824 46825 46826 46827 46828 46829 46830 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840 46841 46842 46843 46844 46845 | ** disk and uses an in-memory rollback journal. ** ** This branch also runs for files marked as immutable. */ act_like_temp_file: tempFile = 1; pPager->eState = PAGER_READER; /* Pretend we already have a lock */ pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ pPager->noLock = 1; /* Do no locking */ readOnly = (vfsFlags&SQLITE_OPEN_READONLY); } /* The following call to PagerSetPagesize() serves to set the value of ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. */ if( rc==SQLITE_OK ){ assert( pPager->memDb==0 ); rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); testcase( rc!=SQLITE_OK ); } /* Initialize the PCache object. */ if( rc==SQLITE_OK ){ assert( nExtra<1000 ); nExtra = ROUND8(nExtra); rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); } /* If an error occurred above, free the Pager structure and close the file. */ if( rc!=SQLITE_OK ){ sqlite3OsClose(pPager->fd); sqlite3PageFree(pPager->pTmpSpace); |
︙ | ︙ | |||
46778 46779 46780 46781 46782 46783 46784 | if( !pPager->tempFile && pPager->hasBeenUsed ){ /* The shared-lock has just been acquired then check to ** see if the database has been modified. If the database has changed, ** flush the cache. The pPager->hasBeenUsed flag prevents this from ** occurring on the very first access to a file, in order to save a ** single unnecessary sqlite3OsRead() call at the start-up. ** | | | 47218 47219 47220 47221 47222 47223 47224 47225 47226 47227 47228 47229 47230 47231 47232 | if( !pPager->tempFile && pPager->hasBeenUsed ){ /* The shared-lock has just been acquired then check to ** see if the database has been modified. If the database has changed, ** flush the cache. The pPager->hasBeenUsed flag prevents this from ** occurring on the very first access to a file, in order to save a ** single unnecessary sqlite3OsRead() call at the start-up. ** ** Database changes are detected by looking at 15 bytes beginning ** at offset 24 into the file. The first 4 of these 16 bytes are ** a 32-bit counter that is incremented with each change. The ** other bytes change randomly with each file change when ** a codec is in use. ** ** There is a vanishingly small chance that a change will not be ** detected. The chance of an undetected change is so small that |
︙ | ︙ | |||
46986 46987 46988 46989 46990 46991 46992 | { sqlite3_pcache_page *pBase; pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); if( pBase==0 ){ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); if( rc!=SQLITE_OK ) goto pager_acquire_err; | > > > > | > | > | | | < | 47426 47427 47428 47429 47430 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 | { sqlite3_pcache_page *pBase; pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); if( pBase==0 ){ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); if( rc!=SQLITE_OK ) goto pager_acquire_err; if( pBase==0 ){ pPg = *ppPage = 0; rc = SQLITE_NOMEM; goto pager_acquire_err; } } pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); assert( pPg!=0 ); } } if( rc!=SQLITE_OK ){ /* Either the call to sqlite3PcacheFetch() returned an error or the ** pager was already in the error-state when this function was called. ** Set pPg to 0 and jump to the exception handler. */ pPg = 0; goto pager_acquire_err; } assert( pPg==(*ppPage) ); assert( pPg->pgno==pgno ); assert( pPg->pPager==pPager || pPg->pPager==0 ); if( pPg->pPager && !noContent ){ /* In this case the pcache already contains an initialized copy of ** the page. Return without further ado. */ assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); pPager->aStat[PAGER_STAT_HIT]++; return SQLITE_OK; }else{ /* The pager cache has created a new page. Its content needs to ** be initialized. */ pPg->pPager = pPager; /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page ** number greater than this, or the unused locking-page, is requested. */ if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ rc = SQLITE_CORRUPT_BKPT; goto pager_acquire_err; |
︙ | ︙ | |||
47092 47093 47094 47095 47096 47097 47098 47099 47100 47101 47102 47103 47104 47105 | SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ sqlite3_pcache_page *pPage; assert( pPager!=0 ); assert( pgno!=0 ); assert( pPager->pPCache!=0 ); pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); assert( pPage==0 || pPager->hasBeenUsed ); return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); } /* ** Release a page reference. ** ** If the number of references to the page drop to zero, then the | > | 47537 47538 47539 47540 47541 47542 47543 47544 47545 47546 47547 47548 47549 47550 47551 | SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ sqlite3_pcache_page *pPage; assert( pPager!=0 ); assert( pgno!=0 ); assert( pPager->pPCache!=0 ); pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); assert( pPage==0 || pPager->hasBeenUsed ); if( pPage==0 ) return 0; return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); } /* ** Release a page reference. ** ** If the number of references to the page drop to zero, then the |
︙ | ︙ | |||
47294 47295 47296 47297 47298 47299 47300 47301 47302 47303 47304 47305 47306 47307 47308 47309 47310 47311 | assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); } PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); return rc; } /* ** Mark a single data page as writeable. The page is written into the ** main journal or sub-journal as required. If the page is written into ** one of the journals, the corresponding bit is set in the ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs ** of any open savepoints as appropriate. */ static int pager_write(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc = SQLITE_OK; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < | < < < < < < | < < < < < < < < < < | < < < < | < < < | < < < < < < | < | < < < < < < < < < < < < < < < < | | < > | | > | < | | | | | | | | | | | | > > > > > > > | | < < | | | | | < | < | | | | | | | | | | 47740 47741 47742 47743 47744 47745 47746 47747 47748 47749 47750 47751 47752 47753 47754 47755 47756 47757 47758 47759 47760 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910 47911 47912 47913 47914 | assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); } PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); return rc; } /* ** Write page pPg onto the end of the rollback journal. */ static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc; u32 cksum; char *pData2; i64 iOff = pPager->journalOff; /* We should never write to the journal file the page that ** contains the database locks. The following assert verifies ** that we do not. */ assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); assert( pPager->journalHdr<=pPager->journalOff ); CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); cksum = pager_cksum(pPager, (u8*)pData2); /* Even if an IO or diskfull error occurs while journalling the ** page in the block above, set the need-sync flag for the page. ** Otherwise, when the transaction is rolled back, the logic in ** playback_one_page() will think that the page needs to be restored ** in the database file. And if an IO error occurs while doing so, ** then corruption may follow. */ pPg->flags |= PGHDR_NEED_SYNC; rc = write32bits(pPager->jfd, iOff, pPg->pgno); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); if( rc!=SQLITE_OK ) return rc; rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); if( rc!=SQLITE_OK ) return rc; IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, pPager->journalOff, pPager->pageSize)); PAGER_INCR(sqlite3_pager_writej_count); PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); pPager->journalOff += 8 + pPager->pageSize; pPager->nRec++; assert( pPager->pInJournal!=0 ); rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); testcase( rc==SQLITE_NOMEM ); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); rc |= addToSavepointBitvecs(pPager, pPg->pgno); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); return rc; } /* ** Mark a single data page as writeable. The page is written into the ** main journal or sub-journal as required. If the page is written into ** one of the journals, the corresponding bit is set in the ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs ** of any open savepoints as appropriate. */ static int pager_write(PgHdr *pPg){ Pager *pPager = pPg->pPager; int rc = SQLITE_OK; /* This routine is not called unless a write-transaction has already ** been started. The journal file may or may not be open at this point. ** It is never called in the ERROR state. */ assert( pPager->eState==PAGER_WRITER_LOCKED || pPager->eState==PAGER_WRITER_CACHEMOD || pPager->eState==PAGER_WRITER_DBMOD ); assert( assert_pager_state(pPager) ); assert( pPager->errCode==0 ); assert( pPager->readOnly==0 ); CHECK_PAGE(pPg); /* The journal file needs to be opened. Higher level routines have already ** obtained the necessary locks to begin the write-transaction, but the ** rollback journal might not yet be open. Open it now if this is the case. ** ** This is done before calling sqlite3PcacheMakeDirty() on the page. ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then ** an error might occur and the pager would end up in WRITER_LOCKED state ** with pages marked as dirty in the cache. */ if( pPager->eState==PAGER_WRITER_LOCKED ){ rc = pager_open_journal(pPager); if( rc!=SQLITE_OK ) return rc; } assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); assert( assert_pager_state(pPager) ); /* Mark the page that is about to be modified as dirty. */ sqlite3PcacheMakeDirty(pPg); /* If a rollback journal is in use, them make sure the page that is about ** to change is in the rollback journal, or if the page is a new page off ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. */ assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); if( pPager->pInJournal!=0 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 ){ assert( pagerUseWal(pPager)==0 ); if( pPg->pgno<=pPager->dbOrigSize ){ rc = pagerAddPageToRollbackJournal(pPg); if( rc!=SQLITE_OK ){ return rc; } }else{ if( pPager->eState!=PAGER_WRITER_DBMOD ){ pPg->flags |= PGHDR_NEED_SYNC; } PAGERTRACE(("APPEND %d page %d needSync=%d\n", PAGERID(pPager), pPg->pgno, ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); } } /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list ** and before writing the page into the rollback journal. Wait until now, ** after the page has been successfully journalled, before setting the ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. */ pPg->flags |= PGHDR_WRITEABLE; /* If the statement journal is open and the page is not in it, ** then write the page into the statement journal. */ if( pPager->nSavepoint>0 ){ rc = subjournalPageIfRequired(pPg); } /* Update the database size and return. */ if( pPager->dbSize<pPg->pgno ){ pPager->dbSize = pPg->pgno; } return rc; } /* ** This is a variant of sqlite3PagerWrite() that runs when the sector size ** is larger than the page size. SQLite makes the (reasonable) assumption that ** all bytes of a sector are written together by hardware. Hence, all bytes of ** a sector need to be journalled in case of a power loss in the middle of ** a write. ** ** Usually, the sector size is less than or equal to the page size, in which ** case pages can be individually written. This routine only runs in the ** exceptional case where the page size is smaller than the sector size. */ static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ int rc = SQLITE_OK; /* Return code */ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage = 0; /* Number of pages starting at pg1 to journal */ int ii; /* Loop counter */ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ Pager *pPager = pPg->pPager; /* The pager that owns pPg */ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow ** a journal header to be written between the pages journaled by ** this function. */ assert( !MEMDB ); |
︙ | ︙ | |||
47534 47535 47536 47537 47538 47539 47540 47541 | ** fit on a single disk sector. In this case all co-resident pages ** must have been written to the journal file before returning. ** ** If an error occurs, SQLITE_NOMEM or an IO error code is returned ** as appropriate. Otherwise, SQLITE_OK. */ SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){ assert( (pPg->flags & PGHDR_MMAP)==0 ); | > | | | > > > | | | 47988 47989 47990 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000 48001 48002 48003 48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 | ** fit on a single disk sector. In this case all co-resident pages ** must have been written to the journal file before returning. ** ** If an error occurs, SQLITE_NOMEM or an IO error code is returned ** as appropriate. Otherwise, SQLITE_OK. */ SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( (pPg->flags & PGHDR_MMAP)==0 ); assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( pPager->eState!=PAGER_ERROR ); assert( assert_pager_state(pPager) ); if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); return SQLITE_OK; }else if( pPager->sectorSize > (u32)pPager->pageSize ){ return pagerWriteLargeSector(pPg); }else{ return pager_write(pPg); } } /* ** Return TRUE if the page given in the argument was previously passed ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok ** to change the content of the page. */ #ifndef NDEBUG SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){ return pPg->flags & PGHDR_WRITEABLE; } #endif /* ** A call to this routine tells the pager that it is not necessary to ** write the information on page pPg back to the disk, even though ** that page might be marked as dirty. This happens, for example, when |
︙ | ︙ | |||
47576 47577 47578 47579 47580 47581 47582 47583 47584 47585 47586 47587 47588 47589 | */ SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) pPg->flags |= PGHDR_DONT_WRITE; pager_set_pagehash(pPg); } } /* ** This routine is called to increment the value of the database file ** change-counter, stored as a 4-byte big-endian integer starting at | > | 48034 48035 48036 48037 48038 48039 48040 48041 48042 48043 48044 48045 48046 48047 48048 | */ SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){ Pager *pPager = pPg->pPager; if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) pPg->flags |= PGHDR_DONT_WRITE; pPg->flags &= ~PGHDR_WRITEABLE; pager_set_pagehash(pPg); } } /* ** This routine is called to increment the value of the database file ** change-counter, stored as a 4-byte big-endian integer starting at |
︙ | ︙ | |||
48130 48131 48132 48133 48134 48135 48136 | ** to make up the difference. If the number of savepoints is already ** equal to nSavepoint, then this function is a no-op. ** ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error ** occurs while opening the sub-journal file, then an IO error code is ** returned. Otherwise, SQLITE_OK. */ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | < < < < < < < < < < < < < < < < < < | < < < < < | | < < | < | < < < < < < | 48589 48590 48591 48592 48593 48594 48595 48596 48597 48598 48599 48600 48601 48602 48603 48604 48605 48606 48607 48608 48609 48610 48611 48612 48613 48614 48615 48616 48617 48618 48619 48620 48621 48622 48623 48624 48625 48626 48627 48628 48629 48630 48631 48632 48633 48634 48635 48636 48637 48638 48639 48640 48641 48642 48643 48644 48645 48646 48647 48648 48649 48650 48651 48652 48653 48654 48655 48656 48657 48658 | ** to make up the difference. If the number of savepoints is already ** equal to nSavepoint, then this function is a no-op. ** ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error ** occurs while opening the sub-journal file, then an IO error code is ** returned. Otherwise, SQLITE_OK. */ static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ int rc = SQLITE_OK; /* Return code */ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ int ii; /* Iterator variable */ PagerSavepoint *aNew; /* New Pager.aSavepoint array */ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); assert( nSavepoint>nCurrent && pPager->useJournal ); /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM ** if the allocation fails. Otherwise, zero the new portion in case a ** malloc failure occurs while populating it in the for(...) loop below. */ aNew = (PagerSavepoint *)sqlite3Realloc( pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint ); if( !aNew ){ return SQLITE_NOMEM; } memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); pPager->aSavepoint = aNew; /* Populate the PagerSavepoint structures just allocated. */ for(ii=nCurrent; ii<nSavepoint; ii++){ aNew[ii].nOrig = pPager->dbSize; if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ aNew[ii].iOffset = pPager->journalOff; }else{ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); } aNew[ii].iSubRec = pPager->nSubRec; aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); if( !aNew[ii].pInSavepoint ){ return SQLITE_NOMEM; } if( pagerUseWal(pPager) ){ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); } pPager->nSavepoint = ii+1; } assert( pPager->nSavepoint==nSavepoint ); assertTruncateConstraint(pPager); return rc; } SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ assert( pPager->eState>=PAGER_WRITER_LOCKED ); assert( assert_pager_state(pPager) ); if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ return pagerOpenSavepoint(pPager, nSavepoint); }else{ return SQLITE_OK; } } /* ** This function is called to rollback or release (commit) a savepoint. ** The savepoint to release or rollback need not be the most recently ** created savepoint. ** ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. |
︙ | ︙ | |||
48408 48409 48410 48411 48412 48413 48414 | ** be possible to restore its contents when the "ROLLBACK TO one" ** statement were is processed. ** ** subjournalPage() may need to allocate space to store pPg->pgno into ** one or more savepoint bitvecs. This is the reason this function ** may return SQLITE_NOMEM. */ | | < | | 48875 48876 48877 48878 48879 48880 48881 48882 48883 48884 48885 48886 48887 48888 48889 48890 | ** be possible to restore its contents when the "ROLLBACK TO one" ** statement were is processed. ** ** subjournalPage() may need to allocate space to store pPg->pgno into ** one or more savepoint bitvecs. This is the reason this function ** may return SQLITE_NOMEM. */ if( (pPg->flags & PGHDR_DIRTY)!=0 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) ){ return rc; } PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) |
︙ | ︙ | |||
52328 52329 52330 52331 52332 52333 52334 52335 52336 52337 52338 52339 52340 52341 | ** small cells will be rare, but they are possible. */ #define MX_CELL(pBt) ((pBt->pageSize-8)/6) /* Forward declarations */ typedef struct MemPage MemPage; typedef struct BtLock BtLock; /* ** This is a magic string that appears at the beginning of every ** SQLite database in order to identify the file as a real database. ** ** You can change this value at compile-time by specifying a ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The | > | 52794 52795 52796 52797 52798 52799 52800 52801 52802 52803 52804 52805 52806 52807 52808 | ** small cells will be rare, but they are possible. */ #define MX_CELL(pBt) ((pBt->pageSize-8)/6) /* Forward declarations */ typedef struct MemPage MemPage; typedef struct BtLock BtLock; typedef struct CellInfo CellInfo; /* ** This is a magic string that appears at the beginning of every ** SQLite database in order to identify the file as a real database. ** ** You can change this value at compile-time by specifying a ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The |
︙ | ︙ | |||
52391 52392 52393 52394 52395 52396 52397 52398 52399 52400 52401 52402 52403 52404 52405 | u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th ** non-overflow cell */ u8 *apOvfl[5]; /* Pointers to the body of overflow cells */ BtShared *pBt; /* Pointer to BtShared that this page is part of */ u8 *aData; /* Pointer to disk image of the page data */ u8 *aDataEnd; /* One byte past the end of usable data */ u8 *aCellIdx; /* The cell index area */ DbPage *pDbPage; /* Pager page handle */ Pgno pgno; /* Page number for this page */ }; /* ** The in-memory image of a disk page has the auxiliary information appended ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold ** that extra information. | > > > | 52858 52859 52860 52861 52862 52863 52864 52865 52866 52867 52868 52869 52870 52871 52872 52873 52874 52875 | u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th ** non-overflow cell */ u8 *apOvfl[5]; /* Pointers to the body of overflow cells */ BtShared *pBt; /* Pointer to BtShared that this page is part of */ u8 *aData; /* Pointer to disk image of the page data */ u8 *aDataEnd; /* One byte past the end of usable data */ u8 *aCellIdx; /* The cell index area */ u8 *aDataOfst; /* Same as aData for leaves. aData+4 for interior */ DbPage *pDbPage; /* Pager page handle */ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */ Pgno pgno; /* Page number for this page */ }; /* ** The in-memory image of a disk page has the auxiliary information appended ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold ** that extra information. |
︙ | ︙ | |||
52447 52448 52449 52450 52451 52452 52453 52454 52455 52456 52457 52458 52459 52460 | */ struct Btree { sqlite3 *db; /* The database connection holding this btree */ BtShared *pBt; /* Sharable content of this btree */ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ u8 sharable; /* True if we can share pBt with another db */ u8 locked; /* True if db currently has pBt locked */ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ int nBackup; /* Number of backup operations reading this btree */ u32 iDataVersion; /* Combines with pBt->pPager->iDataVersion */ Btree *pNext; /* List of other sharable Btrees from the same db */ Btree *pPrev; /* Back pointer of the same list */ #ifndef SQLITE_OMIT_SHARED_CACHE BtLock lock; /* Object used to lock page 1 */ | > | 52917 52918 52919 52920 52921 52922 52923 52924 52925 52926 52927 52928 52929 52930 52931 | */ struct Btree { sqlite3 *db; /* The database connection holding this btree */ BtShared *pBt; /* Sharable content of this btree */ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ u8 sharable; /* True if we can share pBt with another db */ u8 locked; /* True if db currently has pBt locked */ u8 hasIncrblobCur; /* True if there are one or more Incrblob cursors */ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ int nBackup; /* Number of backup operations reading this btree */ u32 iDataVersion; /* Combines with pBt->pPager->iDataVersion */ Btree *pNext; /* List of other sharable Btrees from the same db */ Btree *pPrev; /* Back pointer of the same list */ #ifndef SQLITE_OMIT_SHARED_CACHE BtLock lock; /* Object used to lock page 1 */ |
︙ | ︙ | |||
52557 52558 52559 52560 52561 52562 52563 | #define BTS_PENDING 0x0040 /* Waiting for read-locks to clear */ /* ** An instance of the following structure is used to hold information ** about a cell. The parseCellPtr() function fills in this structure ** based on information extract from the raw disk page. */ | < | 53028 53029 53030 53031 53032 53033 53034 53035 53036 53037 53038 53039 53040 53041 | #define BTS_PENDING 0x0040 /* Waiting for read-locks to clear */ /* ** An instance of the following structure is used to hold information ** about a cell. The parseCellPtr() function fills in this structure ** based on information extract from the raw disk page. */ struct CellInfo { i64 nKey; /* The key for INTKEY tables, or nPayload otherwise */ u8 *pPayload; /* Pointer to the start of payload */ u32 nPayload; /* Bytes of payload */ u16 nLocal; /* Amount of payload held locally, not on overflow */ u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ u16 nSize; /* Size of the cell content on the main b-tree page */ |
︙ | ︙ | |||
52600 52601 52602 52603 52604 52605 52606 | ** eState==SKIPNEXT && skipNext>0: Next sqlite3BtreeNext() is no-op. ** eState==SKIPNEXT && skipNext<0: Next sqlite3BtreePrevious() is no-op. ** eState==FAULT: Cursor fault with skipNext as error code. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtShared *pBt; /* The BtShared this cursor points to */ | | < > | > > > | > > > > | 53070 53071 53072 53073 53074 53075 53076 53077 53078 53079 53080 53081 53082 53083 53084 53085 53086 53087 53088 53089 53090 53091 53092 53093 53094 53095 53096 53097 53098 53099 53100 53101 53102 53103 53104 53105 53106 53107 53108 53109 53110 53111 53112 53113 53114 53115 53116 | ** eState==SKIPNEXT && skipNext>0: Next sqlite3BtreeNext() is no-op. ** eState==SKIPNEXT && skipNext<0: Next sqlite3BtreePrevious() is no-op. ** eState==FAULT: Cursor fault with skipNext as error code. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext; /* Forms a linked list of all cursors */ Pgno *aOverflow; /* Cache of overflow page locations */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ void *pKey; /* Saved key that was cursor last known position */ Pgno pgnoRoot; /* The root page of this tree */ int nOvflAlloc; /* Allocated size of aOverflow[] array */ int skipNext; /* Prev() is noop if negative. Next() is noop if positive. ** Error code if eState==CURSOR_FAULT */ u8 curFlags; /* zero or more BTCF_* flags defined below */ u8 curPagerFlags; /* Flags to send to sqlite3PagerAcquire() */ u8 eState; /* One of the CURSOR_XXX constants (see below) */ u8 hints; /* As configured by CursorSetHints() */ /* All fields above are zeroed when the cursor is allocated. See ** sqlite3BtreeCursorZero(). Fields that follow must be manually ** initialized. */ i8 iPage; /* Index of current page in apPage */ u8 curIntKey; /* Value of apPage[0]->intKey */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ void *padding1; /* Make object size a multiple of 16 */ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ }; /* ** Legal values for BtCursor.curFlags */ #define BTCF_WriteFlag 0x01 /* True if a write cursor */ #define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ #define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */ #define BTCF_AtLast 0x08 /* Cursor is pointing ot the last entry */ #define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */ #define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */ /* ** Potential values for BtCursor.eState. ** ** CURSOR_INVALID: ** Cursor does not point to a valid entry. This can happen (for example) ** because the table is empty or because BtreeCursorFirst() has not been |
︙ | ︙ | |||
52778 52779 52780 52781 52782 52783 52784 52785 52786 52787 52788 52789 52790 52791 | ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte /************** End of btreeInt.h ********************************************/ /************** Continuing where we left off in btmutex.c ********************/ #ifndef SQLITE_OMIT_SHARED_CACHE #if SQLITE_THREADSAFE /* ** Obtain the BtShared mutex associated with B-Tree handle p. Also, | > > > > > > > > > > > > > | 53255 53256 53257 53258 53259 53260 53261 53262 53263 53264 53265 53266 53267 53268 53269 53270 53271 53272 53273 53274 53275 53276 53277 53278 53279 53280 53281 | ** Routines to read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte /* ** get2byteAligned(), unlike get2byte(), requires that its argument point to a ** two-byte aligned address. get2bytea() is only used for accessing the ** cell addresses in a btree header. */ #if SQLITE_BYTEORDER==4321 # define get2byteAligned(x) (*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000 # define get2byteAligned(x) __builtin_bswap16(*(u16*)(x)) #else # define get2byteAligned(x) ((x)[0]<<8 | (x)[1]) #endif /************** End of btreeInt.h ********************************************/ /************** Continuing where we left off in btmutex.c ********************/ #ifndef SQLITE_OMIT_SHARED_CACHE #if SQLITE_THREADSAFE /* ** Obtain the BtShared mutex associated with B-Tree handle p. Also, |
︙ | ︙ | |||
53557 53558 53559 53560 53561 53562 53563 | */ static void invalidateIncrblobCursors( Btree *pBtree, /* The database file to check */ i64 iRow, /* The rowid that might be changing */ int isClearTable /* True if all rows are being deleted */ ){ BtCursor *p; | | > | | > | < | > | 54047 54048 54049 54050 54051 54052 54053 54054 54055 54056 54057 54058 54059 54060 54061 54062 54063 54064 54065 54066 54067 54068 54069 | */ static void invalidateIncrblobCursors( Btree *pBtree, /* The database file to check */ i64 iRow, /* The rowid that might be changing */ int isClearTable /* True if all rows are being deleted */ ){ BtCursor *p; if( pBtree->hasIncrblobCur==0 ) return; assert( sqlite3BtreeHoldsMutex(pBtree) ); pBtree->hasIncrblobCur = 0; for(p=pBtree->pBt->pCursor; p; p=p->pNext){ if( (p->curFlags & BTCF_Incrblob)!=0 ){ pBtree->hasIncrblobCur = 1; if( isClearTable || p->info.nKey==iRow ){ p->eState = CURSOR_INVALID; } } } } #else /* Stub function when INCRBLOB is omitted */ #define invalidateIncrblobCursors(x,y,z) |
︙ | ︙ | |||
53685 53686 53687 53688 53689 53690 53691 | /* If this is an intKey table, then the above call to BtreeKeySize() ** stores the integer key in pCur->nKey. In this case this value is ** all that is required. Otherwise, if pCur is not open on an intKey ** table, then malloc space for and store the pCur->nKey bytes of key ** data. */ | | | > > > > > > > > > | > > | 54177 54178 54179 54180 54181 54182 54183 54184 54185 54186 54187 54188 54189 54190 54191 54192 54193 54194 54195 54196 54197 54198 54199 54200 54201 54202 54203 54204 54205 54206 54207 54208 54209 54210 54211 54212 54213 54214 54215 54216 54217 54218 54219 54220 54221 54222 54223 54224 54225 54226 54227 54228 54229 54230 54231 54232 54233 54234 54235 54236 54237 54238 54239 54240 54241 54242 54243 54244 54245 54246 54247 54248 | /* If this is an intKey table, then the above call to BtreeKeySize() ** stores the integer key in pCur->nKey. In this case this value is ** all that is required. Otherwise, if pCur is not open on an intKey ** table, then malloc space for and store the pCur->nKey bytes of key ** data. */ if( 0==pCur->curIntKey ){ void *pKey = sqlite3Malloc( pCur->nKey ); if( pKey ){ rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); if( rc==SQLITE_OK ){ pCur->pKey = pKey; }else{ sqlite3_free(pKey); } }else{ rc = SQLITE_NOMEM; } } assert( !pCur->curIntKey || !pCur->pKey ); if( rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } invalidateOverflowCache(pCur); return rc; } /* Forward reference */ static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); /* ** Save the positions of all cursors (except pExcept) that are open on ** the table with root-page iRoot. "Saving the cursor position" means that ** the location in the btree is remembered in such a way that it can be ** moved back to the same spot after the btree has been modified. This ** routine is called just before cursor pExcept is used to modify the ** table, for example in BtreeDelete() or BtreeInsert(). ** ** If there are two or more cursors on the same btree, then all such ** cursors should have their BTCF_Multiple flag set. The btreeCursor() ** routine enforces that rule. This routine only needs to be called in ** the uncommon case when pExpect has the BTCF_Multiple flag set. ** ** If pExpect!=NULL and if no other cursors are found on the same root-page, ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another ** pointless call to this routine. ** ** Implementation note: This routine merely checks to see if any cursors ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) ** event that cursors are in need to being saved. */ static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ BtCursor *p; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pExcept==0 || pExcept->pBt==pBt ); for(p=pBt->pCursor; p; p=p->pNext){ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; } if( p ) return saveCursorsOnList(p, iRoot, pExcept); if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; return SQLITE_OK; } /* This helper routine to saveAllCursors does the actual work of saving ** the cursors if and when a cursor is found that actually requires saving. ** The common case is that no cursors need to be saved, so this routine is ** broken out from its caller to avoid unnecessary stack pointer movement. */ |
︙ | ︙ | |||
54018 54019 54020 54021 54022 54023 54024 54025 54026 54027 54028 | #define ptrmapPutOvflPtr(x, y, rc) #endif /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** This routine works only for pages that do not contain overflow cells. */ #define findCell(P,I) \ | > > > | | > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > | > > > > > > > > > > > > > > | | > > | < | < < | < | < < > > > > | < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < < | | < | < < | < < | | > | > > > < < < < < < < < < < < < | < < < < < < < < < < < < | > > > > > > | | < < < < < | | 54521 54522 54523 54524 54525 54526 54527 54528 54529 54530 54531 54532 54533 54534 54535 54536 54537 54538 54539 54540 54541 54542 54543 54544 54545 54546 54547 54548 54549 54550 54551 54552 54553 54554 54555 54556 54557 54558 54559 54560 54561 54562 54563 54564 54565 54566 54567 54568 54569 54570 54571 54572 54573 54574 54575 54576 54577 54578 54579 54580 54581 54582 54583 54584 54585 54586 54587 54588 54589 54590 54591 54592 54593 54594 54595 54596 54597 54598 54599 54600 54601 54602 54603 54604 54605 54606 54607 54608 54609 54610 54611 54612 54613 54614 54615 54616 54617 54618 54619 54620 54621 54622 54623 54624 54625 54626 54627 54628 54629 54630 54631 54632 54633 54634 54635 54636 54637 54638 54639 54640 54641 54642 54643 54644 54645 54646 54647 54648 54649 54650 54651 54652 54653 54654 54655 54656 54657 54658 54659 54660 54661 54662 54663 54664 54665 54666 54667 54668 54669 54670 54671 54672 54673 54674 54675 54676 54677 54678 54679 54680 54681 54682 54683 54684 54685 54686 54687 54688 54689 54690 54691 54692 54693 54694 54695 54696 54697 54698 54699 54700 54701 54702 54703 54704 54705 54706 54707 54708 54709 54710 54711 54712 54713 54714 54715 54716 54717 54718 54719 54720 54721 54722 54723 54724 54725 54726 54727 54728 54729 54730 54731 54732 54733 54734 54735 54736 54737 54738 54739 54740 54741 54742 54743 54744 54745 54746 54747 54748 54749 54750 54751 54752 54753 54754 54755 54756 54757 54758 54759 54760 54761 54762 | #define ptrmapPutOvflPtr(x, y, rc) #endif /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** findCellPastPtr() does the same except it skips past the initial ** 4-byte child pointer found on interior pages, if there is one. ** ** This routine works only for pages that do not contain overflow cells. */ #define findCell(P,I) \ ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) #define findCellPastPtr(P,I) \ ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) /* ** This is common tail processing for btreeParseCellPtr() and ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely ** on a single B-tree page. Make necessary adjustments to the CellInfo ** structure. */ static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ /* If the payload will not fit completely on the local page, we have ** to decide how much to store locally and how much to spill onto ** overflow pages. The strategy is to minimize the amount of unused ** space on overflow pages while keeping the amount of local storage ** in between minLocal and maxLocal. ** ** Warning: changing the way overflow payload is distributed in any ** way will result in an incompatible file format. */ int minLocal; /* Minimum amount of payload held locally */ int maxLocal; /* Maximum amount of payload held locally */ int surplus; /* Overflow payload available for local storage */ minLocal = pPage->minLocal; maxLocal = pPage->maxLocal; surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); testcase( surplus==maxLocal ); testcase( surplus==maxLocal+1 ); if( surplus <= maxLocal ){ pInfo->nLocal = (u16)surplus; }else{ pInfo->nLocal = (u16)minLocal; } pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell); pInfo->nSize = pInfo->iOverflow + 4; } /* ** The following routines are implementations of the MemPage.xParseCell() ** method. ** ** Parse a cell content block and fill in the CellInfo structure. ** ** btreeParseCellPtr() => table btree leaf nodes ** btreeParseCellNoPayload() => table btree internal nodes ** btreeParseCellPtrIndex() => index btree nodes ** ** There is also a wrapper function btreeParseCell() that works for ** all MemPage types and that references the cell by index rather than ** by pointer. */ static void btreeParseCellPtrNoPayload( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 ); assert( pPage->noPayload ); assert( pPage->childPtrSize==4 ); pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); pInfo->nPayload = 0; pInfo->nLocal = 0; pInfo->iOverflow = 0; pInfo->pPayload = 0; return; } static void btreeParseCellPtr( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ u8 *pIter; /* For scanning through pCell */ u32 nPayload; /* Number of bytes of cell payload */ u64 iKey; /* Extracted Key value */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 || pPage->leaf==1 ); assert( pPage->intKeyLeaf || pPage->noPayload ); assert( pPage->noPayload==0 ); assert( pPage->intKeyLeaf ); assert( pPage->childPtrSize==0 ); pIter = pCell; /* The next block of code is equivalent to: ** ** pIter += getVarint32(pIter, nPayload); ** ** The code is inlined to avoid a function call. */ nPayload = *pIter; if( nPayload>=0x80 ){ u8 *pEnd = &pIter[8]; nPayload &= 0x7f; do{ nPayload = (nPayload<<7) | (*++pIter & 0x7f); }while( (*pIter)>=0x80 && pIter<pEnd ); } pIter++; /* The next block of code is equivalent to: ** ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); ** ** The code is inlined to avoid a function call. */ iKey = *pIter; if( iKey>=0x80 ){ u8 *pEnd = &pIter[7]; iKey &= 0x7f; while(1){ iKey = (iKey<<7) | (*++pIter & 0x7f); if( (*pIter)<0x80 ) break; if( pIter>=pEnd ){ iKey = (iKey<<8) | *++pIter; break; } } } pIter++; pInfo->nKey = *(i64*)&iKey; pInfo->nPayload = nPayload; pInfo->pPayload = pIter; testcase( nPayload==pPage->maxLocal ); testcase( nPayload==pPage->maxLocal+1 ); if( nPayload<=pPage->maxLocal ){ /* This is the (easy) common case where the entire payload fits ** on the local page. No overflow is required. */ pInfo->nSize = nPayload + (u16)(pIter - pCell); if( pInfo->nSize<4 ) pInfo->nSize = 4; pInfo->nLocal = (u16)nPayload; pInfo->iOverflow = 0; }else{ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); } } static void btreeParseCellPtrIndex( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ u8 *pIter; /* For scanning through pCell */ u32 nPayload; /* Number of bytes of cell payload */ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->leaf==0 || pPage->leaf==1 ); assert( pPage->intKeyLeaf==0 ); assert( pPage->noPayload==0 ); pIter = pCell + pPage->childPtrSize; nPayload = *pIter; if( nPayload>=0x80 ){ u8 *pEnd = &pIter[8]; nPayload &= 0x7f; do{ nPayload = (nPayload<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pIter<pEnd ); } pIter++; pInfo->nKey = nPayload; pInfo->nPayload = nPayload; pInfo->pPayload = pIter; testcase( nPayload==pPage->maxLocal ); testcase( nPayload==pPage->maxLocal+1 ); if( nPayload<=pPage->maxLocal ){ /* This is the (easy) common case where the entire payload fits ** on the local page. No overflow is required. */ pInfo->nSize = nPayload + (u16)(pIter - pCell); if( pInfo->nSize<4 ) pInfo->nSize = 4; pInfo->nLocal = (u16)nPayload; pInfo->iOverflow = 0; }else{ btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); } } static void btreeParseCell( MemPage *pPage, /* Page containing the cell */ int iCell, /* The cell index. First cell is 0 */ CellInfo *pInfo /* Fill in this structure */ ){ pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); } /* ** The following routines are implementations of the MemPage.xCellSize ** method. ** ** Compute the total number of bytes that a Cell needs in the cell ** data area of the btree-page. The return number includes the cell ** data header and the local payload, but not any overflow page or ** the space used by the cell pointer. ** ** cellSizePtrNoPayload() => table internal nodes ** cellSizePtr() => all index nodes & table leaf nodes */ static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ u32 nSize; /* Size value to return */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #endif assert( pPage->noPayload==0 ); nSize = *pIter; if( nSize>=0x80 ){ pEnd = &pIter[8]; nSize &= 0x7f; do{ nSize = (nSize<<7) | (*++pIter & 0x7f); }while( *(pIter)>=0x80 && pIter<pEnd ); } pIter++; if( pPage->intKey ){ |
︙ | ︙ | |||
54187 54188 54189 54190 54191 54192 54193 54194 54195 54196 54197 54198 | nSize = minLocal; } nSize += 4 + (u16)(pIter - pCell); } assert( nSize==debuginfo.nSize || CORRUPT_DB ); return (u16)nSize; } #ifdef SQLITE_DEBUG /* This variation on cellSizePtr() is used inside of assert() statements ** only. */ static u16 cellSize(MemPage *pPage, int iCell){ | > > > > > > > > > > > > > > > > > > > > | | | 54780 54781 54782 54783 54784 54785 54786 54787 54788 54789 54790 54791 54792 54793 54794 54795 54796 54797 54798 54799 54800 54801 54802 54803 54804 54805 54806 54807 54808 54809 54810 54811 54812 54813 54814 54815 54816 54817 54818 54819 54820 54821 54822 54823 54824 54825 54826 54827 54828 54829 54830 54831 54832 54833 | nSize = minLocal; } nSize += 4 + (u16)(pIter - pCell); } assert( nSize==debuginfo.nSize || CORRUPT_DB ); return (u16)nSize; } static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; pPage->xParseCell(pPage, pCell, &debuginfo); #endif assert( pPage->childPtrSize==4 ); pEnd = pIter + 9; while( (*pIter++)&0x80 && pIter<pEnd ); assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); return (u16)(pIter - pCell); } #ifdef SQLITE_DEBUG /* This variation on cellSizePtr() is used inside of assert() statements ** only. */ static u16 cellSize(MemPage *pPage, int iCell){ return pPage->xCellSize(pPage, findCell(pPage, iCell)); } #endif #ifndef SQLITE_OMIT_AUTOVACUUM /* ** If the cell pCell, part of page pPage contains a pointer ** to an overflow page, insert an entry into the pointer-map ** for the overflow page. */ static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ CellInfo info; if( *pRC ) return; assert( pCell!=0 ); pPage->xParseCell(pPage, pCell, &info); if( info.iOverflow ){ Pgno ovfl = get4byte(&pCell[info.iOverflow]); ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); } } #endif |
︙ | ︙ | |||
54270 54271 54272 54273 54274 54275 54276 | /* These conditions have already been verified in btreeInitPage() ** if PRAGMA cell_size_check=ON. */ if( pc<iCellFirst || pc>iCellLast ){ return SQLITE_CORRUPT_BKPT; } assert( pc>=iCellFirst && pc<=iCellLast ); | | | 54883 54884 54885 54886 54887 54888 54889 54890 54891 54892 54893 54894 54895 54896 54897 | /* These conditions have already been verified in btreeInitPage() ** if PRAGMA cell_size_check=ON. */ if( pc<iCellFirst || pc>iCellLast ){ return SQLITE_CORRUPT_BKPT; } assert( pc>=iCellFirst && pc<=iCellLast ); size = pPage->xCellSize(pPage, &src[pc]); cbrk -= size; if( cbrk<iCellFirst || pc+size>usableSize ){ return SQLITE_CORRUPT_BKPT; } assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); testcase( cbrk+size==usableSize ); testcase( pc+size==usableSize ); |
︙ | ︙ | |||
54312 54313 54314 54315 54316 54317 54318 | ** from the free-list. ** ** If no suitable space can be found on the free-list, return NULL. ** ** This function may detect corruption within pPg. If corruption is ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. ** | | > | < | | > | < > > < | > > > | | < < | < < < > > | | 54925 54926 54927 54928 54929 54930 54931 54932 54933 54934 54935 54936 54937 54938 54939 54940 54941 54942 54943 54944 54945 54946 54947 54948 54949 54950 54951 54952 54953 54954 54955 54956 54957 54958 54959 54960 54961 54962 54963 54964 54965 54966 54967 54968 54969 54970 54971 54972 54973 54974 54975 54976 54977 54978 54979 54980 54981 54982 54983 54984 54985 54986 54987 54988 | ** from the free-list. ** ** If no suitable space can be found on the free-list, return NULL. ** ** This function may detect corruption within pPg. If corruption is ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. ** ** Slots on the free list that are between 1 and 3 bytes larger than nByte ** will be ignored if adding the extra space to the fragmentation count ** causes the fragmentation count to exceed 60. */ static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ const int hdr = pPg->hdrOffset; u8 * const aData = pPg->aData; int iAddr = hdr + 1; int pc = get2byte(&aData[iAddr]); int x; int usableSize = pPg->pBt->usableSize; assert( pc>0 ); do{ int size; /* Size of the free slot */ /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of ** increasing offset. */ if( pc>usableSize-4 || pc<iAddr+4 ){ *pRc = SQLITE_CORRUPT_BKPT; return 0; } /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each ** freeblock form a big-endian integer which is the size of the freeblock ** in bytes, including the 4-byte header. */ size = get2byte(&aData[pc+2]); if( (x = size - nByte)>=0 ){ testcase( x==4 ); testcase( x==3 ); if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){ *pRc = SQLITE_CORRUPT_BKPT; return 0; }else if( x<4 ){ /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total ** number of bytes in fragments may not exceed 60. */ if( aData[hdr+7]>57 ) return 0; /* Remove the slot from the free-list. Update the number of ** fragmented bytes within the page. */ memcpy(&aData[iAddr], &aData[pc], 2); aData[hdr+7] += (u8)x; }else{ /* The slot remains on the free-list. Reduce its size to account ** for the portion used by the new allocation. */ put2byte(&aData[pc+2], x); } return &aData[pc + x]; } iAddr = pc; pc = get2byte(&aData[pc]); }while( pc ); return 0; } /* ** Allocate nByte bytes of space from within the B-Tree page passed ** as the first argument. Write into *pIdx the index into pPage->aData[] |
︙ | ︙ | |||
54401 54402 54403 54404 54405 54406 54407 | gap = pPage->cellOffset + 2*pPage->nCell; assert( gap<=65536 ); /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size ** and the reserved space is zero (the usual value for reserved space) ** then the cell content offset of an empty page wants to be 65536. ** However, that integer is too large to be stored in a 2-byte unsigned ** integer, so a value of 0 is used in its place. */ | | > | < | > > | > | < | < < > > < | 55015 55016 55017 55018 55019 55020 55021 55022 55023 55024 55025 55026 55027 55028 55029 55030 55031 55032 55033 55034 55035 55036 55037 55038 55039 55040 55041 55042 55043 55044 55045 55046 55047 55048 55049 55050 55051 55052 55053 55054 55055 55056 55057 55058 55059 55060 55061 | gap = pPage->cellOffset + 2*pPage->nCell; assert( gap<=65536 ); /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size ** and the reserved space is zero (the usual value for reserved space) ** then the cell content offset of an empty page wants to be 65536. ** However, that integer is too large to be stored in a 2-byte unsigned ** integer, so a value of 0 is used in its place. */ top = get2byte(&data[hdr+5]); assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ if( gap>top ){ if( top==0 && pPage->pBt->usableSize==65536 ){ top = 65536; }else{ return SQLITE_CORRUPT_BKPT; } } /* If there is enough space between gap and top for one more cell pointer ** array entry offset, and if the freelist is not empty, then search the ** freelist looking for a free slot big enough to satisfy the request. */ testcase( gap+2==top ); testcase( gap+1==top ); testcase( gap==top ); if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ u8 *pSpace = pageFindSlot(pPage, nByte, &rc); if( pSpace ){ assert( pSpace>=data && (pSpace - data)<65536 ); *pIdx = (int)(pSpace - data); return SQLITE_OK; }else if( rc ){ return rc; } } /* The request could not be fulfilled using a freelist slot. Check ** to see if defragmentation is necessary. */ testcase( gap+2+nByte==top ); if( gap+2+nByte>top ){ assert( pPage->nCell>0 || CORRUPT_DB ); rc = defragmentPage(pPage); if( rc ) return rc; top = get2byteNotZero(&data[hdr+5]); assert( gap+nByte<=top ); } |
︙ | ︙ | |||
54508 54509 54510 54511 54512 54513 54514 | iPtr = iFreeBlk; } if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT; assert( iFreeBlk>iPtr || iFreeBlk==0 ); /* At this point: ** iFreeBlk: First freeblock after iStart, or zero if none | | > | 55123 55124 55125 55126 55127 55128 55129 55130 55131 55132 55133 55134 55135 55136 55137 55138 55139 55140 55141 55142 55143 55144 55145 | iPtr = iFreeBlk; } if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT; assert( iFreeBlk>iPtr || iFreeBlk==0 ); /* At this point: ** iFreeBlk: First freeblock after iStart, or zero if none ** iPtr: The address of a pointer to iFreeBlk ** ** Check to see if iFreeBlk should be coalesced onto the end of iStart. */ if( iFreeBlk && iEnd+3>=iFreeBlk ){ nFrag = iFreeBlk - iEnd; if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT; iSize = iEnd - iStart; iFreeBlk = get2byte(&data[iFreeBlk]); } /* If iPtr is another freeblock (that is, if iPtr is not the freelist ** pointer in the page header) then check to see if iStart should be ** coalesced onto the end of iPtr. |
︙ | ︙ | |||
54573 54574 54575 54576 54577 54578 54579 54580 54581 54582 54583 54584 54585 54586 54587 54588 | BtShared *pBt; /* A copy of pPage->pBt */ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); flagByte &= ~PTF_LEAF; pPage->childPtrSize = 4-4*pPage->leaf; pBt = pPage->pBt; if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior ** table b-tree page. */ assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf ** table b-tree page. */ assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); pPage->intKey = 1; | > > | | > > > > > > > > | 55189 55190 55191 55192 55193 55194 55195 55196 55197 55198 55199 55200 55201 55202 55203 55204 55205 55206 55207 55208 55209 55210 55211 55212 55213 55214 55215 55216 55217 55218 55219 55220 55221 55222 55223 55224 55225 55226 55227 55228 55229 55230 55231 55232 55233 55234 55235 | BtShared *pBt; /* A copy of pPage->pBt */ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); flagByte &= ~PTF_LEAF; pPage->childPtrSize = 4-4*pPage->leaf; pPage->xCellSize = cellSizePtr; pBt = pPage->pBt; if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior ** table b-tree page. */ assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf ** table b-tree page. */ assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); pPage->intKey = 1; if( pPage->leaf ){ pPage->intKeyLeaf = 1; pPage->noPayload = 0; pPage->xParseCell = btreeParseCellPtr; }else{ pPage->intKeyLeaf = 0; pPage->noPayload = 1; pPage->xCellSize = cellSizePtrNoPayload; pPage->xParseCell = btreeParseCellPtrNoPayload; } pPage->maxLocal = pBt->maxLeaf; pPage->minLocal = pBt->minLeaf; }else if( flagByte==PTF_ZERODATA ){ /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior ** index b-tree page. */ assert( (PTF_ZERODATA)==2 ); /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf ** index b-tree page. */ assert( (PTF_ZERODATA|PTF_LEAF)==10 ); pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->noPayload = 0; pPage->xParseCell = btreeParseCellPtrIndex; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else{ /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is ** an error. */ return SQLITE_CORRUPT_BKPT; } |
︙ | ︙ | |||
54651 54652 54653 54654 54655 54656 54657 54658 54659 54660 54661 54662 54663 54664 | assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; usableSize = pBt->usableSize; pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; pPage->aDataEnd = &data[usableSize]; pPage->aCellIdx = &data[cellOffset]; /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates ** the start of the cell content area. A zero value for this integer is ** interpreted as 65536. */ top = get2byteNotZero(&data[hdr+5]); /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ pPage->nCell = get2byte(&data[hdr+3]); | > | 55277 55278 55279 55280 55281 55282 55283 55284 55285 55286 55287 55288 55289 55290 55291 | assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; usableSize = pBt->usableSize; pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; pPage->aDataEnd = &data[usableSize]; pPage->aCellIdx = &data[cellOffset]; pPage->aDataOfst = &data[pPage->childPtrSize]; /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates ** the start of the cell content area. A zero value for this integer is ** interpreted as 65536. */ top = get2byteNotZero(&data[hdr+5]); /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ pPage->nCell = get2byte(&data[hdr+3]); |
︙ | ︙ | |||
54684 54685 54686 54687 54688 54689 54690 | iCellLast = usableSize - 4; if( pBt->db->flags & SQLITE_CellSizeCk ){ int i; /* Index into the cell pointer array */ int sz; /* Size of a cell */ if( !pPage->leaf ) iCellLast--; for(i=0; i<pPage->nCell; i++){ | | | | 55311 55312 55313 55314 55315 55316 55317 55318 55319 55320 55321 55322 55323 55324 55325 55326 55327 55328 55329 55330 55331 | iCellLast = usableSize - 4; if( pBt->db->flags & SQLITE_CellSizeCk ){ int i; /* Index into the cell pointer array */ int sz; /* Size of a cell */ if( !pPage->leaf ) iCellLast--; for(i=0; i<pPage->nCell; i++){ pc = get2byteAligned(&data[cellOffset+i*2]); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); if( pc<iCellFirst || pc>iCellLast ){ return SQLITE_CORRUPT_BKPT; } sz = pPage->xCellSize(pPage, &data[pc]); testcase( pc+sz==usableSize ); if( pc+sz>usableSize ){ return SQLITE_CORRUPT_BKPT; } } if( !pPage->leaf ) iCellLast++; } |
︙ | ︙ | |||
54770 54771 54772 54773 54774 54775 54776 54777 54778 54779 54780 54781 54782 54783 54784 54785 54786 54787 54788 54789 54790 54791 54792 54793 54794 | data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = (u16)(pBt->usableSize - first); decodeFlags(pPage, flags); pPage->cellOffset = first; pPage->aDataEnd = &data[pBt->usableSize]; pPage->aCellIdx = &data[first]; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; pPage->isInit = 1; } /* ** Convert a DbPage obtained from the pager into a MemPage used by ** the btree layer. */ static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); pPage->aData = sqlite3PagerGetData(pDbPage); pPage->pDbPage = pDbPage; pPage->pBt = pBt; pPage->pgno = pgno; | > | | 55397 55398 55399 55400 55401 55402 55403 55404 55405 55406 55407 55408 55409 55410 55411 55412 55413 55414 55415 55416 55417 55418 55419 55420 55421 55422 55423 55424 55425 55426 55427 55428 55429 55430 | data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = (u16)(pBt->usableSize - first); decodeFlags(pPage, flags); pPage->cellOffset = first; pPage->aDataEnd = &data[pBt->usableSize]; pPage->aCellIdx = &data[first]; pPage->aDataOfst = &data[pPage->childPtrSize]; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; pPage->isInit = 1; } /* ** Convert a DbPage obtained from the pager into a MemPage used by ** the btree layer. */ static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); pPage->aData = sqlite3PagerGetData(pDbPage); pPage->pDbPage = pDbPage; pPage->pBt = pBt; pPage->pgno = pgno; pPage->hdrOffset = pgno==1 ? 100 : 0; return pPage; } /* ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). ** |
︙ | ︙ | |||
54849 54850 54851 54852 54853 54854 54855 | SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){ assert( sqlite3BtreeHoldsMutex(p) ); assert( ((p->pBt->nPage)&0x8000000)==0 ); return btreePagecount(p->pBt); } /* | | | > > > | > > | > | > > > | | > > > > > | | | | | > | | | > > > > > > > > | > > > > | < | | | | | | | | > > | 55477 55478 55479 55480 55481 55482 55483 55484 55485 55486 55487 55488 55489 55490 55491 55492 55493 55494 55495 55496 55497 55498 55499 55500 55501 55502 55503 55504 55505 55506 55507 55508 55509 55510 55511 55512 55513 55514 55515 55516 55517 55518 55519 55520 55521 55522 55523 55524 55525 55526 55527 55528 55529 55530 55531 55532 55533 55534 55535 55536 55537 55538 55539 55540 55541 55542 55543 55544 55545 55546 55547 55548 55549 55550 55551 55552 55553 55554 55555 55556 55557 55558 55559 55560 55561 55562 55563 55564 55565 55566 | SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){ assert( sqlite3BtreeHoldsMutex(p) ); assert( ((p->pBt->nPage)&0x8000000)==0 ); return btreePagecount(p->pBt); } /* ** Get a page from the pager and initialize it. ** ** If pCur!=0 then the page is being fetched as part of a moveToChild() ** call. Do additional sanity checking on the page in this case. ** And if the fetch fails, this routine must decrement pCur->iPage. ** ** The page is fetched as read-write unless pCur is not NULL and is ** a read-only cursor. ** ** If an error occurs, then *ppPage is undefined. It ** may remain unchanged, or it may be set to an invalid value. */ static int getAndInitPage( BtShared *pBt, /* The database file */ Pgno pgno, /* Number of the page to get */ MemPage **ppPage, /* Write the page pointer here */ BtCursor *pCur, /* Cursor to receive the page, or NULL */ int bReadOnly /* True for a read-only page */ ){ int rc; DbPage *pDbPage; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] ); assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); assert( pCur==0 || pCur->iPage>0 ); if( pgno>btreePagecount(pBt) ){ rc = SQLITE_CORRUPT_BKPT; goto getAndInitPage_error; } rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); if( rc ){ goto getAndInitPage_error; } *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); if( (*ppPage)->isInit==0 ){ rc = btreeInitPage(*ppPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); goto getAndInitPage_error; } } /* If obtaining a child page for a cursor, we must verify that the page is ** compatible with the root page. */ if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ rc = SQLITE_CORRUPT_BKPT; releasePage(*ppPage); goto getAndInitPage_error; } return SQLITE_OK; getAndInitPage_error: if( pCur ) pCur->iPage--; testcase( pgno==0 ); assert( pgno!=0 || rc==SQLITE_CORRUPT ); return rc; } /* ** Release a MemPage. This should be called once for each prior ** call to btreeGetPage. */ static void releasePageNotNull(MemPage *pPage){ assert( pPage->aData ); assert( pPage->pBt ); assert( pPage->pDbPage!=0 ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sqlite3PagerUnrefNotNull(pPage->pDbPage); } static void releasePage(MemPage *pPage){ if( pPage ) releasePageNotNull(pPage); } /* ** Get an unused page. ** ** This works just like btreeGetPage() with the addition: ** |
︙ | ︙ | |||
55871 55872 55873 55874 55875 55876 55877 | assert( sqlite3_mutex_held(pBt->mutex) ); assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ MemPage *pPage1 = pBt->pPage1; assert( pPage1->aData ); assert( sqlite3PagerRefcount(pBt->pPager)==1 ); pBt->pPage1 = 0; | | | 56527 56528 56529 56530 56531 56532 56533 56534 56535 56536 56537 56538 56539 56540 56541 | assert( sqlite3_mutex_held(pBt->mutex) ); assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ MemPage *pPage1 = pBt->pPage1; assert( pPage1->aData ); assert( sqlite3PagerRefcount(pBt->pPager)==1 ); pBt->pPage1 = 0; releasePageNotNull(pPage1); } } /* ** If pBt points to an empty file then convert that empty file ** into a new empty database by initializing the first page of ** the database. |
︙ | ︙ | |||
56186 56187 56188 56189 56190 56191 56192 | if( rc ) return rc; nCell = pPage->nCell; for(i=0; i<nCell; i++){ u8 *pCell = findCell(pPage, i); if( eType==PTRMAP_OVERFLOW1 ){ CellInfo info; | | | 56842 56843 56844 56845 56846 56847 56848 56849 56850 56851 56852 56853 56854 56855 56856 | if( rc ) return rc; nCell = pPage->nCell; for(i=0; i<nCell; i++){ u8 *pCell = findCell(pPage, i); if( eType==PTRMAP_OVERFLOW1 ){ CellInfo info; pPage->xParseCell(pPage, pCell, &info); if( info.iOverflow && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage && iFrom==get4byte(&pCell[info.iOverflow]) ){ put4byte(&pCell[info.iOverflow], iTo); break; } |
︙ | ︙ | |||
56927 56928 56929 56930 56931 56932 56933 56934 56935 56936 56937 56938 56939 56940 56941 56942 56943 56944 56945 56946 56947 56948 | Btree *p, /* The btree */ int iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ BtCursor *pCur /* Space for new cursor */ ){ BtShared *pBt = p->pBt; /* Shared b-tree handle */ assert( sqlite3BtreeHoldsMutex(p) ); assert( wrFlag==0 || wrFlag==1 ); /* The following assert statements verify that if this is a sharable ** b-tree database, the connection is holding the required table locks, ** and that no other connection has any open cursor that conflicts with ** this lock. */ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); /* Assert that the caller has opened the required transaction. */ assert( p->inTrans>TRANS_NONE ); assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); assert( pBt->pPage1 && pBt->pPage1->aData ); | > < | < | > > > | | > | | > > | 57583 57584 57585 57586 57587 57588 57589 57590 57591 57592 57593 57594 57595 57596 57597 57598 57599 57600 57601 57602 57603 57604 57605 57606 57607 57608 57609 57610 57611 57612 57613 57614 57615 57616 57617 57618 57619 57620 57621 57622 57623 57624 57625 57626 57627 57628 57629 57630 57631 57632 57633 57634 57635 57636 57637 57638 57639 57640 57641 57642 | Btree *p, /* The btree */ int iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to comparison function */ BtCursor *pCur /* Space for new cursor */ ){ BtShared *pBt = p->pBt; /* Shared b-tree handle */ BtCursor *pX; /* Looping over other all cursors */ assert( sqlite3BtreeHoldsMutex(p) ); assert( wrFlag==0 || wrFlag==1 ); /* The following assert statements verify that if this is a sharable ** b-tree database, the connection is holding the required table locks, ** and that no other connection has any open cursor that conflicts with ** this lock. */ assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); /* Assert that the caller has opened the required transaction. */ assert( p->inTrans>TRANS_NONE ); assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); assert( pBt->pPage1 && pBt->pPage1->aData ); assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); if( wrFlag ){ allocateTempSpace(pBt); if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM; } if( iTable==1 && btreePagecount(pBt)==0 ){ assert( wrFlag==0 ); iTable = 0; } /* Now that no other errors can occur, finish filling in the BtCursor ** variables and link the cursor into the BtShared list. */ pCur->pgnoRoot = (Pgno)iTable; pCur->iPage = -1; pCur->pKeyInfo = pKeyInfo; pCur->pBtree = p; pCur->pBt = pBt; assert( wrFlag==0 || wrFlag==BTCF_WriteFlag ); pCur->curFlags = wrFlag; pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; /* If there are two or more cursors on the same btree, then all such ** cursors *must* have the BTCF_Multiple flag set. */ for(pX=pBt->pCursor; pX; pX=pX->pNext){ if( pX->pgnoRoot==(Pgno)iTable ){ pX->curFlags |= BTCF_Multiple; pCur->curFlags |= BTCF_Multiple; } } pCur->pNext = pBt->pCursor; pBt->pCursor = pCur; pCur->eState = CURSOR_INVALID; return SQLITE_OK; } SQLITE_PRIVATE int sqlite3BtreeCursor( Btree *p, /* The btree */ int iTable, /* Root page of table to open */ |
︙ | ︙ | |||
57025 57026 57027 57028 57029 57030 57031 | SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ int i; BtShared *pBt = pCur->pBt; sqlite3BtreeEnter(pBtree); sqlite3BtreeClearCursor(pCur); | > | | > > > | > | | | < < < < < < < < < | | | < | > | | | | < < < < < < < < < < < | 57686 57687 57688 57689 57690 57691 57692 57693 57694 57695 57696 57697 57698 57699 57700 57701 57702 57703 57704 57705 57706 57707 57708 57709 57710 57711 57712 57713 57714 57715 57716 57717 57718 57719 57720 57721 57722 57723 57724 57725 57726 57727 57728 57729 57730 57731 57732 57733 57734 57735 57736 57737 57738 57739 57740 57741 57742 57743 57744 57745 57746 57747 57748 57749 57750 57751 | SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ int i; BtShared *pBt = pCur->pBt; sqlite3BtreeEnter(pBtree); sqlite3BtreeClearCursor(pCur); assert( pBt->pCursor!=0 ); if( pBt->pCursor==pCur ){ pBt->pCursor = pCur->pNext; }else{ BtCursor *pPrev = pBt->pCursor; do{ if( pPrev->pNext==pCur ){ pPrev->pNext = pCur->pNext; break; } pPrev = pPrev->pNext; }while( ALWAYS(pPrev) ); } for(i=0; i<=pCur->iPage; i++){ releasePage(pCur->apPage[i]); } unlockBtreeIfUnused(pBt); sqlite3_free(pCur->aOverflow); /* sqlite3_free(pCur); */ sqlite3BtreeLeave(pBtree); } return SQLITE_OK; } /* ** Make sure the BtCursor* given in the argument has a valid ** BtCursor.info structure. If it is not already valid, call ** btreeParseCell() to fill it in. ** ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to btreeParseCell(). */ #ifndef NDEBUG static void assertCellInfo(BtCursor *pCur){ CellInfo info; int iPage = pCur->iPage; memset(&info, 0, sizeof(info)); btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 ); } #else #define assertCellInfo(x) #endif static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ if( pCur->info.nSize==0 ){ int iPage = pCur->iPage; pCur->curFlags |= BTCF_ValidNKey; btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); }else{ assertCellInfo(pCur); } } #ifndef NDEBUG /* The next routine used only within assert() statements */ /* ** Return true if the given BtCursor is valid. A valid cursor is one ** that is currently pointing to a row in a (non-empty) table. ** This is a verification routine is used only within assert() statements. */ |
︙ | ︙ | |||
57597 57598 57599 57600 57601 57602 57603 | ** ** This function returns SQLITE_CORRUPT if the page-header flags field of ** the new child page does not match the flags field of the parent (i.e. ** if an intkey page appears to be the parent of a non-intkey page, or ** vice-versa). */ static int moveToChild(BtCursor *pCur, u32 newPgno){ | < < < < < < < < < < | < < > | > | 58243 58244 58245 58246 58247 58248 58249 58250 58251 58252 58253 58254 58255 58256 58257 58258 58259 58260 58261 58262 58263 58264 58265 58266 58267 58268 58269 58270 58271 | ** ** This function returns SQLITE_CORRUPT if the page-header flags field of ** the new child page does not match the flags field of the parent (i.e. ** if an intkey page appears to be the parent of a non-intkey page, or ** vice-versa). */ static int moveToChild(BtCursor *pCur, u32 newPgno){ BtShared *pBt = pCur->pBt; assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->iPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->iPage++; pCur->aiIdx[pCur->iPage] = 0; return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage], pCur, pCur->curPagerFlags); } #if SQLITE_DEBUG /* ** Page pParent is an internal (non-leaf) tree page. This function ** asserts that page number iChild is the left-child if the iIdx'th ** cell in page pParent. Or, if iIdx is equal to the total number of |
︙ | ︙ | |||
57665 57666 57667 57668 57669 57670 57671 | assert( pCur->apPage[pCur->iPage] ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], pCur->apPage[pCur->iPage]->pgno ); testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); | < < < > | 58301 58302 58303 58304 58305 58306 58307 58308 58309 58310 58311 58312 58313 58314 58315 58316 58317 | assert( pCur->apPage[pCur->iPage] ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], pCur->apPage[pCur->iPage]->pgno ); testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); releasePageNotNull(pCur->apPage[pCur->iPage--]); } /* ** Move the cursor to point to the root page of its b-tree structure. ** ** If the table has a virtual root page, then the cursor is moved to point ** to the virtual root page instead of the actual root page. A table has a |
︙ | ︙ | |||
57710 57711 57712 57713 57714 57715 57716 | assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } if( pCur->iPage>=0 ){ | | > > > > | > | 58344 58345 58346 58347 58348 58349 58350 58351 58352 58353 58354 58355 58356 58357 58358 58359 58360 58361 58362 58363 58364 58365 58366 58367 58368 58369 58370 58371 58372 58373 58374 | assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } if( pCur->iPage>=0 ){ while( pCur->iPage ){ assert( pCur->apPage[pCur->iPage]!=0 ); releasePageNotNull(pCur->apPage[pCur->iPage--]); } }else if( pCur->pgnoRoot==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_OK; }else{ assert( pCur->iPage==(-1) ); rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], 0, pCur->curPagerFlags); if( rc!=SQLITE_OK ){ pCur->eState = CURSOR_INVALID; return rc; } pCur->iPage = 0; pCur->curIntKey = pCur->apPage[0]->intKey; } pRoot = pCur->apPage[0]; assert( pRoot->pgno==pCur->pgnoRoot ); /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is ** NULL, the caller expects a table b-tree. If this is not the case, |
︙ | ︙ | |||
57924 57925 57926 57927 57928 57929 57930 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 | | | 58563 58564 58565 58566 58567 58568 58569 58570 58571 58572 58573 58574 58575 58576 58577 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 && pCur->curIntKey ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){ *pRes = -1; |
︙ | ︙ | |||
57959 57960 57961 57962 57963 57964 57965 | assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); if( pCur->eState==CURSOR_INVALID ){ *pRes = -1; assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); return SQLITE_OK; } | | > | 58598 58599 58600 58601 58602 58603 58604 58605 58606 58607 58608 58609 58610 58611 58612 58613 | assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); if( pCur->eState==CURSOR_INVALID ){ *pRes = -1; assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); return SQLITE_OK; } assert( pCur->apPage[0]->intKey==pCur->curIntKey ); assert( pCur->curIntKey || pIdxKey ); for(;;){ int lwr, upr, idx, c; Pgno chldPg; MemPage *pPage = pCur->apPage[pCur->iPage]; u8 *pCell; /* Pointer to current cell in pPage */ /* pPage->nCell must be greater than zero. If this is the root-page |
︙ | ︙ | |||
57982 57983 57984 57985 57986 57987 57988 | upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ pCur->aiIdx[pCur->iPage] = (u16)idx; if( xRecordCompare==0 ){ for(;;){ i64 nCellKey; | | | 58622 58623 58624 58625 58626 58627 58628 58629 58630 58631 58632 58633 58634 58635 58636 | upr = pPage->nCell-1; assert( biasRight==0 || biasRight==1 ); idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ pCur->aiIdx[pCur->iPage] = (u16)idx; if( xRecordCompare==0 ){ for(;;){ i64 nCellKey; pCell = findCellPastPtr(pPage, idx); if( pPage->intKeyLeaf ){ while( 0x80 <= *(pCell++) ){ if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; } } getVarint(pCell, (u64*)&nCellKey); if( nCellKey<intKey ){ |
︙ | ︙ | |||
58015 58016 58017 58018 58019 58020 58021 | } assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ } }else{ for(;;){ int nCell; /* Size of the pCell cell in bytes */ | | | 58655 58656 58657 58658 58659 58660 58661 58662 58663 58664 58665 58666 58667 58668 58669 | } assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ } }else{ for(;;){ int nCell; /* Size of the pCell cell in bytes */ pCell = findCellPastPtr(pPage, idx); /* The maximum supported page-size is 65536 bytes. This means that ** the maximum number of record bytes stored on an index B-Tree ** page is less than 16384 bytes and may be stored as a 2-byte ** varint. This information is used to attempt to avoid parsing ** the entire cell by checking for the cases where the record is ** stored entirely within the b-tree page by inspecting the first |
︙ | ︙ | |||
58051 58052 58053 58054 58055 58056 58057 | ** ** If the record is corrupt, the xRecordCompare routine may read ** up to two varints past the end of the buffer. An extra 18 ** bytes of padding is allocated at the end of the buffer in ** case this happens. */ void *pCellKey; u8 * const pCellBody = pCell - pPage->childPtrSize; | | | 58691 58692 58693 58694 58695 58696 58697 58698 58699 58700 58701 58702 58703 58704 58705 | ** ** If the record is corrupt, the xRecordCompare routine may read ** up to two varints past the end of the buffer. An extra 18 ** bytes of padding is allocated at the end of the buffer in ** case this happens. */ void *pCellKey; u8 * const pCellBody = pCell - pPage->childPtrSize; pPage->xParseCell(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; testcase( nCell<0 ); /* True if key size is 2^32 or more */ testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ testcase( nCell==2 ); /* Minimum legal index key size */ if( nCell<2 ){ rc = SQLITE_CORRUPT_BKPT; |
︙ | ︙ | |||
58354 58355 58356 58357 58358 58359 58360 | ** ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() ** has already been called on the new page.) The new page has also ** been referenced and the calling routine is responsible for calling ** sqlite3PagerUnref() on the new page when it is done. ** ** SQLITE_OK is returned on success. Any other return value indicates | | < | 58994 58995 58996 58997 58998 58999 59000 59001 59002 59003 59004 59005 59006 59007 59008 | ** ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() ** has already been called on the new page.) The new page has also ** been referenced and the calling routine is responsible for calling ** sqlite3PagerUnref() on the new page when it is done. ** ** SQLITE_OK is returned on success. Any other return value indicates ** an error. *ppPage is set to NULL in the event of an error. ** ** If the "nearby" parameter is not 0, then an effort is made to ** locate a page close to the page number "nearby". This can be used in an ** attempt to keep related pages close to each other in the database file, ** which in turn can make database access faster. ** ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists |
︙ | ︙ | |||
58398 58399 58400 58401 58402 58403 58404 58405 58406 58407 58408 58409 58410 58411 | if( n>=mxPage ){ return SQLITE_CORRUPT_BKPT; } if( n>0 ){ /* There are pages on the freelist. Reuse one of those pages. */ Pgno iTrunk; u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ /* If eMode==BTALLOC_EXACT and a query of the pointer-map ** shows that the page 'nearby' is somewhere on the free-list, then ** the entire-list will be searched for that page. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( eMode==BTALLOC_EXACT ){ | > | 59037 59038 59039 59040 59041 59042 59043 59044 59045 59046 59047 59048 59049 59050 59051 | if( n>=mxPage ){ return SQLITE_CORRUPT_BKPT; } if( n>0 ){ /* There are pages on the freelist. Reuse one of those pages. */ Pgno iTrunk; u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ u32 nSearch = 0; /* Count of the number of search attempts */ /* If eMode==BTALLOC_EXACT and a query of the pointer-map ** shows that the page 'nearby' is somewhere on the free-list, then ** the entire-list will be searched for that page. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( eMode==BTALLOC_EXACT ){ |
︙ | ︙ | |||
58446 58447 58448 58449 58450 58451 58452 | }else{ /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 ** stores the page number of the first page of the freelist, or zero if ** the freelist is empty. */ iTrunk = get4byte(&pPage1->aData[32]); } testcase( iTrunk==mxPage ); | | | 59086 59087 59088 59089 59090 59091 59092 59093 59094 59095 59096 59097 59098 59099 59100 | }else{ /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 ** stores the page number of the first page of the freelist, or zero if ** the freelist is empty. */ iTrunk = get4byte(&pPage1->aData[32]); } testcase( iTrunk==mxPage ); if( iTrunk>mxPage || nSearch++ > n ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); } if( rc ){ pTrunk = 0; goto end_allocate_page; |
︙ | ︙ | |||
58599 58600 58601 58602 58603 58604 58605 58606 58607 58608 58609 58610 58611 58612 | put4byte(&aData[4], k-1); noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite((*ppPage)->pDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); } } searchList = 0; } } releasePage(pPrevTrunk); pPrevTrunk = 0; | > | 59239 59240 59241 59242 59243 59244 59245 59246 59247 59248 59249 59250 59251 59252 59253 | put4byte(&aData[4], k-1); noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite((*ppPage)->pDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); *ppPage = 0; } } searchList = 0; } } releasePage(pPrevTrunk); pPrevTrunk = 0; |
︙ | ︙ | |||
58840 58841 58842 58843 58844 58845 58846 | CellInfo info; Pgno ovflPgno; int rc; int nOvfl; u32 ovflPageSize; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | | | 59481 59482 59483 59484 59485 59486 59487 59488 59489 59490 59491 59492 59493 59494 59495 | CellInfo info; Pgno ovflPgno; int rc; int nOvfl; u32 ovflPageSize; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->xParseCell(pPage, pCell, &info); *pnSize = info.nSize; if( info.iOverflow==0 ){ return SQLITE_OK; /* No overflow pages. Return without doing anything */ } if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){ return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */ } |
︙ | ︙ | |||
58952 58953 58954 58955 58956 58957 58958 | /* Fill in the payload size */ if( pPage->intKey ){ pSrc = pData; nSrc = nData; nData = 0; }else{ | | < < | 59593 59594 59595 59596 59597 59598 59599 59600 59601 59602 59603 59604 59605 59606 59607 | /* Fill in the payload size */ if( pPage->intKey ){ pSrc = pData; nSrc = nData; nData = 0; }else{ assert( nKey<=0x7fffffff && pKey!=0 ); nPayload = (int)nKey; pSrc = pKey; nSrc = (int)nKey; } if( nPayload<=pPage->maxLocal ){ n = nHeader + nPayload; testcase( n==3 ); |
︙ | ︙ | |||
58994 58995 58996 58997 58998 58999 59000 | ** ** Use a call to btreeParseCellPtr() to verify that the values above ** were computed correctly. */ #if SQLITE_DEBUG { CellInfo info; | | | 59633 59634 59635 59636 59637 59638 59639 59640 59641 59642 59643 59644 59645 59646 59647 | ** ** Use a call to btreeParseCellPtr() to verify that the values above ** were computed correctly. */ #if SQLITE_DEBUG { CellInfo info; pPage->xParseCell(pPage, pCell, &info); assert( nHeader=(int)(info.pPayload - pCell) ); assert( info.nKey==nKey ); assert( *pnSize == info.nSize ); assert( spaceLeft == info.nLocal ); assert( pPrior == &pCell[info.iOverflow] ); } #endif |
︙ | ︙ | |||
59164 59165 59166 59167 59168 59169 59170 | int sz, /* Bytes of content in pCell */ u8 *pTemp, /* Temp storage space for pCell, if needed */ Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ int *pRC /* Read and write return code from here */ ){ int idx = 0; /* Where to write new cell content in data[] */ int j; /* Loop counter */ | < < < > | > > > > > > > > | < < | | | > < > | | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 59803 59804 59805 59806 59807 59808 59809 59810 59811 59812 59813 59814 59815 59816 59817 59818 59819 59820 59821 59822 59823 59824 59825 59826 59827 59828 59829 59830 59831 59832 59833 59834 59835 59836 59837 59838 59839 59840 59841 59842 59843 59844 59845 59846 59847 59848 59849 59850 59851 59852 59853 59854 59855 59856 59857 59858 59859 59860 59861 59862 59863 59864 59865 59866 59867 59868 59869 59870 59871 59872 59873 59874 59875 59876 59877 59878 59879 59880 59881 59882 59883 59884 59885 59886 59887 59888 59889 59890 59891 59892 59893 59894 59895 59896 59897 59898 59899 59900 59901 59902 59903 59904 59905 59906 59907 59908 59909 59910 59911 59912 59913 59914 59915 59916 59917 59918 59919 59920 59921 59922 59923 59924 59925 59926 59927 59928 59929 59930 59931 59932 59933 59934 59935 59936 59937 59938 59939 59940 59941 59942 59943 59944 59945 59946 59947 59948 59949 59950 59951 59952 | int sz, /* Bytes of content in pCell */ u8 *pTemp, /* Temp storage space for pCell, if needed */ Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ int *pRC /* Read and write return code from here */ ){ int idx = 0; /* Where to write new cell content in data[] */ int j; /* Loop counter */ u8 *data; /* The content of the whole page */ u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ if( *pRC ) return; assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); assert( MX_CELL(pPage->pBt)<=10921 ); assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); /* The cell should normally be sized correctly. However, when moving a ** malformed cell from a leaf page to an interior page, if the cell size ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size ** might be less than 8 (leaf-size + pointer) on the interior node. Hence ** the term after the || in the following assert(). */ assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) ); if( pPage->nOverflow || sz+2>pPage->nFree ){ if( pTemp ){ memcpy(pTemp, pCell, sz); pCell = pTemp; } if( iChild ){ put4byte(pCell, iChild); } j = pPage->nOverflow++; assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) ); pPage->apOvfl[j] = pCell; pPage->aiOvfl[j] = (u16)i; /* When multiple overflows occur, they are always sequential and in ** sorted order. This invariants arise because multiple overflows can ** only occur when inserting divider cells into the parent page during ** balancing, and the dividers are adjacent and sorted. */ assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ }else{ int rc = sqlite3PagerWrite(pPage->pDbPage); if( rc!=SQLITE_OK ){ *pRC = rc; return; } assert( sqlite3PagerIswriteable(pPage->pDbPage) ); data = pPage->aData; assert( &data[pPage->cellOffset]==pPage->aCellIdx ); rc = allocateSpace(pPage, sz, &idx); if( rc ){ *pRC = rc; return; } /* The allocateSpace() routine guarantees the following properties ** if it returns successfully */ assert( idx >= 0 ); assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); assert( idx+sz <= (int)pPage->pBt->usableSize ); pPage->nFree -= (u16)(2 + sz); memcpy(&data[idx], pCell, sz); if( iChild ){ put4byte(&data[idx], iChild); } pIns = pPage->aCellIdx + i*2; memmove(pIns+2, pIns, 2*(pPage->nCell - i)); put2byte(pIns, idx); pPage->nCell++; /* increment the cell count */ if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell ); #ifndef SQLITE_OMIT_AUTOVACUUM if( pPage->pBt->autoVacuum ){ /* The cell may contain a pointer to an overflow page. If so, write ** the entry for the overflow page into the pointer map. */ ptrmapPutOvflPtr(pPage, pCell, pRC); } #endif } } /* ** A CellArray object contains a cache of pointers and sizes for a ** consecutive sequence of cells that might be held multiple pages. */ typedef struct CellArray CellArray; struct CellArray { int nCell; /* Number of cells in apCell[] */ MemPage *pRef; /* Reference page */ u8 **apCell; /* All cells begin balanced */ u16 *szCell; /* Local size of all cells in apCell[] */ }; /* ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been ** computed. */ static void populateCellCache(CellArray *p, int idx, int N){ assert( idx>=0 && idx+N<=p->nCell ); while( N>0 ){ assert( p->apCell[idx]!=0 ); if( p->szCell[idx]==0 ){ p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); }else{ assert( CORRUPT_DB || p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); } idx++; N--; } } /* ** Return the size of the Nth element of the cell array */ static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ assert( N>=0 && N<p->nCell ); assert( p->szCell[N]==0 ); p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); return p->szCell[N]; } static u16 cachedCellSize(CellArray *p, int N){ assert( N>=0 && N<p->nCell ); if( p->szCell[N] ) return p->szCell[N]; return computeCellSize(p, N); } /* ** Array apCell[] contains pointers to nCell b-tree page cells. The ** szCell[] array contains the size in bytes of each cell. This function ** replaces the current contents of page pPg with the contents of the cell ** array. ** ** Some of the cells in apCell[] may currently be stored in pPg. This ** function works around problems caused by this by making a copy of any ** such cells before overwriting the page data. ** ** The MemPage.nFree field is invalidated by this function. It is the ** responsibility of the caller to set it correctly. */ static int rebuildPage( MemPage *pPg, /* Edit this page */ int nCell, /* Final number of cells on page */ u8 **apCell, /* Array of cells */ u16 *szCell /* Array of cell sizes */ ){ const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ u8 * const aData = pPg->aData; /* Pointer to data for pPg */ |
︙ | ︙ | |||
59270 59271 59272 59273 59274 59275 59276 | pData = pEnd; for(i=0; i<nCell; i++){ u8 *pCell = apCell[i]; if( pCell>aData && pCell<pEnd ){ pCell = &pTmp[pCell - aData]; } pData -= szCell[i]; | < > > | | > | 59963 59964 59965 59966 59967 59968 59969 59970 59971 59972 59973 59974 59975 59976 59977 59978 59979 59980 59981 59982 59983 59984 59985 59986 59987 59988 59989 59990 59991 59992 59993 | pData = pEnd; for(i=0; i<nCell; i++){ u8 *pCell = apCell[i]; if( pCell>aData && pCell<pEnd ){ pCell = &pTmp[pCell - aData]; } pData -= szCell[i]; put2byte(pCellptr, (pData - aData)); pCellptr += 2; if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; memcpy(pData, pCell, szCell[i]); assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) ); } /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ pPg->nCell = nCell; pPg->nOverflow = 0; put2byte(&aData[hdr+1], 0); put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); aData[hdr+7] = 0x00; return SQLITE_OK; } /* ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell ** contains the size in bytes of each such cell. This function attempts to ** add the cells stored in the array to page pPg. If it cannot (because ** the page needs to be defragmented before the cells will fit), non-zero |
︙ | ︙ | |||
59317 59318 59319 59320 59321 59322 59323 59324 | ** cells in apCell[], then the cells do not fit and non-zero is returned. */ static int pageInsertArray( MemPage *pPg, /* Page to add cells to */ u8 *pBegin, /* End of cell-pointer array */ u8 **ppData, /* IN/OUT: Page content -area pointer */ u8 *pCellptr, /* Pointer to cell-pointer area */ int nCell, /* Number of cells to add to pPg */ | > | < | | | < > | | > | < > | | | > > > > | 60012 60013 60014 60015 60016 60017 60018 60019 60020 60021 60022 60023 60024 60025 60026 60027 60028 60029 60030 60031 60032 60033 60034 60035 60036 60037 60038 60039 60040 60041 60042 60043 60044 60045 60046 60047 60048 60049 60050 60051 60052 60053 60054 60055 60056 60057 60058 60059 60060 60061 60062 60063 60064 60065 60066 60067 60068 60069 60070 60071 60072 60073 60074 60075 60076 60077 60078 60079 60080 60081 60082 60083 | ** cells in apCell[], then the cells do not fit and non-zero is returned. */ static int pageInsertArray( MemPage *pPg, /* Page to add cells to */ u8 *pBegin, /* End of cell-pointer array */ u8 **ppData, /* IN/OUT: Page content -area pointer */ u8 *pCellptr, /* Pointer to cell-pointer area */ int iFirst, /* Index of first cell to add */ int nCell, /* Number of cells to add to pPg */ CellArray *pCArray /* Array of cells */ ){ int i; u8 *aData = pPg->aData; u8 *pData = *ppData; int iEnd = iFirst + nCell; assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ for(i=iFirst; i<iEnd; i++){ int sz, rc; u8 *pSlot; sz = cachedCellSize(pCArray, i); if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ pData -= sz; if( pData<pBegin ) return 1; pSlot = pData; } memcpy(pSlot, pCArray->apCell[i], sz); put2byte(pCellptr, (pSlot - aData)); pCellptr += 2; } *ppData = pData; return 0; } /* ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell ** contains the size in bytes of each such cell. This function adds the ** space associated with each cell in the array that is currently stored ** within the body of pPg to the pPg free-list. The cell-pointers and other ** fields of the page are not updated. ** ** This function returns the total number of cells added to the free-list. */ static int pageFreeArray( MemPage *pPg, /* Page to edit */ int iFirst, /* First cell to delete */ int nCell, /* Cells to delete */ CellArray *pCArray /* Array of cells */ ){ u8 * const aData = pPg->aData; u8 * const pEnd = &aData[pPg->pBt->usableSize]; u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; int nRet = 0; int i; int iEnd = iFirst + nCell; u8 *pFree = 0; int szFree = 0; for(i=iFirst; i<iEnd; i++){ u8 *pCell = pCArray->apCell[i]; if( pCell>=pStart && pCell<pEnd ){ int sz; /* No need to use cachedCellSize() here. The sizes of all cells that ** are to be freed have already been computing while deciding which ** cells need freeing */ sz = pCArray->szCell[i]; assert( sz>0 ); if( pFree!=(pCell + sz) ){ if( pFree ){ assert( pFree>aData && (pFree - aData)<65536 ); freeSpace(pPg, (u16)(pFree - aData), szFree); } pFree = pCell; szFree = sz; |
︙ | ︙ | |||
59404 59405 59406 59407 59408 59409 59410 | ** ** This routine makes the necessary adjustments to pPg so that it contains ** the correct cells after being balanced. ** ** The pPg->nFree field is invalid when this function returns. It is the ** responsibility of the caller to set it correctly. */ | | | < | < < | < < | | | | | | > | > | | 60104 60105 60106 60107 60108 60109 60110 60111 60112 60113 60114 60115 60116 60117 60118 60119 60120 60121 60122 60123 60124 60125 60126 60127 60128 60129 60130 60131 60132 60133 60134 60135 60136 60137 60138 60139 60140 60141 60142 60143 60144 60145 60146 60147 60148 60149 60150 60151 60152 60153 60154 60155 60156 60157 60158 60159 60160 60161 60162 60163 60164 60165 60166 60167 60168 60169 60170 60171 60172 60173 60174 60175 60176 60177 60178 60179 60180 60181 60182 60183 60184 60185 60186 60187 60188 60189 60190 60191 60192 60193 60194 60195 60196 60197 60198 60199 60200 60201 60202 60203 60204 60205 60206 60207 60208 60209 | ** ** This routine makes the necessary adjustments to pPg so that it contains ** the correct cells after being balanced. ** ** The pPg->nFree field is invalid when this function returns. It is the ** responsibility of the caller to set it correctly. */ static int editPage( MemPage *pPg, /* Edit this page */ int iOld, /* Index of first cell currently on page */ int iNew, /* Index of new first cell on page */ int nNew, /* Final number of cells on page */ CellArray *pCArray /* Array of cells and sizes */ ){ u8 * const aData = pPg->aData; const int hdr = pPg->hdrOffset; u8 *pBegin = &pPg->aCellIdx[nNew * 2]; int nCell = pPg->nCell; /* Cells stored on pPg */ u8 *pData; u8 *pCellptr; int i; int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; int iNewEnd = iNew + nNew; #ifdef SQLITE_DEBUG u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); memcpy(pTmp, aData, pPg->pBt->usableSize); #endif /* Remove cells from the start and end of the page */ if( iOld<iNew ){ int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); nCell -= nShift; } if( iNewEnd < iOldEnd ){ nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); } pData = &aData[get2byteNotZero(&aData[hdr+5])]; if( pData<pBegin ) goto editpage_fail; /* Add cells to the start of the page */ if( iNew<iOld ){ int nAdd = MIN(nNew,iOld-iNew); assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); pCellptr = pPg->aCellIdx; memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iNew, nAdd, pCArray ) ) goto editpage_fail; nCell += nAdd; } /* Add any overflow cells */ for(i=0; i<pPg->nOverflow; i++){ int iCell = (iOld + pPg->aiOvfl[i]) - iNew; if( iCell>=0 && iCell<nNew ){ pCellptr = &pPg->aCellIdx[iCell * 2]; memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); nCell++; if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iCell+iNew, 1, pCArray ) ) goto editpage_fail; } } /* Append cells to the end of the page */ pCellptr = &pPg->aCellIdx[nCell*2]; if( pageInsertArray( pPg, pBegin, &pData, pCellptr, iNew+nCell, nNew-nCell, pCArray ) ) goto editpage_fail; pPg->nCell = nNew; pPg->nOverflow = 0; put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); #ifdef SQLITE_DEBUG for(i=0; i<nNew && !CORRUPT_DB; i++){ u8 *pCell = pCArray->apCell[i+iNew]; int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){ pCell = &pTmp[pCell - aData]; } assert( 0==memcmp(pCell, &aData[iOff], pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); } #endif return SQLITE_OK; editpage_fail: /* Unable to edit this page. Rebuild it from scratch instead. */ populateCellCache(pCArray, iNew, nNew); return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]); } /* ** The following parameters determine how many adjacent pages get involved ** in a balancing operation. NN is the number of neighbors on either side ** of the page that participate in the balancing operation. NB is the ** total number of pages that participate, including the target page and |
︙ | ︙ | |||
59564 59565 59566 59567 59568 59569 59570 | */ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); if( rc==SQLITE_OK ){ u8 *pOut = &pSpace[4]; u8 *pCell = pPage->apOvfl[0]; | | | > | 60261 60262 60263 60264 60265 60266 60267 60268 60269 60270 60271 60272 60273 60274 60275 60276 60277 60278 60279 60280 60281 60282 | */ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); if( rc==SQLITE_OK ){ u8 *pOut = &pSpace[4]; u8 *pCell = pPage->apOvfl[0]; u16 szCell = pPage->xCellSize(pPage, pCell); u8 *pStop; assert( sqlite3PagerIswriteable(pNew->pDbPage) ); assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); rc = rebuildPage(pNew, 1, &pCell, &szCell); if( NEVER(rc) ) return rc; pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; /* If this is an auto-vacuum database, update the pointer map ** with entries for the new page, and any pointer from the ** cell on the page to an overflow page. If either of these ** operations fails, the return code is set, but the contents ** of the parent page are still manipulated by thh code below. |
︙ | ︙ | |||
59643 59644 59645 59646 59647 59648 59649 | assert( pPage->isInit ); for(j=0; j<pPage->nCell; j++){ CellInfo info; u8 *z; z = findCell(pPage, j); | | | 60341 60342 60343 60344 60345 60346 60347 60348 60349 60350 60351 60352 60353 60354 60355 | assert( pPage->isInit ); for(j=0; j<pPage->nCell; j++){ CellInfo info; u8 *z; z = findCell(pPage, j); pPage->xParseCell(pPage, z, &info); if( info.iOverflow ){ Pgno ovfl = get4byte(&z[info.iOverflow]); ptrmapGet(pBt, ovfl, &e, &n); assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); } if( !pPage->leaf ){ Pgno child = get4byte(z); |
︙ | ︙ | |||
59774 59775 59776 59777 59778 59779 59780 | MemPage *pParent, /* Parent page of siblings being balanced */ int iParentIdx, /* Index of "the page" in pParent */ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ int isRoot, /* True if pParent is a root-page */ int bBulk /* True if this call is part of a bulk load */ ){ BtShared *pBt; /* The whole database */ | < < | | < < > > > | 60472 60473 60474 60475 60476 60477 60478 60479 60480 60481 60482 60483 60484 60485 60486 60487 60488 60489 60490 60491 60492 60493 60494 60495 60496 60497 60498 60499 60500 60501 60502 60503 60504 60505 60506 60507 60508 60509 60510 60511 60512 60513 60514 60515 60516 | MemPage *pParent, /* Parent page of siblings being balanced */ int iParentIdx, /* Index of "the page" in pParent */ u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ int isRoot, /* True if pParent is a root-page */ int bBulk /* True if this call is part of a bulk load */ ){ BtShared *pBt; /* The whole database */ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ int nNew = 0; /* Number of pages in apNew[] */ int nOld; /* Number of pages in apOld[] */ int i, j, k; /* Loop counters */ int nxDiv; /* Next divider slot in pParent->aCell[] */ int rc = SQLITE_OK; /* The return code */ u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ int usableSpace; /* Bytes in pPage beyond the header */ int pageFlags; /* Value of pPage->aData[0] */ int iSpace1 = 0; /* First unused byte of aSpace1[] */ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ int szScratch; /* Size of scratch memory requested */ MemPage *apOld[NB]; /* pPage and up to two siblings */ MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ u8 *pRight; /* Location in parent of right-sibling pointer */ u8 *apDiv[NB-1]; /* Divider cells in pParent */ int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ int cntOld[NB+2]; /* Old index in b.apCell[] */ int szNew[NB+2]; /* Combined size of cells placed on i-th page */ u8 *aSpace1; /* Space for copies of dividers cells */ Pgno pgno; /* Temp var to store a page number in */ u8 abDone[NB+2]; /* True after i'th new page is populated */ Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ CellArray b; /* Parsed information on cells being balanced */ memset(abDone, 0, sizeof(abDone)); b.nCell = 0; b.apCell = 0; pBt = pParent->pBt; assert( sqlite3_mutex_held(pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); #if 0 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); #endif |
︙ | ︙ | |||
59859 59860 59861 59862 59863 59864 59865 | if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ | | | | | 60556 60557 60558 60559 60560 60561 60562 60563 60564 60565 60566 60567 60568 60569 60570 60571 60572 60573 60574 60575 60576 60577 60578 60579 60580 60581 60582 60583 60584 60585 60586 | if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); if( rc ){ memset(apOld, 0, (i+1)*sizeof(MemPage*)); goto balance_cleanup; } nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; if( (i--)==0 ) break; if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){ apDiv[i] = pParent->apOvfl[0]; pgno = get4byte(apDiv[i]); szNew[i] = pParent->xCellSize(pParent, apDiv[i]); pParent->nOverflow = 0; }else{ apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); pgno = get4byte(apDiv[i]); szNew[i] = pParent->xCellSize(pParent, apDiv[i]); /* Drop the cell from the parent page. apDiv[i] still points to ** the cell within the parent, even though it has been dropped. ** This is safe because dropping a cell only overwrites the first ** four bytes of it, and this function does not need the first ** four bytes of the divider cell. So the pointer is safe to use ** later on. |
︙ | ︙ | |||
59914 59915 59916 59917 59918 59919 59920 | ** alignment */ nMaxCells = (nMaxCells + 3)&~3; /* ** Allocate space for memory structures */ szScratch = | | | | | | | | | | > | | < > > > > > > | > > > > > > > > > > > > > > > > > > < | | | < | > | > > > | < > | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > | | | > > > | | > > > | > > > | < < | | | | > > > > > | > > > > > > > > > > > > > > > > > > | | > | | < > > | | | < < > > | > > > > | 60611 60612 60613 60614 60615 60616 60617 60618 60619 60620 60621 60622 60623 60624 60625 60626 60627 60628 60629 60630 60631 60632 60633 60634 60635 60636 60637 60638 60639 60640 60641 60642 60643 60644 60645 60646 60647 60648 60649 60650 60651 60652 60653 60654 60655 60656 60657 60658 60659 60660 60661 60662 60663 60664 60665 60666 60667 60668 60669 60670 60671 60672 60673 60674 60675 60676 60677 60678 60679 60680 60681 60682 60683 60684 60685 60686 60687 60688 60689 60690 60691 60692 60693 60694 60695 60696 60697 60698 60699 60700 60701 60702 60703 60704 60705 60706 60707 60708 60709 60710 60711 60712 60713 60714 60715 60716 60717 60718 60719 60720 60721 60722 60723 60724 60725 60726 60727 60728 60729 60730 60731 60732 60733 60734 60735 60736 60737 60738 60739 60740 60741 60742 60743 60744 60745 60746 60747 60748 60749 60750 60751 60752 60753 60754 60755 60756 60757 60758 60759 60760 60761 60762 60763 60764 60765 60766 60767 60768 60769 60770 60771 60772 60773 60774 60775 60776 60777 60778 60779 60780 60781 60782 60783 60784 60785 60786 60787 60788 60789 60790 60791 60792 60793 60794 60795 60796 60797 60798 60799 60800 60801 60802 60803 60804 60805 60806 60807 60808 60809 60810 60811 60812 60813 60814 60815 60816 60817 60818 60819 60820 60821 60822 60823 60824 60825 60826 60827 60828 60829 60830 60831 60832 60833 60834 60835 60836 60837 60838 60839 60840 60841 60842 60843 60844 60845 60846 60847 60848 60849 60850 60851 60852 60853 60854 60855 60856 60857 60858 60859 60860 | ** alignment */ nMaxCells = (nMaxCells + 3)&~3; /* ** Allocate space for memory structures */ szScratch = nMaxCells*sizeof(u8*) /* b.apCell */ + nMaxCells*sizeof(u16) /* b.szCell */ + pBt->pageSize; /* aSpace1 */ /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer ** that is more than 6 times the database page size. */ assert( szScratch<=6*(int)pBt->pageSize ); b.apCell = sqlite3ScratchMalloc( szScratch ); if( b.apCell==0 ){ rc = SQLITE_NOMEM; goto balance_cleanup; } b.szCell = (u16*)&b.apCell[nMaxCells]; aSpace1 = (u8*)&b.szCell[nMaxCells]; assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); /* ** Load pointers to all cells on sibling pages and the divider cells ** into the local b.apCell[] array. Make copies of the divider cells ** into space obtained from aSpace1[]. The divider cells have already ** been removed from pParent. ** ** If the siblings are on leaf pages, then the child pointers of the ** divider cells are stripped from the cells before they are copied ** into aSpace1[]. In this way, all cells in b.apCell[] are without ** child pointers. If siblings are not leaves, then all cell in ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] ** are alike. ** ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. ** leafData: 1 if pPage holds key+data and pParent holds only keys. */ b.pRef = apOld[0]; leafCorrection = b.pRef->leaf*4; leafData = b.pRef->intKeyLeaf; for(i=0; i<nOld; i++){ MemPage *pOld = apOld[i]; int limit = pOld->nCell; u8 *aData = pOld->aData; u16 maskPage = pOld->maskPage; u8 *piCell = aData + pOld->cellOffset; u8 *piEnd; /* Verify that all sibling pages are of the same "type" (table-leaf, ** table-interior, index-leaf, or index-interior). */ if( pOld->aData[0]!=apOld[0]->aData[0] ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } /* Load b.apCell[] with pointers to all cells in pOld. If pOld ** constains overflow cells, include them in the b.apCell[] array ** in the correct spot. ** ** Note that when there are multiple overflow cells, it is always the ** case that they are sequential and adjacent. This invariant arises ** because multiple overflows can only occurs when inserting divider ** cells into a parent on a prior balance, and divider cells are always ** adjacent and are inserted in order. There is an assert() tagged ** with "NOTE 1" in the overflow cell insertion loop to prove this ** invariant. ** ** This must be done in advance. Once the balance starts, the cell ** offset section of the btree page will be overwritten and we will no ** long be able to find the cells if a pointer to each cell is not saved ** first. */ memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit); if( pOld->nOverflow>0 ){ memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow); limit = pOld->aiOvfl[0]; for(j=0; j<limit; j++){ b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); piCell += 2; b.nCell++; } for(k=0; k<pOld->nOverflow; k++){ assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ b.apCell[b.nCell] = pOld->apOvfl[k]; b.nCell++; } } piEnd = aData + pOld->cellOffset + 2*pOld->nCell; while( piCell<piEnd ){ assert( b.nCell<nMaxCells ); b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); piCell += 2; b.nCell++; } cntOld[i] = b.nCell; if( i<nOld-1 && !leafData){ u16 sz = (u16)szNew[i]; u8 *pTemp; assert( b.nCell<nMaxCells ); b.szCell[b.nCell] = sz; pTemp = &aSpace1[iSpace1]; iSpace1 += sz; assert( sz<=pBt->maxLocal+23 ); assert( iSpace1 <= (int)pBt->pageSize ); memcpy(pTemp, apDiv[i], sz); b.apCell[b.nCell] = pTemp+leafCorrection; assert( leafCorrection==0 || leafCorrection==4 ); b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; if( !pOld->leaf ){ assert( leafCorrection==0 ); assert( pOld->hdrOffset==0 ); /* The right pointer of the child page pOld becomes the left ** pointer of the divider cell */ memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); }else{ assert( leafCorrection==4 ); while( b.szCell[b.nCell]<4 ){ /* Do not allow any cells smaller than 4 bytes. If a smaller cell ** does exist, pad it with 0x00 bytes. */ assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); aSpace1[iSpace1++] = 0x00; b.szCell[b.nCell]++; } } b.nCell++; } } /* ** Figure out the number of pages needed to hold all b.nCell cells. ** Store this number in "k". Also compute szNew[] which is the total ** size of all cells on the i-th page and cntNew[] which is the index ** in b.apCell[] of the cell that divides page i from page i+1. ** cntNew[k] should equal b.nCell. ** ** Values computed by this block: ** ** k: The total number of sibling pages ** szNew[i]: Spaced used on the i-th sibling page. ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to ** the right of the i-th sibling page. ** usableSpace: Number of bytes of space available on each sibling. ** */ usableSpace = pBt->usableSize - 12 + leafCorrection; for(i=0; i<nOld; i++){ MemPage *p = apOld[i]; szNew[i] = usableSpace - p->nFree; if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } for(j=0; j<p->nOverflow; j++){ szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); } cntNew[i] = cntOld[i]; } k = nOld; for(i=0; i<k; i++){ int sz; while( szNew[i]>usableSpace ){ if( i+1>=k ){ k = i+2; if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } szNew[k-1] = 0; cntNew[k-1] = b.nCell; } sz = 2 + cachedCellSize(&b, cntNew[i]-1); szNew[i] -= sz; if( !leafData ){ if( cntNew[i]<b.nCell ){ sz = 2 + cachedCellSize(&b, cntNew[i]); }else{ sz = 0; } } szNew[i+1] += sz; cntNew[i]--; } while( cntNew[i]<b.nCell ){ sz = 2 + cachedCellSize(&b, cntNew[i]); if( szNew[i]+sz>usableSpace ) break; szNew[i] += sz; cntNew[i]++; if( !leafData ){ if( cntNew[i]<b.nCell ){ sz = 2 + cachedCellSize(&b, cntNew[i]); }else{ sz = 0; } } szNew[i+1] -= sz; } if( cntNew[i]>=b.nCell ){ k = i+1; }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } /* ** The packing computed by the previous block is biased toward the siblings ** on the left side (siblings with smaller keys). The left siblings are ** always nearly full, while the right-most sibling might be nearly empty. ** The next block of code attempts to adjust the packing of siblings to ** get a better balance. ** ** This adjustment is more than an optimization. The packing above might ** be so out of balance as to be illegal. For example, the right-most ** sibling might be completely empty. This adjustment is not optional. */ for(i=k-1; i>0; i--){ int szRight = szNew[i]; /* Size of sibling on the right */ int szLeft = szNew[i-1]; /* Size of sibling on the left */ int r; /* Index of right-most cell in left sibling */ int d; /* Index of first cell to the left of right sibling */ r = cntNew[i-1] - 1; d = r + 1 - leafData; (void)cachedCellSize(&b, d); do{ assert( d<nMaxCells ); assert( r<nMaxCells ); (void)cachedCellSize(&b, r); if( szRight!=0 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){ break; } szRight += b.szCell[d] + 2; szLeft -= b.szCell[r] + 2; cntNew[i-1] = r; r--; d--; }while( r>=0 ); szNew[i] = szRight; szNew[i-1] = szLeft; if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } /* Sanity check: For a non-corrupt database file one of the follwing ** must be true: ** (1) We found one or more cells (cntNew[0])>0), or ** (2) pPage is a virtual root page. A virtual root page is when ** the real root page is page 1 and we are the only child of |
︙ | ︙ | |||
60114 60115 60116 60117 60118 60119 60120 | }else{ assert( i>0 ); rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); if( rc ) goto balance_cleanup; zeroPage(pNew, pageFlags); apNew[i] = pNew; nNew++; | | | 60882 60883 60884 60885 60886 60887 60888 60889 60890 60891 60892 60893 60894 60895 60896 | }else{ assert( i>0 ); rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); if( rc ) goto balance_cleanup; zeroPage(pNew, pageFlags); apNew[i] = pNew; nNew++; cntOld[i] = b.nCell; /* Set the pointer-map entry for the new sibling page. */ if( ISAUTOVACUUM ){ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); if( rc!=SQLITE_OK ){ goto balance_cleanup; } |
︙ | ︙ | |||
60219 60220 60221 60222 60223 60224 60225 | MemPage *pNew = apNew[0]; u8 *aOld = pNew->aData; int cntOldNext = pNew->nCell + pNew->nOverflow; int usableSize = pBt->usableSize; int iNew = 0; int iOld = 0; | | | | 60987 60988 60989 60990 60991 60992 60993 60994 60995 60996 60997 60998 60999 61000 61001 61002 | MemPage *pNew = apNew[0]; u8 *aOld = pNew->aData; int cntOldNext = pNew->nCell + pNew->nOverflow; int usableSize = pBt->usableSize; int iNew = 0; int iOld = 0; for(i=0; i<b.nCell; i++){ u8 *pCell = b.apCell[i]; if( i==cntOldNext ){ MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; aOld = pOld->aData; } if( i==cntNew[iNew] ){ pNew = apNew[++iNew]; |
︙ | ︙ | |||
60245 60246 60247 60248 60249 60250 60251 | || pNew->pgno!=aPgno[iOld] || pCell<aOld || pCell>=&aOld[usableSize] ){ if( !leafCorrection ){ ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); } | | > > | | | | | | | 61013 61014 61015 61016 61017 61018 61019 61020 61021 61022 61023 61024 61025 61026 61027 61028 61029 61030 61031 61032 61033 61034 61035 61036 61037 61038 61039 61040 61041 61042 61043 61044 61045 61046 61047 61048 61049 61050 61051 61052 61053 61054 61055 61056 61057 61058 61059 61060 61061 61062 61063 61064 61065 61066 61067 61068 61069 61070 61071 61072 61073 61074 61075 61076 61077 | || pNew->pgno!=aPgno[iOld] || pCell<aOld || pCell>=&aOld[usableSize] ){ if( !leafCorrection ){ ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); } if( cachedCellSize(&b,i)>pNew->minLocal ){ ptrmapPutOvflPtr(pNew, pCell, &rc); } if( rc ) goto balance_cleanup; } } } /* Insert new divider cells into pParent. */ for(i=0; i<nNew-1; i++){ u8 *pCell; u8 *pTemp; int sz; MemPage *pNew = apNew[i]; j = cntNew[i]; assert( j<nMaxCells ); assert( b.apCell[j]!=0 ); pCell = b.apCell[j]; sz = b.szCell[j] + leafCorrection; pTemp = &aOvflSpace[iOvflSpace]; if( !pNew->leaf ){ memcpy(&pNew->aData[8], pCell, 4); }else if( leafData ){ /* If the tree is a leaf-data tree, and the siblings are leaves, ** then there is no divider cell in b.apCell[]. Instead, the divider ** cell consists of the integer key for the right-most cell of ** the sibling-page assembled above only. */ CellInfo info; j--; pNew->xParseCell(pNew, b.apCell[j], &info); pCell = pTemp; sz = 4 + putVarint(&pCell[4], info.nKey); pTemp = 0; }else{ pCell -= 4; /* Obscure case for non-leaf-data trees: If the cell at pCell was ** previously stored on a leaf node, and its reported size was 4 ** bytes, then it may actually be smaller than this ** (see btreeParseCellPtr(), 4 bytes is the minimum size of ** any cell). But it is important to pass the correct size to ** insertCell(), so reparse the cell now. ** ** Note that this can never happen in an SQLite data file, as all ** cells are at least 4 bytes. It only happens in b-trees used ** to evaluate "IN (SELECT ...)" and similar clauses. */ if( b.szCell[j]==4 ){ assert(leafCorrection==4); sz = pParent->xCellSize(pParent, pCell); } } iOvflSpace += sz; assert( sz<=pBt->maxLocal+23 ); assert( iOvflSpace <= (int)pBt->pageSize ); insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); if( rc!=SQLITE_OK ) goto balance_cleanup; |
︙ | ︙ | |||
60349 60350 60351 60352 60353 60354 60355 | ** only after iPg+1 has already been updated. */ assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); if( iPg==0 ){ iNew = iOld = 0; nNewCell = cntNew[0]; }else{ | | | > | 61119 61120 61121 61122 61123 61124 61125 61126 61127 61128 61129 61130 61131 61132 61133 61134 61135 61136 61137 61138 61139 | ** only after iPg+1 has already been updated. */ assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); if( iPg==0 ){ iNew = iOld = 0; nNewCell = cntNew[0]; }else{ iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; iNew = cntNew[iPg-1] + !leafData; nNewCell = cntNew[iPg] - iNew; } rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); if( rc ) goto balance_cleanup; abDone[iPg]++; apNew[iPg]->nFree = usableSpace-szNew[iPg]; assert( apNew[iPg]->nOverflow==0 ); assert( apNew[iPg]->nCell==nNewCell ); } } |
︙ | ︙ | |||
60405 60406 60407 60408 60409 60410 60411 | u32 key = get4byte(&apNew[i]->aData[8]); ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); } } assert( pParent->isInit ); TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", | | | 61176 61177 61178 61179 61180 61181 61182 61183 61184 61185 61186 61187 61188 61189 61190 | u32 key = get4byte(&apNew[i]->aData[8]); ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); } } assert( pParent->isInit ); TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", nOld, nNew, b.nCell)); /* Free any old pages that were not reused as new pages. */ for(i=nNew; i<nOld; i++){ freePage(apOld[i], &rc); } |
︙ | ︙ | |||
60428 60429 60430 60431 60432 60433 60434 | } #endif /* ** Cleanup before returning. */ balance_cleanup: | | | 61199 61200 61201 61202 61203 61204 61205 61206 61207 61208 61209 61210 61211 61212 61213 | } #endif /* ** Cleanup before returning. */ balance_cleanup: sqlite3ScratchFree(b.apCell); for(i=0; i<nOld; i++){ releasePage(apOld[i]); } for(i=0; i<nNew; i++){ releasePage(apNew[i]); } |
︙ | ︙ | |||
60703 60704 60705 60706 60707 60708 60709 | ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the ** integer key to use. It then calls this function to actually insert the ** data into the intkey B-Tree. In this case btreeMoveto() recognizes ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ | > | | | > > | | | | > > | | < | | 61474 61475 61476 61477 61478 61479 61480 61481 61482 61483 61484 61485 61486 61487 61488 61489 61490 61491 61492 61493 61494 61495 61496 61497 61498 61499 61500 61501 61502 61503 61504 61505 61506 61507 61508 61509 61510 61511 61512 61513 61514 61515 61516 61517 61518 61519 61520 61521 61522 61523 61524 61525 61526 61527 | ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the ** integer key to use. It then calls this function to actually insert the ** data into the intkey B-Tree. In this case btreeMoveto() recognizes ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ if( pCur->curFlags & BTCF_Multiple ){ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; } if( pCur->pKeyInfo==0 ){ assert( pKey==0 ); /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, nKey, 0); /* If the cursor is currently on the last row and we are appending a ** new row onto the end, set the "loc" to avoid an unnecessary ** btreeMoveto() call */ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){ loc = -1; }else if( loc==0 ){ rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc); if( rc ) return rc; } }else if( loc==0 ){ rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); if( rc ) return rc; } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); pPage = pCur->apPage[pCur->iPage]; assert( pPage->intKey || nKey>=0 ); assert( pPage->leaf || !pPage->intKey ); TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", pCur->pgnoRoot, nKey, nData, pPage->pgno, loc==0 ? "overwrite" : "new entry")); assert( pPage->isInit ); newCell = pBt->pTmpSpace; assert( newCell!=0 ); rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); if( rc ) goto end_insert; assert( szNew==pPage->xCellSize(pPage, newCell) ); assert( szNew <= MX_CELL_SIZE(pBt) ); idx = pCur->aiIdx[pCur->iPage]; if( loc==0 ){ u16 szOld; assert( idx<pPage->nCell ); rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ){ |
︙ | ︙ | |||
60822 60823 60824 60825 60826 60827 60828 | assert( cursorHoldsMutex(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); | < | | < < < | 61597 61598 61599 61600 61601 61602 61603 61604 61605 61606 61607 61608 61609 61610 61611 61612 | assert( cursorHoldsMutex(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); assert( pCur->eState==CURSOR_VALID ); iCellDepth = pCur->iPage; iCellIdx = pCur->aiIdx[iCellDepth]; pPage = pCur->apPage[iCellDepth]; pCell = findCell(pPage, iCellIdx); /* If the page containing the entry to delete is not a leaf page, move |
︙ | ︙ | |||
60852 60853 60854 60855 60856 60857 60858 | } /* Save the positions of any other cursors open on this table before ** making any modifications. Make the page containing the entry to be ** deleted writable. Then free any overflow pages associated with the ** entry and finally remove the cell itself from within the page. */ | > | | > | 61623 61624 61625 61626 61627 61628 61629 61630 61631 61632 61633 61634 61635 61636 61637 61638 61639 61640 | } /* Save the positions of any other cursors open on this table before ** making any modifications. Make the page containing the entry to be ** deleted writable. Then free any overflow pages associated with the ** entry and finally remove the cell itself from within the page. */ if( pCur->curFlags & BTCF_Multiple ){ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; } /* If this is a delete operation to remove a row from a table b-tree, ** invalidate any incrblob cursors open on the row being deleted. */ if( pCur->pKeyInfo==0 ){ invalidateIncrblobCursors(p, pCur->info.nKey, 0); } |
︙ | ︙ | |||
60880 60881 60882 60883 60884 60885 60886 | MemPage *pLeaf = pCur->apPage[pCur->iPage]; int nCell; Pgno n = pCur->apPage[iCellDepth+1]->pgno; unsigned char *pTmp; pCell = findCell(pLeaf, pLeaf->nCell-1); if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; | | | 61653 61654 61655 61656 61657 61658 61659 61660 61661 61662 61663 61664 61665 61666 61667 | MemPage *pLeaf = pCur->apPage[pCur->iPage]; int nCell; Pgno n = pCur->apPage[iCellDepth+1]->pgno; unsigned char *pTmp; pCell = findCell(pLeaf, pLeaf->nCell-1); if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; nCell = pLeaf->xCellSize(pLeaf, pCell); assert( MX_CELL_SIZE(pBt) >= nCell ); pTmp = pBt->pTmpSpace; assert( pTmp!=0 ); rc = sqlite3PagerWrite(pLeaf->pDbPage); insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); if( rc ) return rc; |
︙ | ︙ | |||
61102 61103 61104 61105 61106 61107 61108 | int hdr; u16 szCell; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } | | | 61875 61876 61877 61878 61879 61880 61881 61882 61883 61884 61885 61886 61887 61888 61889 | int hdr; u16 szCell; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); if( rc ) return rc; if( pPage->bBusy ){ rc = SQLITE_CORRUPT_BKPT; goto cleardatabasepage_out; } pPage->bBusy = 1; hdr = pPage->hdrOffset; |
︙ | ︙ | |||
61774 61775 61776 61777 61778 61779 61780 | /* Check payload overflow pages */ pCheck->zPfx = "On tree page %d cell %d: "; pCheck->v1 = iPage; pCheck->v2 = i; pCell = findCell(pPage,i); | | | 62547 62548 62549 62550 62551 62552 62553 62554 62555 62556 62557 62558 62559 62560 62561 | /* Check payload overflow pages */ pCheck->zPfx = "On tree page %d cell %d: "; pCheck->v1 = iPage; pCheck->v2 = i; pCell = findCell(pPage,i); pPage->xParseCell(pPage, pCell, &info); sz = info.nPayload; /* For intKey pages, check that the keys are in order. */ if( pPage->intKey ){ if( i==0 ){ nMinKey = nMaxKey = info.nKey; }else if( info.nKey <= nMaxKey ){ |
︙ | ︙ | |||
61889 61890 61891 61892 61893 61894 61895 | nCell = get2byte(&data[hdr+3]); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=0; i<nCell; i++){ | | | | 62662 62663 62664 62665 62666 62667 62668 62669 62670 62671 62672 62673 62674 62675 62676 62677 62678 62679 | nCell = get2byte(&data[hdr+3]); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=0; i<nCell; i++){ int pc = get2byteAligned(&data[cellStart+i*2]); u32 size = 65536; if( pc<=usableSize-4 ){ size = pPage->xCellSize(pPage, &data[pc]); } if( (int)(pc+size-1)>=usableSize ){ pCheck->zPfx = 0; checkAppendMsg(pCheck, "Corruption detected in cell %d on page %d",i,iPage); }else{ btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); |
︙ | ︙ | |||
62290 62291 62292 62293 62294 62295 62296 62297 62298 62299 62300 62301 62302 62303 | } /* ** Mark this cursor as an incremental blob cursor. */ SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ pCur->curFlags |= BTCF_Incrblob; } #endif /* ** Set both the "read version" (single byte at byte offset 18) and ** "write version" (single byte at byte offset 19) fields in the database ** header to iVersion. | > | 63063 63064 63065 63066 63067 63068 63069 63070 63071 63072 63073 63074 63075 63076 63077 | } /* ** Mark this cursor as an incremental blob cursor. */ SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ pCur->curFlags |= BTCF_Incrblob; pCur->pBtree->hasIncrblobCur = 1; } #endif /* ** Set both the "read version" (single byte at byte offset 18) and ** "write version" (single byte at byte offset 19) fields in the database ** header to iVersion. |
︙ | ︙ | |||
63737 63738 63739 63740 63741 63742 63743 | ** is forced. In other words, the value is converted into the desired ** affinity even if that results in loss of data. This routine is ** used (for example) to implement the SQL "cast()" operator. */ SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ if( pMem->flags & MEM_Null ) return; switch( aff ){ | | | 64511 64512 64513 64514 64515 64516 64517 64518 64519 64520 64521 64522 64523 64524 64525 | ** is forced. In other words, the value is converted into the desired ** affinity even if that results in loss of data. This routine is ** used (for example) to implement the SQL "cast()" operator. */ SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ if( pMem->flags & MEM_Null ) return; switch( aff ){ case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ if( (pMem->flags & MEM_Blob)==0 ){ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); MemSetTypeFlag(pMem, MEM_Blob); }else{ pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); } |
︙ | ︙ | |||
63926 63927 63928 63929 63930 63931 63932 63933 63934 63935 | /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ assert( (pFrom->flags & MEM_RowSet)==0 ); assert( pTo->db==pFrom->db ); | > > > > > | | 64700 64701 64702 64703 64704 64705 64706 64707 64708 64709 64710 64711 64712 64713 64714 64715 64716 64717 64718 64719 64720 64721 64722 | /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ vdbeMemClearExternAndSetNull(pTo); assert( !VdbeMemDynamic(pTo) ); sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); } SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ assert( (pFrom->flags & MEM_RowSet)==0 ); assert( pTo->db==pFrom->db ); if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } memcpy(pTo, pFrom, MEMCELLSIZE); if( (pFrom->flags&MEM_Static)==0 ){ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); assert( srcType==MEM_Ephem || srcType==MEM_Static ); pTo->flags |= srcType; } } |
︙ | ︙ | |||
64095 64096 64097 64098 64099 64100 64101 64102 64103 64104 64105 64106 64107 64108 | ** pMem->zMalloc space will be allocated if necessary. The calling routine ** is responsible for making sure that the pMem object is eventually ** destroyed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ SQLITE_PRIVATE int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ | > > > > > > > > > > > > > > > > > > > > > > > > > > | 64874 64875 64876 64877 64878 64879 64880 64881 64882 64883 64884 64885 64886 64887 64888 64889 64890 64891 64892 64893 64894 64895 64896 64897 64898 64899 64900 64901 64902 64903 64904 64905 64906 64907 64908 64909 64910 64911 64912 64913 | ** pMem->zMalloc space will be allocated if necessary. The calling routine ** is responsible for making sure that the pMem object is eventually ** destroyed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ static SQLITE_NOINLINE int vdbeMemFromBtreeResize( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ int rc; pMem->flags = MEM_Null; if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ if( key ){ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); }else{ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); } if( rc==SQLITE_OK ){ pMem->z[amt] = 0; pMem->z[amt+1] = 0; pMem->flags = MEM_Blob|MEM_Term; pMem->n = (int)amt; }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } SQLITE_PRIVATE int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ |
︙ | ︙ | |||
64124 64125 64126 64127 64128 64129 64130 | assert( zData!=0 ); if( offset+amt<=available ){ pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; pMem->n = (int)amt; }else{ | < < < | < < < < < < < < < < < < | 64929 64930 64931 64932 64933 64934 64935 64936 64937 64938 64939 64940 64941 64942 64943 | assert( zData!=0 ); if( offset+amt<=available ){ pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; pMem->n = (int)amt; }else{ rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem); } return rc; } /* ** The pVal argument is known to be a value other than NULL. |
︙ | ︙ | |||
64460 64461 64462 64463 64464 64465 64466 | if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); }else{ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } | | | 65250 65251 65252 65253 65254 65255 65256 65257 65258 65259 65260 65261 65262 65263 65264 | if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); }else{ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; if( enc!=SQLITE_UTF8 ){ rc = sqlite3VdbeChangeEncoding(pVal, enc); |
︙ | ︙ | |||
64827 64828 64829 64830 64831 64832 64833 | SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3VdbeMemRelease((Mem *)v); sqlite3DbFree(((Mem*)v)->db, v); } /* | | | > > > > > > > > | > | | 65617 65618 65619 65620 65621 65622 65623 65624 65625 65626 65627 65628 65629 65630 65631 65632 65633 65634 65635 65636 65637 65638 65639 65640 65641 65642 65643 65644 65645 65646 65647 65648 65649 65650 65651 65652 | SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3VdbeMemRelease((Mem *)v); sqlite3DbFree(((Mem*)v)->db, v); } /* ** The sqlite3ValueBytes() routine returns the number of bytes in the ** sqlite3_value object assuming that it uses the encoding "enc". ** The valueBytes() routine is a helper function. */ static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ return valueToText(pVal, enc)!=0 ? pVal->n : 0; } SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ Mem *p = (Mem*)pVal; assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ return p->n; } if( (p->flags & MEM_Blob)!=0 ){ if( p->flags & MEM_Zero ){ return p->n + p->u.nZero; }else{ return p->n; } } if( p->flags & MEM_Null ) return 0; return valueBytes(pVal, enc); } /************** End of vdbemem.c *********************************************/ /************** Begin file vdbeaux.c *****************************************/ /* ** 2003 September 6 ** |
︙ | ︙ | |||
65076 65077 65078 65079 65080 65081 65082 65083 65084 65085 65086 65087 65088 65089 | const char *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); sqlite3VdbeChangeP4(p, addr, zP4, p4type); return addr; } /* ** Add an OP_ParseSchema opcode. This routine is broken out from ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees ** as having been used. ** ** The zWhere string must have been obtained from sqlite3_malloc(). | > > > > > > > > > > > > > > > > > | 65875 65876 65877 65878 65879 65880 65881 65882 65883 65884 65885 65886 65887 65888 65889 65890 65891 65892 65893 65894 65895 65896 65897 65898 65899 65900 65901 65902 65903 65904 65905 | const char *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); sqlite3VdbeChangeP4(p, addr, zP4, p4type); return addr; } /* ** Add an opcode that includes the p4 value with a P4_INT64 type. */ SQLITE_PRIVATE int sqlite3VdbeAddOp4Dup8( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ const u8 *zP4, /* The P4 operand */ int p4type /* P4 operand type */ ){ char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8); if( p4copy ) memcpy(p4copy, zP4, 8); return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); } /* ** Add an OP_ParseSchema opcode. This routine is broken out from ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees ** as having been used. ** ** The zWhere string must have been obtained from sqlite3_malloc(). |
︙ | ︙ | |||
65241 65242 65243 65244 65245 65246 65247 65248 65249 65250 65251 65252 65253 65254 65255 65256 65257 65258 65259 65260 65261 65262 65263 65264 65265 65266 65267 65268 65269 65270 65271 65272 65273 65274 65275 65276 65277 65278 65279 65280 65281 65282 65283 65284 65285 | ** ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_Destroy ** * OP_VUpdate ** * OP_VRename ** * OP_FkCounter with P2==0 (immediate foreign key constraint) ** ** Then check that the value of Parse.mayAbort is true if an ** ABORT may be thrown, or false otherwise. Return true if it does ** match, or false otherwise. This function is intended to be used as ** part of an assert statement in the compiler. Similar to: ** ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); */ SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ int hasAbort = 0; int hasFkCounter = 0; Op *pOp; VdbeOpIter sIter; memset(&sIter, 0, sizeof(sIter)); sIter.v = v; while( (pOp = opIterNext(&sIter))!=0 ){ int opcode = pOp->opcode; if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename || ((opcode==OP_Halt || opcode==OP_HaltIfNull) && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) ){ hasAbort = 1; break; } #ifndef SQLITE_OMIT_FOREIGN_KEY if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ hasFkCounter = 1; } #endif } sqlite3DbFree(v->db, sIter.apSub); /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. ** If malloc failed, then the while() loop above may not have iterated ** through all opcodes and hasAbort may be set incorrectly. Return ** true for this case to prevent the assert() in the callers frame ** from failing. */ | > > > > > | > | 66057 66058 66059 66060 66061 66062 66063 66064 66065 66066 66067 66068 66069 66070 66071 66072 66073 66074 66075 66076 66077 66078 66079 66080 66081 66082 66083 66084 66085 66086 66087 66088 66089 66090 66091 66092 66093 66094 66095 66096 66097 66098 66099 66100 66101 66102 66103 66104 66105 66106 66107 66108 66109 66110 66111 66112 66113 66114 66115 | ** ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_Destroy ** * OP_VUpdate ** * OP_VRename ** * OP_FkCounter with P2==0 (immediate foreign key constraint) ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) ** ** Then check that the value of Parse.mayAbort is true if an ** ABORT may be thrown, or false otherwise. Return true if it does ** match, or false otherwise. This function is intended to be used as ** part of an assert statement in the compiler. Similar to: ** ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); */ SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ int hasAbort = 0; int hasFkCounter = 0; int hasCreateTable = 0; int hasInitCoroutine = 0; Op *pOp; VdbeOpIter sIter; memset(&sIter, 0, sizeof(sIter)); sIter.v = v; while( (pOp = opIterNext(&sIter))!=0 ){ int opcode = pOp->opcode; if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename || ((opcode==OP_Halt || opcode==OP_HaltIfNull) && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) ){ hasAbort = 1; break; } if( opcode==OP_CreateTable ) hasCreateTable = 1; if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; #ifndef SQLITE_OMIT_FOREIGN_KEY if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ hasFkCounter = 1; } #endif } sqlite3DbFree(v->db, sIter.apSub); /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. ** If malloc failed, then the while() loop above may not have iterated ** through all opcodes and hasAbort may be set incorrectly. Return ** true for this case to prevent the assert() in the callers frame ** from failing. */ return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter || (hasCreateTable && hasInitCoroutine) ); } #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ /* ** Loop through the program looking for P2 values that are negative ** on jump instructions. Each such value is a label. Resolve the ** label by setting the P2 value to its correct non-zero value. |
︙ | ︙ | |||
65310 65311 65312 65313 65314 65315 65316 | p->bIsReader = 0; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; /* NOTE: Be sure to update mkopcodeh.awk when adding or removing ** cases from this switch! */ switch( opcode ){ | < < < < < | 66132 66133 66134 66135 66136 66137 66138 66139 66140 66141 66142 66143 66144 66145 | p->bIsReader = 0; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; /* NOTE: Be sure to update mkopcodeh.awk when adding or removing ** cases from this switch! */ switch( opcode ){ case OP_Transaction: { if( pOp->p2!=0 ) p->readOnly = 0; /* fall thru */ } case OP_AutoCommit: case OP_Savepoint: { p->bIsReader = 1; |
︙ | ︙ | |||
65558 65559 65560 65561 65562 65563 65564 65565 65566 65567 65568 65569 65570 65571 | /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ assert( db ); switch( p4type ){ case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { sqlite3DbFree(db, p4); break; } | > > > > | 66375 66376 66377 66378 66379 66380 66381 66382 66383 66384 66385 66386 66387 66388 66389 66390 66391 66392 | /* ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ assert( db ); switch( p4type ){ case P4_FUNCCTX: { freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); /* Fall through into the next case */ } case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { sqlite3DbFree(db, p4); break; } |
︙ | ︙ | |||
65942 65943 65944 65945 65946 65947 65948 65949 65950 65951 65952 65953 65954 65955 | break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); break; | > > > > > > > | 66763 66764 66765 66766 66767 66768 66769 66770 66771 66772 66773 66774 66775 66776 66777 66778 66779 66780 66781 66782 66783 | break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } #ifdef SQLITE_DEBUG case P4_FUNCCTX: { FuncDef *pDef = pOp->p4.pCtx->pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } #endif case P4_INT64: { sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); break; |
︙ | ︙ | |||
66062 66063 66064 66065 66066 66067 66068 | } #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 /* ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). */ | | < > > > > | 66890 66891 66892 66893 66894 66895 66896 66897 66898 66899 66900 66901 66902 66903 66904 66905 66906 66907 66908 66909 66910 66911 66912 66913 66914 66915 66916 66917 66918 66919 66920 | } #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 /* ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). */ static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ int i; sqlite3 *db; Db *aDb; int nDb; db = p->db; aDb = db->aDb; nDb = db->nDb; for(i=0; i<nDb; i++){ if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ sqlite3BtreeLeave(aDb[i].pBt); } } } SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ vdbeLeave(p); } #endif #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) /* ** Print a single opcode. This routine is used for debugging only. */ |
︙ | ︙ | |||
67773 67774 67775 67776 67777 67778 67779 67780 67781 67782 67783 67784 67785 67786 | n = (u32)pMem->n; if( flags & MEM_Zero ){ n += pMem->u.nZero; } return ((n*2) + 12 + ((flags&MEM_Str)!=0)); } /* ** Return the length of the data corresponding to the supplied serial-type. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ if( serial_type>=12 ){ return (serial_type-12)/2; }else{ | > > > > > > > < | | 68604 68605 68606 68607 68608 68609 68610 68611 68612 68613 68614 68615 68616 68617 68618 68619 68620 68621 68622 68623 68624 68625 68626 68627 68628 68629 68630 68631 68632 | n = (u32)pMem->n; if( flags & MEM_Zero ){ n += pMem->u.nZero; } return ((n*2) + 12 + ((flags&MEM_Str)!=0)); } /* ** The sizes for serial types less than 12 */ static const u8 sqlite3SmallTypeSizes[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; /* ** Return the length of the data corresponding to the supplied serial-type. */ SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ if( serial_type>=12 ){ return (serial_type-12)/2; }else{ return sqlite3SmallTypeSizes[serial_type]; } } /* ** If we are on an architecture with mixed-endian floating ** points (ex: ARM7) then swap the lower 4 bytes with the ** upper 4 bytes. Return the result. |
︙ | ︙ | |||
67865 67866 67867 67868 67869 67870 67871 | if( serial_type==7 ){ assert( sizeof(v)==sizeof(pMem->u.r) ); memcpy(&v, &pMem->u.r, sizeof(v)); swapMixedEndianFloat(v); }else{ v = pMem->u.i; } | | | 68702 68703 68704 68705 68706 68707 68708 68709 68710 68711 68712 68713 68714 68715 68716 | if( serial_type==7 ){ assert( sizeof(v)==sizeof(pMem->u.r) ); memcpy(&v, &pMem->u.r, sizeof(v)); swapMixedEndianFloat(v); }else{ v = pMem->u.i; } len = i = sqlite3SmallTypeSizes[serial_type]; assert( i>0 ); do{ buf[--i] = (u8)(v&0xFF); v >>= 8; }while( i ); return len; } |
︙ | ︙ | |||
68894 68895 68896 68897 68898 68899 68900 | testcase( typeRowid==5 ); testcase( typeRowid==6 ); testcase( typeRowid==8 ); testcase( typeRowid==9 ); if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ goto idx_rowid_corruption; } | | | 69731 69732 69733 69734 69735 69736 69737 69738 69739 69740 69741 69742 69743 69744 69745 | testcase( typeRowid==5 ); testcase( typeRowid==6 ); testcase( typeRowid==8 ); testcase( typeRowid==9 ); if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ goto idx_rowid_corruption; } lenRowid = sqlite3SmallTypeSizes[typeRowid]; testcase( (u32)m.n==szHdr+lenRowid ); if( unlikely((u32)m.n<szHdr+lenRowid) ){ goto idx_rowid_corruption; } /* Fetch the integer off the end of the index record */ sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
︙ | ︙ | |||
71120 71121 71122 71123 71124 71125 71126 | ** is not possible. Note that the integer representation is ** always preferred, even if the affinity is REAL, because ** an integer representation is more space efficient on disk. ** ** SQLITE_AFF_TEXT: ** Convert pRec to a text representation. ** | | | 71957 71958 71959 71960 71961 71962 71963 71964 71965 71966 71967 71968 71969 71970 71971 | ** is not possible. Note that the integer representation is ** always preferred, even if the affinity is REAL, because ** an integer representation is more space efficient on disk. ** ** SQLITE_AFF_TEXT: ** Convert pRec to a text representation. ** ** SQLITE_AFF_BLOB: ** No-op. pRec is unchanged. */ static void applyAffinity( Mem *pRec, /* The value to apply affinity to */ char affinity, /* The affinity to be applied */ u8 enc /* Use this text encoding */ ){ |
︙ | ︙ | |||
71521 71522 71523 71524 71525 71526 71527 71528 | assert( p->explain==0 ); p->pResultSet = 0; db->busyHandler.nBusy = 0; if( db->u1.isInterrupted ) goto abort_due_to_interrupt; sqlite3VdbeIOTraceSql(p); #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ assert( 0 < db->nProgressOps ); | > < < | < < < | 72358 72359 72360 72361 72362 72363 72364 72365 72366 72367 72368 72369 72370 72371 72372 72373 72374 | assert( p->explain==0 ); p->pResultSet = 0; db->busyHandler.nBusy = 0; if( db->u1.isInterrupted ) goto abort_due_to_interrupt; sqlite3VdbeIOTraceSql(p); #ifndef SQLITE_OMIT_PROGRESS_CALLBACK if( db->xProgress ){ u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; assert( 0 < db->nProgressOps ); nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); } #endif #ifdef SQLITE_DEBUG sqlite3BeginBenignMalloc(); if( p->pc==0 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 ){ |
︙ | ︙ | |||
72489 72490 72491 72492 72493 72494 72495 | assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } | | | | | > > > > > > > > > > > > | | > > | > | > > > > > | < < < < < < < < < < < < < < < < > > > > > > > | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | > | | < | | | 73322 73323 73324 73325 73326 73327 73328 73329 73330 73331 73332 73333 73334 73335 73336 73337 73338 73339 73340 73341 73342 73343 73344 73345 73346 73347 73348 73349 73350 73351 73352 73353 73354 73355 73356 73357 73358 73359 73360 73361 73362 73363 73364 73365 73366 73367 73368 73369 73370 73371 73372 73373 73374 73375 73376 73377 73378 73379 73380 73381 73382 73383 73384 73385 73386 73387 73388 73389 73390 73391 73392 73393 73394 73395 73396 73397 73398 73399 73400 73401 73402 73403 73404 73405 73406 73407 73408 73409 73410 73411 73412 73413 73414 73415 73416 73417 73418 73419 73420 73421 73422 73423 73424 73425 73426 73427 73428 73429 73430 73431 73432 73433 73434 73435 73436 73437 73438 73439 73440 73441 73442 73443 73444 | assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; } /* Opcode: Function0 P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to a FuncDef object that ** defines the function) with P5 arguments taken from register P2 and ** successors. The result of the function is stored in register P3. ** Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** See also: Function, AggStep, AggFinal */ /* Opcode: Function P1 P2 P3 P4 P5 ** Synopsis: r[P3]=func(r[P2@P5]) ** ** Invoke a user function (P4 is a pointer to an sqlite3_context object that ** contains a pointer to the function to be run) with P5 arguments taken ** from register P2 and successors. The result of the function is stored ** in register P3. Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** SQL functions are initially coded as OP_Function0 with P4 pointing ** to a FuncDef object. But on first evaluation, the P4 operand is ** automatically converted into an sqlite3_context object and the operation ** changed to this OP_Function opcode. In this way, the initialization of ** the sqlite3_context object occurs only once, rather than once for each ** evaluation of the function. ** ** See also: Function0, AggStep, AggFinal */ case OP_Function0: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); if( pCtx==0 ) goto no_mem; pCtx->pOut = 0; pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; pOp->opcode = OP_Function; /* Fall through into OP_Function */ } case OP_Function: { int i; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relavant parts of the sqlite3_context object */ pOut = &aMem[pOp->p3]; if( pCtx->pOut != pOut ){ pCtx->pOut = pOut; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } memAboutToChange(p, pCtx->pOut); #ifdef SQLITE_DEBUG for(i=0; i<pCtx->argc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif MemSetTypeFlag(pCtx->pOut, MEM_Null); pCtx->fErrorOrAux = 0; db->lastRowid = lastRowid; (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */ lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ /* If the function returned an error, throw an exception */ if( pCtx->fErrorOrAux ){ if( pCtx->isError ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); rc = pCtx->isError; } sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1); } /* Copy the result of the function into register P3 */ if( pOut->flags & (MEM_Str|MEM_Blob) ){ sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big; } REGISTER_TRACE(pOp->p3, pCtx->pOut); UPDATE_MAX_BLOBSIZE(pCtx->pOut); break; } /* Opcode: BitAnd P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]&r[P2] ** ** Take the bit-wise AND of the values in register P1 and P2 and |
︙ | ︙ | |||
72719 72720 72721 72722 72723 72724 72725 | ** <li value="100"> INTEGER ** <li value="101"> REAL ** </ul> ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_Cast: { /* in1 */ | | | | 73593 73594 73595 73596 73597 73598 73599 73600 73601 73602 73603 73604 73605 73606 73607 73608 73609 | ** <li value="100"> INTEGER ** <li value="101"> REAL ** </ul> ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_Cast: { /* in1 */ assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); testcase( pOp->p2==SQLITE_AFF_TEXT ); testcase( pOp->p2==SQLITE_AFF_BLOB ); testcase( pOp->p2==SQLITE_AFF_NUMERIC ); testcase( pOp->p2==SQLITE_AFF_INTEGER ); testcase( pOp->p2==SQLITE_AFF_REAL ); pIn1 = &aMem[pOp->p1]; memAboutToChange(p, pIn1); rc = ExpandBlob(pIn1); sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); |
︙ | ︙ | |||
73532 73533 73534 73535 73536 73537 73538 | ** P4 may be a string that is P2 characters long. The nth character of the ** string indicates the column affinity that should be used for the nth ** field of the index key. ** ** The mapping from character to affinity is given by the SQLITE_AFF_ ** macros defined in sqliteInt.h. ** | | | 74406 74407 74408 74409 74410 74411 74412 74413 74414 74415 74416 74417 74418 74419 74420 | ** P4 may be a string that is P2 characters long. The nth character of the ** string indicates the column affinity that should be used for the nth ** field of the index key. ** ** The mapping from character to affinity is given by the SQLITE_AFF_ ** macros defined in sqliteInt.h. ** ** If P4 is NULL then all index fields have the affinity BLOB. */ case OP_MakeRecord: { u8 *zNewRecord; /* A buffer to hold the data for the new record */ Mem *pRec; /* The new record */ u64 nData; /* Number of bytes of data space */ int nHdr; /* Number of bytes of header space */ i64 nByte; /* Data space required for this record */ |
︙ | ︙ | |||
74449 74450 74451 74452 74453 74454 74455 74456 74457 74458 74459 74460 74461 74462 | */ case OP_Close: { assert( pOp->p1>=0 && pOp->p1<p->nCursor ); sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); p->apCsr[pOp->p1] = 0; break; } /* Opcode: SeekGE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as the key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers | > > > > > > > > > > > > > > > > > > > > | 75323 75324 75325 75326 75327 75328 75329 75330 75331 75332 75333 75334 75335 75336 75337 75338 75339 75340 75341 75342 75343 75344 75345 75346 75347 75348 75349 75350 75351 75352 75353 75354 75355 75356 | */ case OP_Close: { assert( pOp->p1>=0 && pOp->p1<p->nCursor ); sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); p->apCsr[pOp->p1] = 0; break; } #ifdef SQLITE_ENABLE_COLUMN_USED_MASK /* Opcode: ColumnsUsed P1 * * P4 * ** ** This opcode (which only exists if SQLite was compiled with ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the ** table or index for cursor P1 are used. P4 is a 64-bit integer ** (P4_INT64) in which the first 63 bits are one for each of the ** first 63 columns of the table or index that are actually used ** by the cursor. The high-order bit is set if any column after ** the 64th is used. */ case OP_ColumnsUsed: { VdbeCursor *pC; pC = p->apCsr[pOp->p1]; assert( pC->pCursor ); pC->maskUsed = *(u64*)pOp->p4.pI64; break; } #endif /* Opcode: SeekGE P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), ** use the value in register P3 as the key. If cursor P1 refers ** to an SQL index, then P3 is the first in an array of P4 registers |
︙ | ︙ | |||
74938 74939 74940 74941 74942 74943 74944 | v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); | | < < > | 75832 75833 75834 75835 75836 75837 75838 75839 75840 75841 75842 75843 75844 75845 75846 75847 | v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pCursor!=0 ); { /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum ** positive integer, we have to fall through to the second ** probabilistic algorithm |
︙ | ︙ | |||
75679 75680 75681 75682 75683 75684 75685 | ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; | < < | | | | 76572 76573 76574 76575 76576 76577 76578 76579 76580 76581 76582 76583 76584 76585 76586 76587 76588 76589 76590 76591 76592 76593 76594 76595 76596 76597 76598 76599 76600 76601 76602 76603 76604 76605 | ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; int nKey; const char *zKey; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; assert( pC->pCursor!=0 ); assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc==SQLITE_OK ){ if( pOp->opcode==OP_SorterInsert ){ rc = sqlite3VdbeSorterWrite(pC, pIn2); }else{ nKey = pIn2->n; zKey = pIn2->z; rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, "", 0, 0, pOp->p3, ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) ); assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; } } break; |
︙ | ︙ | |||
76620 76621 76622 76623 76624 76625 76626 | pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i==0, 2); if( (pIn1->u.i++)==0 ) goto jump_to_p2; break; } | | | > > > > > > > > > > > | > > > > > > | < < < < | < > < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > | | < < | | > | | | | > > > > | < | 77511 77512 77513 77514 77515 77516 77517 77518 77519 77520 77521 77522 77523 77524 77525 77526 77527 77528 77529 77530 77531 77532 77533 77534 77535 77536 77537 77538 77539 77540 77541 77542 77543 77544 77545 77546 77547 77548 77549 77550 77551 77552 77553 77554 77555 77556 77557 77558 77559 77560 77561 77562 77563 77564 77565 77566 77567 77568 77569 77570 77571 77572 77573 77574 77575 77576 77577 77578 77579 77580 77581 77582 77583 77584 77585 77586 77587 77588 77589 77590 77591 77592 77593 77594 77595 77596 77597 77598 77599 77600 77601 77602 77603 77604 77605 77606 77607 77608 77609 77610 77611 77612 77613 77614 77615 77616 77617 77618 77619 | pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i==0, 2); if( (pIn1->u.i++)==0 ) goto jump_to_p2; break; } /* Opcode: AggStep0 * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to the FuncDef ** structure that specifies the function. Register P3 is the ** accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ /* Opcode: AggStep * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to an sqlite3_context ** object that is used to run the function. Register P3 is ** as the accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. ** ** This opcode is initially coded as OP_AggStep0. On first evaluation, ** the FuncDef stored in P4 is converted into an sqlite3_context and ** the opcode is changed. In this way, the initialization of the ** sqlite3_context only happens once, instead of on each call to the ** step function. */ case OP_AggStep0: { int n; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCDEF ); n = pOp->p5; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); if( pCtx==0 ) goto no_mem; pCtx->pMem = 0; pCtx->pFunc = pOp->p4.pFunc; pCtx->iOp = (int)(pOp - aOp); pCtx->pVdbe = p; pCtx->argc = n; pOp->p4type = P4_FUNCCTX; pOp->p4.pCtx = pCtx; pOp->opcode = OP_AggStep; /* Fall through into OP_AggStep */ } case OP_AggStep: { int i; sqlite3_context *pCtx; Mem *pMem; Mem t; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; pMem = &aMem[pOp->p3]; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relavant parts of the sqlite3_context object */ if( pCtx->pMem != pMem ){ pCtx->pMem = pMem; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } #ifdef SQLITE_DEBUG for(i=0; i<pCtx->argc; i++){ assert( memIsValid(pCtx->argv[i]) ); REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); } #endif pMem->n++; sqlite3VdbeMemInit(&t, db, MEM_Null); pCtx->pOut = &t; pCtx->fErrorOrAux = 0; pCtx->skipFlag = 0; (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ if( pCtx->fErrorOrAux ){ if( pCtx->isError ){ sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); rc = pCtx->isError; } sqlite3VdbeMemRelease(&t); }else{ assert( t.flags==MEM_Null ); } if( pCtx->skipFlag ){ assert( pOp[-1].opcode==OP_CollSeq ); i = pOp[-1].p1; if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); } break; } /* Opcode: AggFinal P1 P2 * P4 * ** Synopsis: accum=r[P1] N=P2 ** ** Execute the finalizer function for an aggregate. P1 is |
︙ | ︙ | |||
82719 82720 82721 82722 82723 82724 82725 82726 82727 82728 82729 82730 82731 82732 | if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " "the GROUP BY clause"); return WRC_Abort; } } } /* Advance to the next term of the compound */ p = p->pPrior; nCompound++; } | > > > > > > > | 83654 83655 83656 83657 83658 83659 83660 83661 83662 83663 83664 83665 83666 83667 83668 83669 83670 83671 83672 83673 83674 | if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " "the GROUP BY clause"); return WRC_Abort; } } } /* If this is part of a compound SELECT, check that it has the right ** number of expressions in the select list. */ if( p->pNext && p->pEList->nExpr!=p->pNext->pEList->nExpr ){ sqlite3SelectWrongNumTermsError(pParse, p->pNext); return WRC_Abort; } /* Advance to the next term of the compound */ p = p->pPrior; nCompound++; } |
︙ | ︙ | |||
83087 83088 83089 83090 83091 83092 83093 | if( aff1 && aff2 ){ /* Both sides of the comparison are columns. If one has numeric ** affinity, use that. Otherwise use no affinity. */ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ return SQLITE_AFF_NUMERIC; }else{ | | | | 84029 84030 84031 84032 84033 84034 84035 84036 84037 84038 84039 84040 84041 84042 84043 84044 84045 84046 84047 84048 84049 | if( aff1 && aff2 ){ /* Both sides of the comparison are columns. If one has numeric ** affinity, use that. Otherwise use no affinity. */ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ return SQLITE_AFF_NUMERIC; }else{ return SQLITE_AFF_BLOB; } }else if( !aff1 && !aff2 ){ /* Neither side of the comparison is a column. Compare the ** results directly. */ return SQLITE_AFF_BLOB; }else{ /* One side is a column, the other is not. Use the columns affinity. */ assert( aff1==0 || aff2==0 ); return (aff1 + aff2); } } |
︙ | ︙ | |||
83117 83118 83119 83120 83121 83122 83123 | assert( pExpr->pLeft ); aff = sqlite3ExprAffinity(pExpr->pLeft); if( pExpr->pRight ){ aff = sqlite3CompareAffinity(pExpr->pRight, aff); }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); }else if( !aff ){ | | | | 84059 84060 84061 84062 84063 84064 84065 84066 84067 84068 84069 84070 84071 84072 84073 84074 84075 84076 84077 84078 84079 84080 84081 84082 84083 84084 84085 84086 84087 | assert( pExpr->pLeft ); aff = sqlite3ExprAffinity(pExpr->pLeft); if( pExpr->pRight ){ aff = sqlite3CompareAffinity(pExpr->pRight, aff); }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); }else if( !aff ){ aff = SQLITE_AFF_BLOB; } return aff; } /* ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. ** idx_affinity is the affinity of an indexed column. Return true ** if the index with affinity idx_affinity may be used to implement ** the comparison in pExpr. */ SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ char aff = comparisonAffinity(pExpr); switch( aff ){ case SQLITE_AFF_BLOB: return 1; case SQLITE_AFF_TEXT: return idx_affinity==SQLITE_AFF_TEXT; default: return sqlite3IsNumericAffinity(idx_affinity); } } |
︙ | ︙ | |||
83937 83938 83939 83940 83941 83942 83943 | pNewItem->jointype = pOldItem->jointype; pNewItem->iCursor = pOldItem->iCursor; pNewItem->addrFillSub = pOldItem->addrFillSub; pNewItem->regReturn = pOldItem->regReturn; pNewItem->isCorrelated = pOldItem->isCorrelated; pNewItem->viaCoroutine = pOldItem->viaCoroutine; pNewItem->isRecursive = pOldItem->isRecursive; | | | 84879 84880 84881 84882 84883 84884 84885 84886 84887 84888 84889 84890 84891 84892 84893 | pNewItem->jointype = pOldItem->jointype; pNewItem->iCursor = pOldItem->iCursor; pNewItem->addrFillSub = pOldItem->addrFillSub; pNewItem->regReturn = pOldItem->regReturn; pNewItem->isCorrelated = pOldItem->isCorrelated; pNewItem->viaCoroutine = pOldItem->viaCoroutine; pNewItem->isRecursive = pOldItem->isRecursive; pNewItem->zIndexedBy = sqlite3DbStrDup(db, pOldItem->zIndexedBy); pNewItem->notIndexed = pOldItem->notIndexed; pNewItem->pIndex = pOldItem->pIndex; pTab = pNewItem->pTab = pOldItem->pTab; if( pTab ){ pTab->nRef++; } pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); |
︙ | ︙ | |||
84164 84165 84166 84167 84168 84169 84170 | ** Walker.eCode value determines the type of "constant" we are looking ** for. ** ** These callback routines are used to implement the following: ** ** sqlite3ExprIsConstant() pWalker->eCode==1 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 | | | 85106 85107 85108 85109 85110 85111 85112 85113 85114 85115 85116 85117 85118 85119 85120 | ** Walker.eCode value determines the type of "constant" we are looking ** for. ** ** These callback routines are used to implement the following: ** ** sqlite3ExprIsConstant() pWalker->eCode==1 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 ** ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression ** is found to not be a constant. ** ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing |
︙ | ︙ | |||
84272 84273 84274 84275 84276 84277 84278 | ** an ON or USING clause. */ SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){ return exprIsConst(p, 2, 0); } /* | | | 85214 85215 85216 85217 85218 85219 85220 85221 85222 85223 85224 85225 85226 85227 85228 | ** an ON or USING clause. */ SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){ return exprIsConst(p, 2, 0); } /* ** Walk an expression tree. Return non-zero if the expression is constant ** for any single row of the table with cursor iCur. In other words, the ** expression must not refer to any non-deterministic function nor any ** table other than iCur. */ SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){ return exprIsConst(p, 3, iCur); } |
︙ | ︙ | |||
84378 84379 84380 84381 84382 84383 84384 | ** This routine is used to determine if the OP_Affinity operation ** can be omitted. When in doubt return FALSE. A false negative ** is harmless. A false positive, however, can result in the wrong ** answer. */ SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ u8 op; | | | 85320 85321 85322 85323 85324 85325 85326 85327 85328 85329 85330 85331 85332 85333 85334 | ** This routine is used to determine if the OP_Affinity operation ** can be omitted. When in doubt return FALSE. A false negative ** is harmless. A false positive, however, can result in the wrong ** answer. */ SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ u8 op; if( aff==SQLITE_AFF_BLOB ) return 1; while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } op = p->op; if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: { return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; } |
︙ | ︙ | |||
84829 84830 84831 84832 84833 84834 84835 | */ int i; ExprList *pList = pExpr->x.pList; struct ExprList_item *pItem; int r1, r2, r3; if( !affinity ){ | | | 85771 85772 85773 85774 85775 85776 85777 85778 85779 85780 85781 85782 85783 85784 85785 | */ int i; ExprList *pList = pExpr->x.pList; struct ExprList_item *pItem; int r1, r2, r3; if( !affinity ){ affinity = SQLITE_AFF_BLOB; } if( pKeyInfo ){ assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); } /* Loop through each expression in <exprlist>. */ |
︙ | ︙ | |||
85104 85105 85106 85107 85108 85109 85110 | } sqlite3ReleaseTempReg(pParse, r1); sqlite3ExprCachePop(pParse); VdbeComment((v, "end IN expr")); } #endif /* SQLITE_OMIT_SUBQUERY */ | < < < < < < < < < < < < < | | 86046 86047 86048 86049 86050 86051 86052 86053 86054 86055 86056 86057 86058 86059 86060 86061 86062 86063 86064 86065 86066 86067 86068 86069 86070 86071 86072 86073 86074 86075 | } sqlite3ReleaseTempReg(pParse, r1); sqlite3ExprCachePop(pParse); VdbeComment((v, "end IN expr")); } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Generate an instruction that will put the floating point ** value described by z[0..n-1] into register iMem. ** ** The z[] string will probably not be zero-terminated. But the ** z[n] character is guaranteed to be something that does not look ** like the continuation of the number. */ static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ if( ALWAYS(z!=0) ){ double value; sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ if( negateFlag ) value = -value; sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); } } #endif /* ** Generate an instruction that will put the integer describe by |
︙ | ︙ | |||
85158 85159 85160 85161 85162 85163 85164 | }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3DecOrHexToI64(z, &value); if( c==0 || (c==2 && negFlag) ){ | < < | | 86087 86088 86089 86090 86091 86092 86093 86094 86095 86096 86097 86098 86099 86100 86101 86102 | }else{ int c; i64 value; const char *z = pExpr->u.zToken; assert( z!=0 ); c = sqlite3DecOrHexToI64(z, &value); if( c==0 || (c==2 && negFlag) ){ if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); }else{ #ifdef SQLITE_OMIT_FLOATING_POINT sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); #else #ifndef SQLITE_OMIT_HEX_INTEGER if( sqlite3_strnicmp(z,"0x",2)==0 ){ sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); |
︙ | ︙ | |||
85766 85767 85768 85769 85770 85771 85772 | } /* The UNLIKELY() function is a no-op. The result is the value ** of the first argument. */ if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ assert( nFarg>=1 ); | | | 86693 86694 86695 86696 86697 86698 86699 86700 86701 86702 86703 86704 86705 86706 86707 | } /* The UNLIKELY() function is a no-op. The result is the value ** of the first argument. */ if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ assert( nFarg>=1 ); inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); break; } for(i=0; i<nFarg; i++){ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ testcase( i==31 ); constMask |= MASKBIT32(i); |
︙ | ︙ | |||
85836 85837 85838 85839 85840 85841 85842 | pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } | | | 86763 86764 86765 86766 86767 86768 86769 86770 86771 86772 86773 86774 86775 86776 86777 | pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); } #endif if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ if( !pColl ) pColl = db->pDfltColl; sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nFarg); if( nFarg && constMask==0 ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); } break; } |
︙ | ︙ | |||
86207 86208 86209 86210 86211 86212 86213 | assert( pExpr->op!=TK_REGISTER ); sqlite3ExprCode(pParse, pExpr, target); iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); exprToRegister(pExpr, iMem); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 87134 87135 87136 87137 87138 87139 87140 87141 87142 87143 87144 87145 87146 87147 | assert( pExpr->op!=TK_REGISTER ); sqlite3ExprCode(pParse, pExpr, target); iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); exprToRegister(pExpr, iMem); } /* ** Generate code that pushes the value of every element of the given ** expression list into a sequence of registers beginning at target. ** ** Return the number of elements evaluated. ** ** The SQLITE_ECEL_DUP flag prevents the arguments from being |
︙ | ︙ | |||
86859 86860 86861 86862 86863 86864 86865 86866 86867 86868 86869 86870 86871 86872 | } break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Do a deep comparison of two expression trees. Return 0 if the two ** expressions are completely identical. Return 1 if they differ only ** by a COLLATE operator at the top level. Return 2 if there are differences ** other than the top-level COLLATE operator. ** | > > > > > > > > > > > > > > > | 87524 87525 87526 87527 87528 87529 87530 87531 87532 87533 87534 87535 87536 87537 87538 87539 87540 87541 87542 87543 87544 87545 87546 87547 87548 87549 87550 87551 87552 | } break; } } sqlite3ReleaseTempReg(pParse, regFree1); sqlite3ReleaseTempReg(pParse, regFree2); } /* ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before ** code generation, and that copy is deleted after code generation. This ** ensures that the original pExpr is unchanged. */ SQLITE_PRIVATE void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ sqlite3 *db = pParse->db; Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); if( db->mallocFailed==0 ){ sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); } sqlite3ExprDelete(db, pCopy); } /* ** Do a deep comparison of two expression trees. Return 0 if the two ** expressions are completely identical. Return 1 if they differ only ** by a COLLATE operator at the top level. Return 2 if there are differences ** other than the top-level COLLATE operator. ** |
︙ | ︙ | |||
88012 88013 88014 88015 88016 88017 88018 | /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) */ if( pDflt ){ sqlite3_value *pVal = 0; int rc; | | | 88692 88693 88694 88695 88696 88697 88698 88699 88700 88701 88702 88703 88704 88705 88706 | /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) */ if( pDflt ){ sqlite3_value *pVal = 0; int rc; rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_BLOB, &pVal); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); if( rc!=SQLITE_OK ){ db->mallocFailed = 1; return; } if( !pVal ){ sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default"); |
︙ | ︙ | |||
89097 89098 89099 89100 89101 89102 89103 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); #elif SQLITE_DEBUG assert( iParam==STAT_GET_STAT1 ); #else UNUSED_PARAMETER( iParam ); #endif | | | 89777 89778 89779 89780 89781 89782 89783 89784 89785 89786 89787 89788 89789 89790 89791 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); #elif SQLITE_DEBUG assert( iParam==STAT_GET_STAT1 ); #else UNUSED_PARAMETER( iParam ); #endif sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4, regOut); sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 1 + IsStat34); } /* ** Generate code to do an analysis of all indices associated with ** a single table. |
︙ | ︙ | |||
89252 89253 89254 89255 89256 89257 89258 | ** The third argument is only used for STAT3 and STAT4 */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); #endif sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); | | | 89932 89933 89934 89935 89936 89937 89938 89939 89940 89941 89942 89943 89944 89945 89946 | ** The third argument is only used for STAT3 and STAT4 */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); #endif sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4+1, regStat4); sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); /* Implementation of the following: ** ** Rewind csr ** if eof(csr) goto end_of_scan; |
︙ | ︙ | |||
89348 89349 89350 89351 89352 89353 89354 | VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); | | | 90028 90029 90030 90031 90032 90033 90034 90035 90036 90037 90038 90039 90040 90041 90042 | VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); sqlite3VdbeAddOp3(v, OP_Function0, 1, regStat4, regTemp); sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); /* Add the entry to the stat1 table. */ callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
︙ | ︙ | |||
90407 90408 90409 90410 90411 90412 90413 | regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ | | | 91087 91088 91089 91090 91091 91092 91093 91094 91095 91096 91097 91098 91099 91100 91101 | regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ sqlite3VdbeAddOp3(v, OP_Function0, 0, regArgs+3-pFunc->nArg, regArgs+3); assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg ); sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg)); sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF); /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this ** statement only). For DETACH, set it to false (expire all existing ** statements). |
︙ | ︙ | |||
91872 91873 91874 91875 91876 91877 91878 | ** indices. Hence, the record number for the table must be allocated ** now. */ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ int j1; int fileFormat; int reg1, reg2, reg3; | | | 92552 92553 92554 92555 92556 92557 92558 92559 92560 92561 92562 92563 92564 92565 92566 | ** indices. Hence, the record number for the table must be allocated ** now. */ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ int j1; int fileFormat; int reg1, reg2, reg3; sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( isVirtual ){ sqlite3VdbeAddOp0(v, OP_VBegin); } #endif |
︙ | ︙ | |||
91988 91989 91990 91991 91992 91993 91994 | p->aCol = aNew; } pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zName = z; /* If there is no type specified, columns have the default affinity | | | | 92668 92669 92670 92671 92672 92673 92674 92675 92676 92677 92678 92679 92680 92681 92682 92683 92684 92685 | p->aCol = aNew; } pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zName = z; /* If there is no type specified, columns have the default affinity ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will ** be called next to set pCol->affinity correctly. */ pCol->affinity = SQLITE_AFF_BLOB; pCol->szEst = 1; p->nCol++; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has |
︙ | ︙ | |||
92026 92027 92028 92029 92030 92031 92032 | ** ** Substring | Affinity ** -------------------------------- ** 'INT' | SQLITE_AFF_INTEGER ** 'CHAR' | SQLITE_AFF_TEXT ** 'CLOB' | SQLITE_AFF_TEXT ** 'TEXT' | SQLITE_AFF_TEXT | | | 92706 92707 92708 92709 92710 92711 92712 92713 92714 92715 92716 92717 92718 92719 92720 | ** ** Substring | Affinity ** -------------------------------- ** 'INT' | SQLITE_AFF_INTEGER ** 'CHAR' | SQLITE_AFF_TEXT ** 'CLOB' | SQLITE_AFF_TEXT ** 'TEXT' | SQLITE_AFF_TEXT ** 'BLOB' | SQLITE_AFF_BLOB ** 'REAL' | SQLITE_AFF_REAL ** 'FLOA' | SQLITE_AFF_REAL ** 'DOUB' | SQLITE_AFF_REAL ** ** If none of the substrings in the above table are found, ** SQLITE_AFF_NUMERIC is returned. */ |
︙ | ︙ | |||
92052 92053 92054 92055 92056 92057 92058 | zChar = zIn; }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ aff = SQLITE_AFF_TEXT; }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ aff = SQLITE_AFF_TEXT; }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ | | | 92732 92733 92734 92735 92736 92737 92738 92739 92740 92741 92742 92743 92744 92745 92746 | zChar = zIn; }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ aff = SQLITE_AFF_TEXT; }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ aff = SQLITE_AFF_TEXT; }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ aff = SQLITE_AFF_BLOB; if( zIn[0]=='(' ) zChar = zIn; #ifndef SQLITE_OMIT_FLOATING_POINT }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ && aff==SQLITE_AFF_NUMERIC ){ |
︙ | ︙ | |||
92444 92445 92446 92447 92448 92449 92450 | } sqlite3_snprintf(n, zStmt, "CREATE TABLE "); k = sqlite3Strlen30(zStmt); identPut(zStmt, &k, p->zName); zStmt[k++] = '('; for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ static const char * const azType[] = { | | | | | | | | 93124 93125 93126 93127 93128 93129 93130 93131 93132 93133 93134 93135 93136 93137 93138 93139 93140 93141 93142 93143 93144 93145 93146 93147 93148 93149 93150 93151 93152 93153 93154 93155 93156 93157 93158 93159 93160 93161 | } sqlite3_snprintf(n, zStmt, "CREATE TABLE "); k = sqlite3Strlen30(zStmt); identPut(zStmt, &k, p->zName); zStmt[k++] = '('; for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ static const char * const azType[] = { /* SQLITE_AFF_BLOB */ "", /* SQLITE_AFF_TEXT */ " TEXT", /* SQLITE_AFF_NUMERIC */ " NUM", /* SQLITE_AFF_INTEGER */ " INT", /* SQLITE_AFF_REAL */ " REAL" }; int len; const char *zType; sqlite3_snprintf(n-k, &zStmt[k], zSep); k += sqlite3Strlen30(&zStmt[k]); zSep = zSep2; identPut(zStmt, &k, pCol->zName); assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); testcase( pCol->affinity==SQLITE_AFF_BLOB ); testcase( pCol->affinity==SQLITE_AFF_TEXT ); testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); testcase( pCol->affinity==SQLITE_AFF_INTEGER ); testcase( pCol->affinity==SQLITE_AFF_REAL ); zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; len = sqlite3Strlen30(zType); assert( pCol->affinity==SQLITE_AFF_BLOB || pCol->affinity==sqlite3AffinityType(zType, 0) ); memcpy(&zStmt[k], zType, len); k += len; assert( k<=n ); } sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); return zStmt; |
︙ | ︙ | |||
92820 92821 92822 92823 92824 92825 92826 92827 92828 92829 92830 92831 92832 92833 | int addrInsLoop; /* Top of the loop for inserting rows */ Table *pSelTab; /* A table that describes the SELECT results */ regYield = ++pParse->nMem; regRec = ++pParse->nMem; regRowid = ++pParse->nMem; assert(pParse->nTab==1); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); pParse->nTab = 2; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); sqlite3Select(pParse, pSelect, &dest); | > | 93500 93501 93502 93503 93504 93505 93506 93507 93508 93509 93510 93511 93512 93513 93514 | int addrInsLoop; /* Top of the loop for inserting rows */ Table *pSelTab; /* A table that describes the SELECT results */ regYield = ++pParse->nMem; regRec = ++pParse->nMem; regRowid = ++pParse->nMem; assert(pParse->nTab==1); sqlite3MayAbort(pParse); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); pParse->nTab = 2; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); sqlite3Select(pParse, pSelect, &dest); |
︙ | ︙ | |||
94597 94598 94599 94600 94601 94602 94603 | int i; struct SrcList_item *pItem; if( pList==0 ) return; for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ sqlite3DbFree(db, pItem->zDatabase); sqlite3DbFree(db, pItem->zName); sqlite3DbFree(db, pItem->zAlias); | | | 95278 95279 95280 95281 95282 95283 95284 95285 95286 95287 95288 95289 95290 95291 95292 | int i; struct SrcList_item *pItem; if( pList==0 ) return; for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ sqlite3DbFree(db, pItem->zDatabase); sqlite3DbFree(db, pItem->zName); sqlite3DbFree(db, pItem->zAlias); sqlite3DbFree(db, pItem->zIndexedBy); sqlite3DeleteTable(db, pItem->pTab); sqlite3SelectDelete(db, pItem->pSelect); sqlite3ExprDelete(db, pItem->pOn); sqlite3IdListDelete(db, pItem->pUsing); } sqlite3DbFree(db, pList); } |
︙ | ︙ | |||
94670 94671 94672 94673 94674 94675 94676 | ** Add an INDEXED BY or NOT INDEXED clause to the most recently added ** element of the source-list passed as the second argument. */ SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ assert( pIndexedBy!=0 ); if( p && ALWAYS(p->nSrc>0) ){ struct SrcList_item *pItem = &p->a[p->nSrc-1]; | | | | 95351 95352 95353 95354 95355 95356 95357 95358 95359 95360 95361 95362 95363 95364 95365 95366 95367 95368 95369 95370 95371 | ** Add an INDEXED BY or NOT INDEXED clause to the most recently added ** element of the source-list passed as the second argument. */ SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ assert( pIndexedBy!=0 ); if( p && ALWAYS(p->nSrc>0) ){ struct SrcList_item *pItem = &p->a[p->nSrc-1]; assert( pItem->notIndexed==0 && pItem->zIndexedBy==0 ); if( pIndexedBy->n==1 && !pIndexedBy->z ){ /* A "NOT INDEXED" clause was supplied. See parse.y ** construct "indexed_opt" for details. */ pItem->notIndexed = 1; }else{ pItem->zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); } } } /* ** When building up a FROM clause in the parser, the join operator ** is initially attached to the left operand. But the code generator |
︙ | ︙ | |||
96500 96501 96502 96503 96504 96505 96506 | int nCol; if( piPartIdxLabel ){ if( pIdx->pPartIdxWhere ){ *piPartIdxLabel = sqlite3VdbeMakeLabel(v); pParse->iPartIdxTab = iDataCur; sqlite3ExprCachePush(pParse); | | | | 97181 97182 97183 97184 97185 97186 97187 97188 97189 97190 97191 97192 97193 97194 97195 97196 | int nCol; if( piPartIdxLabel ){ if( pIdx->pPartIdxWhere ){ *piPartIdxLabel = sqlite3VdbeMakeLabel(v); pParse->iPartIdxTab = iDataCur; sqlite3ExprCachePush(pParse); sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, *piPartIdxLabel, SQLITE_JUMPIFNULL); }else{ *piPartIdxLabel = 0; } } nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn; regBase = sqlite3GetTempRange(pParse, nCol); if( pPrior && (regBase!=regPrior || pPrior->pPartIdxWhere) ) pPrior = 0; |
︙ | ︙ | |||
97117 97118 97119 97120 97121 97122 97123 | u8 matchOne; u8 matchSet; u8 noCase; }; /* ** For LIKE and GLOB matching on EBCDIC machines, assume that every | | | | | < | < | 97798 97799 97800 97801 97802 97803 97804 97805 97806 97807 97808 97809 97810 97811 97812 97813 97814 97815 97816 97817 97818 97819 97820 | u8 matchOne; u8 matchSet; u8 noCase; }; /* ** For LIKE and GLOB matching on EBCDIC machines, assume that every ** character is exactly one byte in size. Also, provde the Utf8Read() ** macro for fast reading of the next character in the common case where ** the next character is ASCII. */ #if defined(SQLITE_EBCDIC) # define sqlite3Utf8Read(A) (*((*A)++)) # define Utf8Read(A) (*(A++)) #else # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A)) #endif static const struct compareInfo globInfo = { '*', '?', '[', 0 }; /* The correct SQL-92 behavior is for the LIKE operator to ignore ** case. Thus 'a' LIKE 'A' would be true. */ static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator |
︙ | ︙ | |||
97169 97170 97171 97172 97173 97174 97175 | ** '%' Matches any sequence of zero or more characters ** *** '_' Matches any one character ** ** Ec Where E is the "esc" character and c is any other ** character, including '%', '_', and esc, match exactly c. ** | | | 97848 97849 97850 97851 97852 97853 97854 97855 97856 97857 97858 97859 97860 97861 97862 | ** '%' Matches any sequence of zero or more characters ** *** '_' Matches any one character ** ** Ec Where E is the "esc" character and c is any other ** character, including '%', '_', and esc, match exactly c. ** ** The comments within this routine usually assume glob matching. ** ** This routine is usually quick, but can be N**2 in the worst case. */ static int patternCompare( const u8 *zPattern, /* The glob pattern */ const u8 *zString, /* The string to compare against the glob */ const struct compareInfo *pInfo, /* Information about how to do the compare */ |
︙ | ︙ | |||
97193 97194 97195 97196 97197 97198 97199 | /* The GLOB operator does not have an ESCAPE clause. And LIKE does not ** have the matchSet operator. So we either have to look for one or ** the other, never both. Hence the single variable matchOther is used ** to store the one we have to look for. */ matchOther = esc ? esc : pInfo->matchSet; | | < | | 97872 97873 97874 97875 97876 97877 97878 97879 97880 97881 97882 97883 97884 97885 97886 97887 97888 97889 97890 97891 | /* The GLOB operator does not have an ESCAPE clause. And LIKE does not ** have the matchSet operator. So we either have to look for one or ** the other, never both. Hence the single variable matchOther is used ** to store the one we have to look for. */ matchOther = esc ? esc : pInfo->matchSet; while( (c = Utf8Read(zPattern))!=0 ){ if( c==matchAll ){ /* Match "*" */ /* Skip over multiple "*" characters in the pattern. If there ** are also "?" characters, skip those as well, but consume a ** single character of the input string for each "?" skipped */ while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){ if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ return 0; } } if( c==0 ){ return 1; /* "*" at the end of the pattern matches */ }else if( c==matchOther ){ |
︙ | ︙ | |||
97244 97245 97246 97247 97248 97249 97250 | cx = c; } while( (c2 = *(zString++))!=0 ){ if( c2!=c && c2!=cx ) continue; if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; } }else{ | | | 97922 97923 97924 97925 97926 97927 97928 97929 97930 97931 97932 97933 97934 97935 97936 | cx = c; } while( (c2 = *(zString++))!=0 ){ if( c2!=c && c2!=cx ) continue; if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; } }else{ while( (c2 = Utf8Read(zString))!=0 ){ if( c2!=c ) continue; if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; } } return 0; } if( c==matchOther ){ |
︙ | ︙ | |||
97290 97291 97292 97293 97294 97295 97296 | } if( c2==0 || (seen ^ invert)==0 ){ return 0; } continue; } } | | | 97968 97969 97970 97971 97972 97973 97974 97975 97976 97977 97978 97979 97980 97981 97982 | } if( c2==0 || (seen ^ invert)==0 ){ return 0; } continue; } } c2 = Utf8Read(zString); if( c==c2 ) continue; if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){ continue; } if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue; return 0; } |
︙ | ︙ | |||
99804 99805 99806 99807 99808 99809 99810 | /* ** Return a pointer to the column affinity string associated with index ** pIdx. A column affinity string has one character for each column in ** the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ | | | 100482 100483 100484 100485 100486 100487 100488 100489 100490 100491 100492 100493 100494 100495 100496 | /* ** Return a pointer to the column affinity string associated with index ** pIdx. A column affinity string has one character for each column in ** the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ ** 'A' BLOB ** 'B' TEXT ** 'C' NUMERIC ** 'D' INTEGER ** 'F' REAL ** ** An extra 'D' is appended to the end of the string to cover the ** rowid that appears as the last column in every index. |
︙ | ︙ | |||
99847 99848 99849 99850 99851 99852 99853 | } return pIdx->zColAff; } /* ** Compute the affinity string for table pTab, if it has not already been | | | | | 100525 100526 100527 100528 100529 100530 100531 100532 100533 100534 100535 100536 100537 100538 100539 100540 100541 100542 100543 100544 100545 100546 100547 100548 100549 100550 100551 | } return pIdx->zColAff; } /* ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. ** ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and ** if iReg>0 then code an OP_Affinity opcode that will set the affinities ** for register iReg and following. Or if affinities exists and iReg==0, ** then just set the P4 operand of the previous opcode (which should be ** an OP_MakeRecord) to the affinity string. ** ** A column affinity string has one character per column: ** ** Character Column affinity ** ------------------------------ ** 'A' BLOB ** 'B' TEXT ** 'C' NUMERIC ** 'D' INTEGER ** 'E' REAL */ SQLITE_PRIVATE void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ int i; |
︙ | ︙ | |||
99881 99882 99883 99884 99885 99886 99887 | } for(i=0; i<pTab->nCol; i++){ zColAff[i] = pTab->aCol[i].affinity; } do{ zColAff[i--] = 0; | | | 100559 100560 100561 100562 100563 100564 100565 100566 100567 100568 100569 100570 100571 100572 100573 | } for(i=0; i<pTab->nCol; i++){ zColAff[i] = pTab->aCol[i].affinity; } do{ zColAff[i--] = 0; }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); pTab->zColAff = zColAff; } i = sqlite3Strlen30(zColAff); if( i ){ if( iReg ){ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); }else{ |
︙ | ︙ | |||
101129 101130 101131 101132 101133 101134 101135 | iThisCur = iIdxCur+ix; addrUniqueOk = sqlite3VdbeMakeLabel(v); /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->ckBase = regNewData+1; | | | | 101807 101808 101809 101810 101811 101812 101813 101814 101815 101816 101817 101818 101819 101820 101821 101822 | iThisCur = iIdxCur+ix; addrUniqueOk = sqlite3VdbeMakeLabel(v); /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->ckBase = regNewData+1; sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, SQLITE_JUMPIFNULL); pParse->ckBase = 0; } /* Create a record for this index entry as it should appear after ** the insert or update. Store that record in the aRegIdx[ix] register */ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); |
︙ | ︙ | |||
102240 102241 102242 102243 102244 102245 102246 | void *(*realloc64)(void*,sqlite3_uint64); void (*reset_auto_extension)(void); void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64, void(*)(void*)); void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64, void(*)(void*), unsigned char); int (*strglob)(const char*,const char*); | > | | 102918 102919 102920 102921 102922 102923 102924 102925 102926 102927 102928 102929 102930 102931 102932 102933 | void *(*realloc64)(void*,sqlite3_uint64); void (*reset_auto_extension)(void); void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64, void(*)(void*)); void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64, void(*)(void*), unsigned char); int (*strglob)(const char*,const char*); /* Version 3.8.11 and later */ sqlite3_value *(*value_dup)(const sqlite3_value*); void (*value_free)(sqlite3_value*); }; /* ** The following macros redefine the API routines so that they are ** redirected through the global sqlite3_api structure. ** |
︙ | ︙ | |||
102880 102881 102882 102883 102884 102885 102886 | sqlite3_load_extension, sqlite3_malloc64, sqlite3_msize, sqlite3_realloc64, sqlite3_reset_auto_extension, sqlite3_result_blob64, sqlite3_result_text64, | | > > > | 103559 103560 103561 103562 103563 103564 103565 103566 103567 103568 103569 103570 103571 103572 103573 103574 103575 103576 | sqlite3_load_extension, sqlite3_malloc64, sqlite3_msize, sqlite3_realloc64, sqlite3_reset_auto_extension, sqlite3_result_blob64, sqlite3_result_text64, sqlite3_strglob, /* Version 3.8.11 and later */ (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup, sqlite3_value_free }; /* ** Attempt to load an SQLite extension library contained in the file ** zFile. The entry point is zProc. zProc may be 0 in which case a ** default entry point name (sqlite3_extension_init) is used. Use ** of the default name is recommended. |
︙ | ︙ | |||
106615 106616 106617 106618 106619 106620 106621 | /* ** Trace output macros */ #if SELECTTRACE_ENABLED /***/ int sqlite3SelectTrace = 0; # define SELECTTRACE(K,P,S,X) \ if(sqlite3SelectTrace&(K)) \ | | > | 107297 107298 107299 107300 107301 107302 107303 107304 107305 107306 107307 107308 107309 107310 107311 107312 | /* ** Trace output macros */ #if SELECTTRACE_ENABLED /***/ int sqlite3SelectTrace = 0; # define SELECTTRACE(K,P,S,X) \ if(sqlite3SelectTrace&(K)) \ sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ (S)->zSelName,(S)),\ sqlite3DebugPrintf X #else # define SELECTTRACE(K,P,S,X) #endif /* |
︙ | ︙ | |||
106959 106960 106961 106962 106963 106964 106965 106966 106967 106968 106969 106970 106971 106972 | */ static void setJoinExpr(Expr *p, int iTable){ while( p ){ ExprSetProperty(p, EP_FromJoin); assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(p, EP_NoReduce); p->iRightJoinTable = (i16)iTable; setJoinExpr(p->pLeft, iTable); p = p->pRight; } } /* ** This routine processes the join information for a SELECT statement. | > > > > > > | 107642 107643 107644 107645 107646 107647 107648 107649 107650 107651 107652 107653 107654 107655 107656 107657 107658 107659 107660 107661 | */ static void setJoinExpr(Expr *p, int iTable){ while( p ){ ExprSetProperty(p, EP_FromJoin); assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); ExprSetVVAProperty(p, EP_NoReduce); p->iRightJoinTable = (i16)iTable; if( p->op==TK_FUNCTION && p->x.pList ){ int i; for(i=0; i<p->x.pList->nExpr; i++){ setJoinExpr(p->x.pList->a[i].pExpr, iTable); } } setJoinExpr(p->pLeft, iTable); p = p->pRight; } } /* ** This routine processes the join information for a SELECT statement. |
︙ | ︙ | |||
107368 107369 107370 107371 107372 107373 107374 | case WHERE_DISTINCT_UNIQUE: { sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); break; } default: { assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); | | > | 108057 108058 108059 108060 108061 108062 108063 108064 108065 108066 108067 108068 108069 108070 108071 108072 | case WHERE_DISTINCT_UNIQUE: { sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); break; } default: { assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); break; } } if( pSort==0 ){ codeOffset(v, p->iOffset, iContinue); } } |
︙ | ︙ | |||
107421 107422 107423 107424 107425 107426 107427 | if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; | | > | 108111 108112 108113 108114 108115 108116 108117 108118 108119 108120 108121 108122 108123 108124 108125 108126 | if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); assert( pSort==0 ); } #endif if( pSort ){ pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, 1, nPrefixReg); }else{ |
︙ | ︙ | |||
107904 107905 107906 107907 107908 107909 107910 107911 107912 107913 107914 107915 107916 107917 107918 107919 107920 107921 | ** The declaration type for any expression other than a column is NULL. ** ** This routine has either 3 or 6 parameters depending on whether or not ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. */ #ifdef SQLITE_ENABLE_COLUMN_METADATA # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) static const char *columnTypeImpl( NameContext *pNC, Expr *pExpr, const char **pzOrigDb, const char **pzOrigTab, const char **pzOrigCol, u8 *pEstWidth ){ char const *zOrigDb = 0; char const *zOrigTab = 0; char const *zOrigCol = 0; | > > > > > > > > > < < < < < < < | < < < | 108595 108596 108597 108598 108599 108600 108601 108602 108603 108604 108605 108606 108607 108608 108609 108610 108611 108612 108613 108614 108615 108616 108617 108618 108619 108620 108621 108622 108623 108624 108625 108626 108627 108628 108629 | ** The declaration type for any expression other than a column is NULL. ** ** This routine has either 3 or 6 parameters depending on whether or not ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. */ #ifdef SQLITE_ENABLE_COLUMN_METADATA # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) #endif static const char *columnTypeImpl( NameContext *pNC, Expr *pExpr, #ifdef SQLITE_ENABLE_COLUMN_METADATA const char **pzOrigDb, const char **pzOrigTab, const char **pzOrigCol, #endif u8 *pEstWidth ){ char const *zType = 0; int j; u8 estWidth = 1; #ifdef SQLITE_ENABLE_COLUMN_METADATA char const *zOrigDb = 0; char const *zOrigTab = 0; char const *zOrigCol = 0; #endif if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; switch( pExpr->op ){ case TK_AGG_COLUMN: case TK_COLUMN: { /* The expression is a column. Locate the table the column is being ** extracted from in NameContext.pSrcList. This table may be real |
︙ | ︙ | |||
107978 107979 107980 107981 107982 107983 107984 | assert( pTab && pExpr->pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ | | > > > | 108668 108669 108670 108671 108672 108673 108674 108675 108676 108677 108678 108679 108680 108681 108682 108683 108684 108685 108686 108687 108688 | assert( pTab && pExpr->pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ /* If iCol is less than zero, then the expression requests the ** rowid of the sub-select or view. This expression is legal (see ** test case misc2.2.2) - it always evaluates to NULL. ** ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been ** caught already by name resolution. */ NameContext sNC; Expr *p = pS->pEList->a[iCol].pExpr; sNC.pSrcList = pS->pSrc; sNC.pNext = pNC; sNC.pParse = pNC->pParse; zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); |
︙ | ︙ | |||
108299 108300 108301 108302 108303 108304 108305 | if( db->mallocFailed ) return; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; a = pSelect->pEList->a; for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ p = a[i].pExpr; if( pCol->zType==0 ){ | | > | | 108992 108993 108994 108995 108996 108997 108998 108999 109000 109001 109002 109003 109004 109005 109006 109007 109008 109009 109010 109011 | if( db->mallocFailed ) return; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; a = pSelect->pEList->a; for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ p = a[i].pExpr; if( pCol->zType==0 ){ pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); } szAll += pCol->szEst; pCol->affinity = sqlite3ExprAffinity(p); if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; pColl = sqlite3ExprCollSeq(pParse, p); if( pColl && pCol->zColl==0 ){ pCol->zColl = sqlite3DbStrDup(db, pColl->zName); } } pTab->szTabRow = sqlite3LogEst(szAll*4); } |
︙ | ︙ | |||
108459 108460 108461 108462 108463 108464 108465 | CollSeq *pRet; if( p->pPrior ){ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); }else{ pRet = 0; } assert( iCol>=0 ); | > > > | | 109153 109154 109155 109156 109157 109158 109159 109160 109161 109162 109163 109164 109165 109166 109167 109168 109169 109170 | CollSeq *pRet; if( p->pPrior ){ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); }else{ pRet = 0; } assert( iCol>=0 ); /* iCol must be less than p->pEList->nExpr. Otherwise an error would ** have been thrown during name resolution and we would not have gotten ** this far */ if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); } return pRet; } /* ** The select statement passed as the second parameter is a compound SELECT |
︙ | ︙ | |||
108678 108679 108680 108681 108682 108683 108684 | SelectDest *pDest /* What to do with query results */ ); /* ** Error message for when two or more terms of a compound select have different ** size result sets. */ | | | 109375 109376 109377 109378 109379 109380 109381 109382 109383 109384 109385 109386 109387 109388 109389 | SelectDest *pDest /* What to do with query results */ ); /* ** Error message for when two or more terms of a compound select have different ** size result sets. */ SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ if( p->selFlags & SF_Values ){ sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); }else{ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" " do not have the same number of result columns", selectOpName(p->op)); } } |
︙ | ︙ | |||
108704 108705 108706 108707 108708 108709 108710 | */ static int multiSelectValues( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ Select *pPrior; | < | < < < | 109401 109402 109403 109404 109405 109406 109407 109408 109409 109410 109411 109412 109413 109414 109415 109416 109417 109418 109419 109420 109421 109422 109423 | */ static int multiSelectValues( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ Select *pPrior; int nRow = 1; int rc = 0; assert( p->selFlags & SF_MultiValue ); do{ assert( p->selFlags & SF_Values ); assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); assert( p->pLimit==0 ); assert( p->pOffset==0 ); assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); if( p->pPrior==0 ) break; assert( p->pPrior->pNext==p ); p = p->pPrior; nRow++; }while(1); while( p ){ pPrior = p->pPrior; |
︙ | ︙ | |||
108825 108826 108827 108828 108829 108830 108831 | goto multi_select_end; } /* Make sure all SELECTs in the statement have the same number of elements ** in their result sets. */ assert( p->pEList && pPrior->pEList ); | | < < < < | 109518 109519 109520 109521 109522 109523 109524 109525 109526 109527 109528 109529 109530 109531 109532 | goto multi_select_end; } /* Make sure all SELECTs in the statement have the same number of elements ** in their result sets. */ assert( p->pEList && pPrior->pEList ); assert( p->pEList->nExpr==pPrior->pEList->nExpr ); #ifndef SQLITE_OMIT_CTE if( p->selFlags & SF_Recursive ){ generateWithRecursiveQuery(pParse, p, &dest); }else #endif |
︙ | ︙ | |||
109448 109449 109450 109451 109452 109453 109454 | ** collation. */ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->u.x.iOrderByCol>0 ); | | < < | 110137 110138 110139 110140 110141 110142 110143 110144 110145 110146 110147 110148 110149 110150 110151 | ** collation. */ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->u.x.iOrderByCol>0 ); assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->u.x.iOrderByCol - 1; } pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); }else{ pKeyMerge = 0; } |
︙ | ︙ | |||
109809 109810 109811 109812 109813 109814 109815 | ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidently carried the comment forward until 2014-09-15. Original | | | | 110496 110497 110498 110499 110500 110501 110502 110503 110504 110505 110506 110507 110508 110509 110510 110511 | ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidently carried the comment forward until 2014-09-15. Original ** text: "The subquery does not use aggregates or the outer query ** does not use LIMIT." ** ** (11) The subquery and the outer query do not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. ** ** (13) The subquery and outer query do not both use LIMIT. |
︙ | ︙ | |||
110020 110021 110022 110023 110024 110025 110026 110027 110028 110029 | if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ return 0; } for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); assert( pSub->pSrc!=0 ); if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 || (pSub1->pPrior && pSub1->op!=TK_ALL) || pSub1->pSrc->nSrc<1 | > < | 110707 110708 110709 110710 110711 110712 110713 110714 110715 110716 110717 110718 110719 110720 110721 110722 110723 110724 | if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ return 0; } for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); assert( pSub->pSrc!=0 ); assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 || (pSub1->pPrior && pSub1->op!=TK_ALL) || pSub1->pSrc->nSrc<1 ){ return 0; } testcase( pSub1->pSrc->nSrc>1 ); } /* Restriction 18. */ |
︙ | ︙ | |||
110303 110304 110305 110306 110307 110308 110309 | /* Finially, delete what is left of the subquery and return ** success. */ sqlite3SelectDelete(db, pSub1); #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x100 ){ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 110990 110991 110992 110993 110994 110995 110996 110997 110998 110999 111000 111001 111002 111003 111004 111005 111006 111007 111008 111009 111010 111011 111012 111013 111014 111015 111016 111017 111018 111019 111020 111021 111022 111023 111024 111025 111026 111027 111028 111029 111030 111031 111032 111033 111034 111035 111036 111037 111038 111039 111040 111041 111042 111043 111044 111045 111046 111047 111048 111049 111050 111051 111052 111053 111054 111055 111056 111057 111058 111059 111060 111061 111062 111063 111064 111065 111066 111067 111068 111069 111070 111071 111072 111073 111074 111075 111076 | /* Finially, delete what is left of the subquery and return ** success. */ sqlite3SelectDelete(db, pSub1); #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x100 ){ SELECTTRACE(0x100,pParse,p,("After flattening:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif return 1; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* ** Make copies of relevant WHERE clause terms of the outer query into ** the WHERE clause of subquery. Example: ** ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; ** ** Transformed into: ** ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) ** WHERE x=5 AND y=10; ** ** The hope is that the terms added to the inner query will make it more ** efficient. ** ** Do not attempt this optimization if: ** ** (1) The inner query is an aggregate. (In that case, we'd really want ** to copy the outer WHERE-clause terms onto the HAVING clause of the ** inner query. But they probably won't help there so do not bother.) ** ** (2) The inner query is the recursive part of a common table expression. ** ** (3) The inner query has a LIMIT clause (since the changes to the WHERE ** close would change the meaning of the LIMIT). ** ** (4) The inner query is the right operand of a LEFT JOIN. (The caller ** enforces this restriction since this routine does not have enough ** information to know.) ** ** Return 0 if no changes are made and non-zero if one or more WHERE clause ** terms are duplicated into the subquery. */ static int pushDownWhereTerms( sqlite3 *db, /* The database connection (for malloc()) */ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ Expr *pWhere, /* The WHERE clause of the outer query */ int iCursor /* Cursor number of the subquery */ ){ Expr *pNew; int nChng = 0; if( pWhere==0 ) return 0; if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ return 0; /* restrictions (1) and (2) */ } if( pSubq->pLimit!=0 ){ return 0; /* restriction (3) */ } while( pWhere->op==TK_AND ){ nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); pWhere = pWhere->pLeft; } if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ nChng++; while( pSubq ){ pNew = sqlite3ExprDup(db, pWhere, 0); pNew = substExpr(db, pNew, iCursor, pSubq->pEList); pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); pSubq = pSubq->pPrior; } } return nChng; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** Based on the contents of the AggInfo structure indicated by the first ** argument, this function checks if the following are true: ** |
︙ | ︙ | |||
110395 110396 110397 110398 110399 110400 110401 | ** If the source-list item passed as an argument was augmented with an ** INDEXED BY clause, then try to locate the specified index. If there ** was such a clause and the named index cannot be found, return ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate ** pFrom->pIndex and return SQLITE_OK. */ SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ | | | | | | 111149 111150 111151 111152 111153 111154 111155 111156 111157 111158 111159 111160 111161 111162 111163 111164 111165 111166 111167 111168 111169 111170 111171 111172 | ** If the source-list item passed as an argument was augmented with an ** INDEXED BY clause, then try to locate the specified index. If there ** was such a clause and the named index cannot be found, return ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate ** pFrom->pIndex and return SQLITE_OK. */ SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ if( pFrom->pTab && pFrom->zIndexedBy ){ Table *pTab = pFrom->pTab; char *zIndexedBy = pFrom->zIndexedBy; Index *pIdx; for(pIdx=pTab->pIndex; pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); pIdx=pIdx->pNext ); if( !pIdx ){ sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); pParse->checkSchema = 1; return SQLITE_ERROR; } pFrom->pIndex = pIdx; } return SQLITE_OK; } |
︙ | ︙ | |||
111208 111209 111210 111211 111212 111213 111214 | } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } | | | 111962 111963 111964 111965 111966 111967 111968 111969 111970 111971 111972 111973 111974 111975 111976 | } if( !pColl ){ pColl = pParse->db->pDfltColl; } if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, (void*)pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); sqlite3ExprCacheClear(pParse); |
︙ | ︙ | |||
111341 111342 111343 111344 111345 111346 111347 | p->pOrderBy = 0; p->selFlags &= ~SF_Distinct; } sqlite3SelectPrep(pParse, p, 0); memset(&sSort, 0, sizeof(sSort)); sSort.pOrderBy = p->pOrderBy; pTabList = p->pSrc; | < > < < < < < < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | 112095 112096 112097 112098 112099 112100 112101 112102 112103 112104 112105 112106 112107 112108 112109 112110 112111 112112 112113 112114 112115 112116 112117 112118 112119 112120 112121 112122 112123 112124 112125 112126 112127 112128 112129 112130 112131 112132 112133 112134 112135 112136 112137 112138 112139 112140 112141 112142 112143 112144 112145 112146 112147 112148 112149 112150 112151 112152 112153 112154 112155 112156 112157 112158 112159 112160 112161 112162 112163 112164 112165 112166 112167 112168 112169 112170 112171 112172 112173 112174 112175 112176 112177 112178 112179 112180 112181 112182 | p->pOrderBy = 0; p->selFlags &= ~SF_Distinct; } sqlite3SelectPrep(pParse, p, 0); memset(&sSort, 0, sizeof(sSort)); sSort.pOrderBy = p->pOrderBy; pTabList = p->pSrc; if( pParse->nErr || db->mallocFailed ){ goto select_end; } assert( p->pEList!=0 ); isAgg = (p->selFlags & SF_Aggregate)!=0; #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x100 ){ SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If writing to memory or generating a set ** only a single column may be output. */ #ifndef SQLITE_OMIT_SUBQUERY if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ goto select_end; } #endif /* Try to flatten subqueries in the FROM clause up into the main query */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ struct SrcList_item *pItem = &pTabList->a[i]; Select *pSub = pItem->pSelect; int isAggSub; if( pSub==0 ) continue; isAggSub = (pSub->selFlags & SF_Aggregate)!=0; if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ /* This subquery can be absorbed into its parent. */ if( isAggSub ){ isAgg = 1; p->selFlags |= SF_Aggregate; } i = -1; } pTabList = p->pSrc; if( db->mallocFailed ) goto select_end; if( !IgnorableOrderby(pDest) ){ sSort.pOrderBy = p->pOrderBy; } } #endif /* Get a pointer the VDBE under construction, allocating a new VDBE if one ** does not already exist */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto select_end; #ifndef SQLITE_OMIT_COMPOUND_SELECT /* Handle compound SELECT statements using the separate multiSelect() ** procedure. */ if( p->pPrior ){ rc = multiSelect(pParse, p, pDest); explainSetInteger(pParse->iSelectId, iRestoreSelectId); #if SELECTTRACE_ENABLED SELECTTRACE(1,pParse,p,("end compound-select processing\n")); pParse->nSelectIndent--; #endif return rc; } #endif /* Generate code for all sub-queries in the FROM clause */ #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) for(i=0; i<pTabList->nSrc; i++){ struct SrcList_item *pItem = &pTabList->a[i]; SelectDest dest; Select *pSub = pItem->pSelect; if( pSub==0 ) continue; /* Sometimes the code for a subquery will be generated more than ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, ** for example. In that case, do not regenerate the code to manifest ** a view or the co-routine to implement a view. The first instance ** is sufficient, though the subroutine to manifest the view does need |
︙ | ︙ | |||
111402 111403 111404 111405 111406 111407 111408 | ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); | | | | > > | > > > > > | < | | > > | | | | 112193 112194 112195 112196 112197 112198 112199 112200 112201 112202 112203 112204 112205 112206 112207 112208 112209 112210 112211 112212 112213 112214 112215 112216 112217 112218 112219 112220 112221 112222 112223 112224 112225 | ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( (pItem->jointype & JT_OUTER)==0 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) ){ #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x100 ){ SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif } /* Generate code to implement the subquery */ if( pTabList->nSrc==1 && (p->selFlags & SF_All)==0 && OptimizationEnabled(db, SQLITE_SubqCoroutine) ){ /* Implement a co-routine that will return a single row of the result ** set on each invocation. */ int addrTop = sqlite3VdbeCurrentAddr(v)+1; pItem->regReturn = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); |
︙ | ︙ | |||
111463 111464 111465 111466 111467 111468 111469 | pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); VdbeComment((v, "end %s", pItem->pTab->zName)); sqlite3VdbeChangeP1(v, topAddr, retAddr); sqlite3ClearTempRegCache(pParse); } | < | < < < < | > | > > < < < < < < < > | | < < | < | | | | | | | > | 112262 112263 112264 112265 112266 112267 112268 112269 112270 112271 112272 112273 112274 112275 112276 112277 112278 112279 112280 112281 112282 112283 112284 112285 112286 112287 112288 112289 112290 112291 112292 112293 112294 112295 112296 112297 112298 112299 112300 112301 112302 112303 112304 112305 112306 112307 112308 112309 112310 112311 112312 112313 112314 112315 112316 112317 112318 112319 112320 112321 112322 112323 112324 112325 112326 112327 112328 | pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); VdbeComment((v, "end %s", pItem->pTab->zName)); sqlite3VdbeChangeP1(v, topAddr, retAddr); sqlite3ClearTempRegCache(pParse); } if( db->mallocFailed ) goto select_end; pParse->nHeight -= sqlite3SelectExprHeight(p); } #endif /* Various elements of the SELECT copied into local variables for ** convenience */ pEList = p->pEList; pWhere = p->pWhere; pGroupBy = p->pGroupBy; pHaving = p->pHaving; sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; #if SELECTTRACE_ENABLED if( sqlite3SelectTrace & 0x400 ){ SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); sqlite3TreeViewSelect(0, p, 0); } #endif /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and ** if the select-list is the same as the ORDER BY list, then this query ** can be rewritten as a GROUP BY. In other words, this: ** ** SELECT DISTINCT xyz FROM ... ORDER BY xyz ** ** is transformed to: ** ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz ** ** The second form is preferred as a single index (or temp-table) may be ** used for both the ORDER BY and DISTINCT processing. As originally ** written the query must use a temp-table for at least one of the ORDER ** BY and DISTINCT, and an index or separate temp-table for the other. */ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 ){ p->selFlags &= ~SF_Distinct; pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); /* Notice that even thought SF_Distinct has been cleared from p->selFlags, ** the sDistinct.isTnct is still set. Hence, isTnct represents the ** original setting of the SF_Distinct flag, not the current setting */ assert( sDistinct.isTnct ); } /* If there is an ORDER BY clause, then create an ephemeral index to ** do the sorting. But this sorting ephemeral index might end up ** being unused if the data can be extracted in pre-sorted order. ** If that is the case, then the OP_OpenEphemeral instruction will be ** changed to an OP_Noop once we figure out that the sorting index is ** not needed. The sSort.addrSortIndex variable is used to facilitate ** that change. */ if( sSort.pOrderBy ){ KeyInfo *pKeyInfo; pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); sSort.iECursor = pParse->nTab++; sSort.addrSortIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
︙ | ︙ | |||
111556 111557 111558 111559 111560 111561 111562 | p->nSelectRow = LARGEST_INT64; computeLimitRegisters(pParse, p, iEnd); if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; sSort.sortFlags |= SORTFLAG_UseSorter; } | | | | | | 112345 112346 112347 112348 112349 112350 112351 112352 112353 112354 112355 112356 112357 112358 112359 112360 112361 112362 112363 112364 112365 112366 | p->nSelectRow = LARGEST_INT64; computeLimitRegisters(pParse, p, iEnd); if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; sSort.sortFlags |= SORTFLAG_UseSorter; } /* Open an ephemeral index to use for the distinct set. */ if( p->selFlags & SF_Distinct ){ sDistinct.tabTnct = pParse->nTab++; sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sDistinct.tabTnct, 0, 0, (char*)keyInfoFromExprList(pParse, p->pEList,0,0), P4_KEYINFO); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; }else{ sDistinct.eTnctType = WHERE_DISTINCT_NOOP; } if( !isAgg && pGroupBy==0 ){ |
︙ | ︙ | |||
111641 111642 111643 111644 111645 111646 111647 | pItem->u.x.iAlias = 0; } if( p->nSelectRow>100 ) p->nSelectRow = 100; }else{ p->nSelectRow = 1; } | < | | 112430 112431 112432 112433 112434 112435 112436 112437 112438 112439 112440 112441 112442 112443 112444 112445 112446 112447 | pItem->u.x.iAlias = 0; } if( p->nSelectRow>100 ) p->nSelectRow = 100; }else{ p->nSelectRow = 1; } /* If there is both a GROUP BY and an ORDER BY clause and they are ** identical, then it may be possible to disable the ORDER BY clause ** on the grounds that the GROUP BY will cause elements to come out ** in the correct order. It also may not - the GROUP BY might use a ** database index that causes rows to be grouped together as required ** but not actually sorted. Either way, record the fact that the ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp ** variable. */ if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ orderByGrp = 1; } |
︙ | ︙ | |||
111823 111824 111825 111826 111827 111828 111829 | ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); sqlite3ExprCacheClear(pParse); if( groupBySort ){ | | > | 112611 112612 112613 112614 112615 112616 112617 112618 112619 112620 112621 112622 112623 112624 112625 112626 | ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); sqlite3ExprCacheClear(pParse); if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut, sortPTab); } for(j=0; j<pGroupBy->nExpr; j++){ if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); }else{ sAggInfo.directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); |
︙ | ︙ | |||
111895 111896 111897 111898 111899 111900 111901 | */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); | | > | 112684 112685 112686 112687 112688 112689 112690 112691 112692 112693 112694 112695 112696 112697 112698 112699 | */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); VdbeComment((v, "Groupby result generator entry point")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); finalizeAggFunctions(pParse, &sAggInfo); sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, p->pEList, -1, &sSort, &sDistinct, pDest, addrOutputRow+1, addrSetAbort); |
︙ | ︙ | |||
112059 112060 112061 112062 112063 112064 112065 | explainTempTable(pParse, "DISTINCT"); } /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ | > | | 112849 112850 112851 112852 112853 112854 112855 112856 112857 112858 112859 112860 112861 112862 112863 112864 | explainTempTable(pParse, "DISTINCT"); } /* If there is an ORDER BY clause, then we need to sort the results ** and send them to the callback one by one. */ if( sSort.pOrderBy ){ explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); |
︙ | ︙ | |||
112092 112093 112094 112095 112096 112097 112098 | #if SELECTTRACE_ENABLED SELECTTRACE(1,pParse,p,("end processing\n")); pParse->nSelectIndent--; #endif return rc; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 112883 112884 112885 112886 112887 112888 112889 112890 112891 112892 112893 112894 112895 112896 | #if SELECTTRACE_ENABLED SELECTTRACE(1,pParse,p,("end processing\n")); pParse->nSelectIndent--; #endif return rc; } /************** End of select.c **********************************************/ /************** Begin file table.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: |
︙ | ︙ | |||
115497 115498 115499 115500 115501 115502 115503 115504 | ** the offset of the method to call in the sqlite3_module structure. ** ** The array is cleared after invoking the callbacks. */ static void callFinaliser(sqlite3 *db, int offset){ int i; if( db->aVTrans ){ for(i=0; i<db->nVTrans; i++){ | > > | | < | 116194 116195 116196 116197 116198 116199 116200 116201 116202 116203 116204 116205 116206 116207 116208 116209 116210 116211 116212 116213 116214 116215 116216 116217 116218 116219 116220 116221 116222 | ** the offset of the method to call in the sqlite3_module structure. ** ** The array is cleared after invoking the callbacks. */ static void callFinaliser(sqlite3 *db, int offset){ int i; if( db->aVTrans ){ VTable **aVTrans = db->aVTrans; db->aVTrans = 0; for(i=0; i<db->nVTrans; i++){ VTable *pVTab = aVTrans[i]; sqlite3_vtab *p = pVTab->pVtab; if( p ){ int (*x)(sqlite3_vtab *); x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); if( x ) x(p); } pVTab->iSavepoint = 0; sqlite3VtabUnlock(pVTab); } sqlite3DbFree(db, aVTrans); db->nVTrans = 0; } } /* ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans ** array. Return the error code for the first error that occurs, or ** SQLITE_OK if all xSync operations are successful. |
︙ | ︙ | |||
115810 115811 115812 115813 115814 115815 115816 | sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /************** End of vtab.c ************************************************/ | | | | | | | | > | | 116508 116509 116510 116511 116512 116513 116514 116515 116516 116517 116518 116519 116520 116521 116522 116523 116524 116525 116526 116527 116528 116529 116530 116531 116532 116533 116534 116535 116536 116537 116538 116539 116540 116541 116542 | sqlite3_mutex_leave(db->mutex); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /************** End of vtab.c ************************************************/ /************** Begin file wherecode.c ***************************************/ /* ** 2015-06-06 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was split off from where.c on 2015-06-06 in order to reduce the ** size of where.c and make it easier to edit. This file contains the routines ** that actually generate the bulk of the WHERE loop code. The original where.c ** file retains the code that does query planning and analysis. */ /************** Include whereInt.h in the middle of wherecode.c **************/ /************** Begin file whereInt.h ****************************************/ /* ** 2013-11-12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** |
︙ | ︙ | |||
115852 115853 115854 115855 115856 115857 115858 | ** a separate source file for easier editing. */ /* ** Trace output macros */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) | | | 116551 116552 116553 116554 116555 116556 116557 116558 116559 116560 116561 116562 116563 116564 116565 | ** a separate source file for easier editing. */ /* ** Trace output macros */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) /***/ int sqlite3WhereTrace; #endif #if defined(SQLITE_DEBUG) \ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE)) # define WHERETRACE(K,X) if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X # define WHERETRACE_ENABLED 1 #else # define WHERETRACE(K,X) |
︙ | ︙ | |||
115994 115995 115996 115997 115998 115999 116000 | */ #define N_OR_COST 3 struct WhereOrSet { u16 n; /* Number of valid a[] entries */ WhereOrCost a[N_OR_COST]; /* Set of best costs */ }; | < < < < | 116693 116694 116695 116696 116697 116698 116699 116700 116701 116702 116703 116704 116705 116706 | */ #define N_OR_COST 3 struct WhereOrSet { u16 n; /* Number of valid a[] entries */ WhereOrCost a[N_OR_COST]; /* Set of best costs */ }; /* ** Each instance of this object holds a sequence of WhereLoop objects ** that implement some or all of a query plan. ** ** Think of each WhereLoop object as a node in a graph with arcs ** showing dependencies and costs for travelling between nodes. (That is ** not a completely accurate description because WhereLoop costs are a |
︙ | ︙ | |||
116205 116206 116207 116208 116209 116210 116211 116212 116213 116214 116215 116216 116217 116218 | ** no gaps. */ struct WhereMaskSet { int n; /* Number of assigned cursor values */ int ix[BMS]; /* Cursor assigned to each bit */ }; /* ** This object is a convenience wrapper holding all information needed ** to construct WhereLoop objects for a particular query. */ struct WhereLoopBuilder { WhereInfo *pWInfo; /* Information about this WHERE */ WhereClause *pWC; /* WHERE clause terms */ | > > > > > | 116900 116901 116902 116903 116904 116905 116906 116907 116908 116909 116910 116911 116912 116913 116914 116915 116916 116917 116918 | ** no gaps. */ struct WhereMaskSet { int n; /* Number of assigned cursor values */ int ix[BMS]; /* Cursor assigned to each bit */ }; /* ** Initialize a WhereMaskSet object */ #define initMaskSet(P) (P)->n=0 /* ** This object is a convenience wrapper holding all information needed ** to construct WhereLoop objects for a particular query. */ struct WhereLoopBuilder { WhereInfo *pWInfo; /* Information about this WHERE */ WhereClause *pWC; /* WHERE clause terms */ |
︙ | ︙ | |||
116255 116256 116257 116258 116259 116260 116261 116262 116263 116264 116265 116266 116267 116268 | int iBreak; /* Jump here to break out of the loop */ int savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ int aiCurOnePass[2]; /* OP_OpenWrite cursors for the ONEPASS opt */ WhereMaskSet sMaskSet; /* Map cursor numbers to bitmasks */ WhereClause sWC; /* Decomposition of the WHERE clause */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; /* ** Bitmasks for the operators on WhereTerm objects. These are all ** operators that are of interest to the query planner. An ** OR-ed combination of these values can be used when searching for ** particular WhereTerms within a WhereClause. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 116955 116956 116957 116958 116959 116960 116961 116962 116963 116964 116965 116966 116967 116968 116969 116970 116971 116972 116973 116974 116975 116976 116977 116978 116979 116980 116981 116982 116983 116984 116985 116986 116987 116988 116989 116990 116991 116992 116993 116994 116995 116996 116997 116998 116999 117000 117001 117002 117003 117004 117005 117006 117007 117008 117009 117010 117011 117012 117013 117014 117015 117016 117017 117018 117019 117020 117021 117022 117023 117024 | int iBreak; /* Jump here to break out of the loop */ int savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ int aiCurOnePass[2]; /* OP_OpenWrite cursors for the ONEPASS opt */ WhereMaskSet sMaskSet; /* Map cursor numbers to bitmasks */ WhereClause sWC; /* Decomposition of the WHERE clause */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; /* ** Private interfaces - callable only by other where.c routines. ** ** where.c: */ SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet*,int); SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ); /* wherecode.c: */ #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ int iLevel, /* Value for "level" column of output */ int iFrom, /* Value for "from" column of output */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ); #else # define sqlite3WhereExplainOneScan(u,v,w,x,y,z) 0 #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS SQLITE_PRIVATE void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ); #else # define sqlite3WhereAddScanStatus(a, b, c, d) ((void)d) #endif SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart( WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ Bitmask notReady /* Which tables are currently available */ ); /* whereexpr.c: */ SQLITE_PRIVATE void sqlite3WhereClauseInit(WhereClause*,WhereInfo*); SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause*); SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause*,Expr*,u8); SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet*, Expr*); SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet*, ExprList*); SQLITE_PRIVATE void sqlite3WhereExprAnalyze(SrcList*, WhereClause*); /* ** Bitmasks for the operators on WhereTerm objects. These are all ** operators that are of interest to the query planner. An ** OR-ed combination of these values can be used when searching for ** particular WhereTerms within a WhereClause. */ |
︙ | ︙ | |||
116305 116306 116307 116308 116309 116310 116311 | #define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */ #define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */ #define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */ #define WHERE_UNQ_WANTED 0x00010000 /* WHERE_ONEROW would have been helpful*/ #define WHERE_PARTIALIDX 0x00020000 /* The automatic index is partial */ /************** End of whereInt.h ********************************************/ | | > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > | > > > > > > > | > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > | > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > | > > | > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > < | > > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > > | > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > | < > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < > | | > > > > | > > | < < < < > > | > | > > > > > > > > > > > > > > | < < > > | < < < > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > | > > | < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | > | > > > > > > > > > > > > | | | | > > > > > | < < | < < < < < | < > > > > > > > > > > > > > > | > > > > > > > > > > | > > > > | > > | > > > > > > > > > > > > > > > > > > | | > | > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > | > > > > > > > > > > > > > > > > > | > > > > > > > > > > > | > > > > > > > > > > > > > > > > | > > > > > > | > > > > > > > > > > > > > > > > > > > > | > > > > | > > | > > > > > > > > > > > > > > | < > > > > > > | < < > > | > > | > > > > > > | > > > > > > > > > > > > > > | > > > > | > > > > > > > > > > > > > > > > > > > > | > > > | > > > > > > > > > > > > > > > > > > > | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | < < < < < < < < < < < < < < < < < < < < < < < | 117061 117062 117063 117064 117065 117066 117067 117068 117069 117070 117071 117072 117073 117074 117075 117076 117077 117078 117079 117080 117081 117082 117083 117084 117085 117086 117087 117088 117089 117090 117091 117092 117093 117094 117095 117096 117097 117098 117099 117100 117101 117102 117103 117104 117105 117106 117107 117108 117109 117110 117111 117112 117113 117114 117115 117116 117117 117118 117119 117120 117121 117122 117123 117124 117125 117126 117127 117128 117129 117130 117131 117132 117133 117134 117135 117136 117137 117138 117139 117140 117141 117142 117143 117144 117145 117146 117147 117148 117149 117150 117151 117152 117153 117154 117155 117156 117157 117158 117159 117160 117161 117162 117163 117164 117165 117166 117167 117168 117169 117170 117171 117172 117173 117174 117175 117176 117177 117178 117179 117180 117181 117182 117183 117184 117185 117186 117187 117188 117189 117190 117191 117192 117193 117194 117195 117196 117197 117198 117199 117200 117201 117202 117203 117204 117205 117206 117207 117208 117209 117210 117211 117212 117213 117214 117215 117216 117217 117218 117219 117220 117221 117222 117223 117224 117225 117226 117227 117228 117229 117230 117231 117232 117233 117234 117235 117236 117237 117238 117239 117240 117241 117242 117243 117244 117245 117246 117247 117248 117249 117250 117251 117252 117253 117254 117255 117256 117257 117258 117259 117260 117261 117262 117263 117264 117265 117266 117267 117268 117269 117270 117271 117272 117273 117274 117275 117276 117277 117278 117279 117280 117281 117282 117283 117284 117285 117286 117287 117288 117289 117290 117291 117292 117293 117294 117295 117296 117297 117298 117299 117300 117301 117302 117303 117304 117305 117306 117307 117308 117309 117310 117311 117312 117313 117314 117315 117316 117317 117318 117319 117320 117321 117322 117323 117324 117325 117326 117327 117328 117329 117330 117331 117332 117333 117334 117335 117336 117337 117338 117339 117340 117341 117342 117343 117344 117345 117346 117347 117348 117349 117350 117351 117352 117353 117354 117355 117356 117357 117358 117359 117360 117361 117362 117363 117364 117365 117366 117367 117368 117369 117370 117371 117372 117373 117374 117375 117376 117377 117378 117379 117380 117381 117382 117383 117384 117385 117386 117387 117388 117389 117390 117391 117392 117393 117394 117395 117396 117397 117398 117399 117400 117401 117402 117403 117404 117405 117406 117407 117408 117409 117410 117411 117412 117413 117414 117415 117416 117417 117418 117419 117420 117421 117422 117423 117424 117425 117426 117427 117428 117429 117430 117431 117432 117433 117434 117435 117436 117437 117438 117439 117440 117441 117442 117443 117444 117445 117446 117447 117448 117449 117450 117451 117452 117453 117454 117455 117456 117457 117458 117459 117460 117461 117462 117463 117464 117465 117466 117467 117468 117469 117470 117471 117472 117473 117474 117475 117476 117477 117478 117479 117480 117481 117482 117483 117484 117485 117486 117487 117488 117489 117490 117491 117492 117493 117494 117495 117496 117497 117498 117499 117500 117501 117502 117503 117504 117505 117506 117507 117508 117509 117510 117511 117512 117513 117514 117515 117516 117517 117518 117519 117520 117521 117522 117523 117524 117525 117526 117527 117528 117529 117530 117531 117532 117533 117534 117535 117536 117537 117538 117539 117540 117541 117542 117543 117544 117545 117546 117547 117548 117549 117550 117551 117552 117553 117554 117555 117556 117557 117558 117559 117560 117561 117562 117563 117564 117565 117566 117567 117568 117569 117570 117571 117572 117573 117574 117575 117576 117577 117578 117579 117580 117581 117582 117583 117584 117585 117586 117587 117588 117589 117590 117591 117592 117593 117594 117595 117596 117597 117598 117599 117600 117601 117602 117603 117604 117605 117606 117607 117608 117609 117610 117611 117612 117613 117614 117615 117616 117617 117618 117619 117620 117621 117622 117623 117624 117625 117626 117627 117628 117629 117630 117631 117632 117633 117634 117635 117636 117637 117638 117639 117640 117641 117642 117643 117644 117645 117646 117647 117648 117649 117650 117651 117652 117653 117654 117655 117656 117657 117658 117659 117660 117661 117662 117663 117664 117665 117666 117667 117668 117669 117670 117671 117672 117673 117674 117675 117676 117677 117678 117679 117680 117681 117682 117683 117684 117685 117686 117687 117688 117689 117690 117691 117692 117693 117694 117695 117696 117697 117698 117699 117700 117701 117702 117703 117704 117705 117706 117707 117708 117709 117710 117711 117712 117713 117714 117715 117716 117717 117718 117719 117720 117721 117722 117723 117724 117725 117726 117727 117728 117729 117730 117731 117732 117733 117734 117735 117736 117737 117738 117739 117740 117741 117742 117743 117744 117745 117746 117747 117748 117749 117750 117751 117752 117753 117754 117755 117756 117757 117758 117759 117760 117761 117762 117763 117764 117765 117766 117767 117768 117769 117770 117771 117772 117773 117774 117775 117776 117777 117778 117779 117780 117781 117782 117783 117784 117785 117786 117787 117788 117789 117790 117791 117792 117793 117794 117795 117796 117797 117798 117799 117800 117801 117802 117803 117804 117805 117806 117807 117808 117809 117810 117811 117812 117813 117814 117815 117816 117817 117818 117819 117820 117821 117822 117823 117824 117825 117826 117827 117828 117829 117830 117831 117832 117833 117834 117835 117836 117837 117838 117839 117840 117841 117842 117843 117844 117845 117846 117847 117848 117849 117850 117851 117852 117853 117854 117855 117856 117857 117858 117859 117860 117861 117862 117863 117864 117865 117866 117867 117868 117869 117870 117871 117872 117873 117874 117875 117876 117877 117878 117879 117880 117881 117882 117883 117884 117885 117886 117887 117888 117889 117890 117891 117892 117893 117894 117895 117896 117897 117898 117899 117900 117901 117902 117903 117904 117905 117906 117907 117908 117909 117910 117911 117912 117913 117914 117915 117916 117917 117918 117919 117920 117921 117922 117923 117924 117925 117926 117927 117928 117929 117930 117931 117932 117933 117934 117935 117936 117937 117938 117939 117940 117941 117942 117943 117944 117945 117946 117947 117948 117949 117950 117951 117952 117953 117954 117955 117956 117957 117958 117959 117960 117961 117962 117963 117964 117965 117966 117967 117968 117969 117970 117971 117972 117973 117974 117975 117976 117977 117978 117979 117980 117981 117982 117983 117984 117985 117986 117987 117988 117989 117990 117991 117992 117993 117994 117995 117996 117997 117998 117999 118000 118001 118002 118003 118004 118005 118006 118007 118008 118009 118010 118011 118012 118013 118014 118015 118016 118017 118018 118019 118020 118021 118022 118023 118024 118025 118026 118027 118028 118029 118030 118031 118032 118033 118034 118035 118036 118037 118038 118039 118040 118041 118042 118043 118044 118045 118046 118047 118048 118049 118050 118051 118052 118053 118054 118055 118056 118057 118058 118059 118060 118061 118062 118063 118064 118065 118066 118067 118068 118069 118070 118071 118072 118073 118074 118075 118076 118077 118078 118079 118080 118081 118082 118083 118084 118085 118086 118087 118088 118089 118090 118091 118092 118093 118094 118095 118096 118097 118098 118099 118100 118101 118102 118103 118104 118105 118106 118107 118108 118109 118110 118111 118112 118113 118114 118115 118116 118117 118118 118119 118120 118121 118122 118123 118124 118125 118126 118127 118128 118129 118130 118131 118132 118133 118134 118135 118136 118137 118138 118139 118140 118141 118142 118143 118144 118145 118146 118147 118148 118149 118150 118151 118152 118153 118154 118155 118156 118157 118158 118159 118160 118161 118162 118163 118164 118165 118166 118167 118168 118169 118170 118171 118172 118173 118174 118175 118176 118177 118178 118179 118180 118181 118182 118183 118184 118185 118186 118187 118188 118189 118190 118191 118192 118193 118194 118195 118196 118197 118198 118199 118200 118201 118202 118203 118204 118205 118206 118207 118208 118209 118210 118211 118212 118213 118214 118215 118216 118217 118218 118219 118220 118221 118222 118223 118224 118225 118226 118227 118228 118229 118230 118231 118232 118233 118234 118235 118236 118237 118238 118239 118240 118241 118242 118243 118244 118245 118246 118247 118248 118249 118250 118251 118252 118253 118254 118255 118256 118257 118258 118259 118260 118261 118262 118263 118264 118265 118266 118267 118268 118269 118270 118271 118272 118273 118274 118275 118276 118277 118278 118279 118280 118281 118282 118283 118284 118285 118286 118287 118288 118289 118290 118291 118292 118293 118294 118295 118296 118297 118298 118299 118300 118301 118302 118303 118304 118305 118306 118307 118308 118309 118310 118311 118312 118313 118314 118315 118316 118317 118318 118319 118320 118321 118322 118323 118324 118325 118326 118327 118328 118329 118330 118331 118332 118333 118334 118335 118336 118337 118338 118339 118340 118341 118342 118343 118344 118345 118346 118347 118348 118349 118350 118351 118352 118353 118354 118355 118356 118357 118358 118359 118360 118361 118362 118363 118364 118365 118366 118367 118368 118369 118370 118371 118372 118373 118374 118375 118376 118377 118378 118379 118380 118381 118382 118383 118384 118385 118386 118387 118388 118389 118390 118391 118392 118393 118394 118395 118396 118397 118398 118399 118400 118401 118402 118403 118404 118405 118406 118407 118408 118409 118410 118411 118412 118413 118414 118415 118416 118417 118418 118419 118420 118421 118422 118423 118424 118425 118426 118427 118428 118429 118430 118431 118432 118433 118434 118435 118436 118437 118438 118439 118440 118441 118442 118443 118444 118445 118446 118447 118448 118449 118450 118451 118452 118453 118454 118455 118456 118457 118458 118459 118460 118461 118462 118463 118464 118465 118466 118467 118468 118469 118470 118471 118472 118473 118474 118475 118476 118477 118478 118479 118480 118481 118482 118483 118484 118485 118486 118487 118488 118489 118490 118491 118492 118493 118494 118495 118496 118497 118498 118499 118500 118501 118502 118503 118504 118505 118506 118507 118508 118509 118510 118511 118512 118513 118514 118515 118516 118517 118518 118519 118520 118521 118522 118523 118524 118525 118526 118527 118528 118529 118530 118531 118532 118533 118534 118535 118536 118537 118538 118539 118540 118541 118542 118543 118544 118545 118546 118547 118548 118549 118550 118551 118552 118553 118554 118555 118556 118557 118558 118559 118560 118561 118562 118563 118564 118565 118566 118567 118568 118569 118570 118571 118572 118573 118574 118575 118576 118577 118578 118579 118580 118581 118582 118583 118584 118585 118586 118587 118588 118589 118590 118591 118592 118593 118594 118595 118596 | #define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */ #define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */ #define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */ #define WHERE_UNQ_WANTED 0x00010000 /* WHERE_ONEROW would have been helpful*/ #define WHERE_PARTIALIDX 0x00020000 /* The automatic index is partial */ /************** End of whereInt.h ********************************************/ /************** Continuing where we left off in wherecode.c ******************/ #ifndef SQLITE_OMIT_EXPLAIN /* ** This routine is a helper for explainIndexRange() below ** ** pStr holds the text of an expression that we are building up one term ** at a time. This routine adds a new term to the end of the expression. ** Terms are separated by AND so add the "AND" text for second and subsequent ** terms only. */ static void explainAppendTerm( StrAccum *pStr, /* The text expression being built */ int iTerm, /* Index of this term. First is zero */ const char *zColumn, /* Name of the column */ const char *zOp /* Name of the operator */ ){ if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); sqlite3StrAccumAppendAll(pStr, zColumn); sqlite3StrAccumAppend(pStr, zOp, 1); sqlite3StrAccumAppend(pStr, "?", 1); } /* ** Argument pLevel describes a strategy for scanning table pTab. This ** function appends text to pStr that describes the subset of table ** rows scanned by the strategy in the form of an SQL expression. ** ** For example, if the query: ** ** SELECT * FROM t1 WHERE a=1 AND b>2; ** ** is run and there is an index on (a, b), then this function returns a ** string similar to: ** ** "a=? AND b>?" */ static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->nSkip; int i, j; Column *aCol = pTab->aCol; i16 *aiColumn = pIndex->aiColumn; if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; sqlite3StrAccumAppend(pStr, " (", 2); for(i=0; i<nEq; i++){ char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; if( i>=nSkip ){ explainAppendTerm(pStr, i, z, "="); }else{ if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); sqlite3XPrintf(pStr, 0, "ANY(%s)", z); } } j = i; if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(pStr, i++, z, ">"); } if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(pStr, i, z, "<"); } sqlite3StrAccumAppend(pStr, ")", 1); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode ** is added to the output to describe the table scan strategy in pLevel. ** ** If an OP_Explain opcode is added to the VM, its address is returned. ** Otherwise, if no OP_Explain is coded, zero is returned. */ SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ int iLevel, /* Value for "level" column of output */ int iFrom, /* Value for "from" column of output */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ){ int ret = 0; #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( pParse->explain==2 ) #endif { struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ int iId = pParse->iSelectId; /* Select id (left-most output column) */ int isSearch; /* True for a SEARCH. False for SCAN. */ WhereLoop *pLoop; /* The controlling WhereLoop object */ u32 flags; /* Flags that describe this loop */ char *zMsg; /* Text to add to EQP output */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ pLoop = pLevel->pWLoop; flags = pLoop->wsFlags; if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); if( pItem->pSelect ){ sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); }else{ sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); } if( pItem->zAlias ){ sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); } if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ const char *zFmt = 0; Index *pIdx; assert( pLoop->u.btree.pIndex!=0 ); pIdx = pLoop->u.btree.pIndex; assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ if( isSearch ){ zFmt = "PRIMARY KEY"; } }else if( flags & WHERE_PARTIALIDX ){ zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; }else if( flags & WHERE_AUTO_INDEX ){ zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } if( zFmt ){ sqlite3StrAccumAppend(&str, " USING ", 7); sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); explainIndexRange(&str, pLoop, pItem->pTab); } }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ const char *zRange; if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ zRange = "(rowid=?)"; }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ zRange = "(rowid>? AND rowid<?)"; }else if( flags&WHERE_BTM_LIMIT ){ zRange = "(rowid>?)"; }else{ assert( flags&WHERE_TOP_LIMIT); zRange = "(rowid<?)"; } sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); sqlite3StrAccumAppendAll(&str, zRange); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); } #endif #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS if( pLoop->nOut>=10 ){ sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3StrAccumAppend(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); } return ret; } #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Configure the VM passed as the first argument with an ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to ** implement level pLvl. Argument pSrclist is a pointer to the FROM ** clause that the scan reads data from. ** ** If argument addrExplain is not 0, it must be the address of an ** OP_Explain instruction that describes the same loop. */ SQLITE_PRIVATE void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ){ const char *zObj = 0; WhereLoop *pLoop = pLvl->pWLoop; if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ zObj = pLoop->u.btree.pIndex->zName; }else{ zObj = pSrclist->a[pLvl->iFrom].zName; } sqlite3VdbeScanStatus( v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj ); } #endif /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON ** or USING clause of that join. ** ** Consider the term t2.z='ok' in the following queries: ** ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get ** the wrong answer. See ticket #813. ** ** If all the children of a term are disabled, then that term is also ** automatically disabled. In this way, terms get disabled if derived ** virtual terms are tested first. For example: ** ** x GLOB 'abc*' AND x>='abc' AND x<'acd' ** \___________/ \______/ \_____/ ** parent child1 child2 ** ** Only the parent term was in the original WHERE clause. The child1 ** and child2 terms were added by the LIKE optimization. If both of ** the virtual child terms are valid, then testing of the parent can be ** skipped. ** ** Usually the parent term is marked as TERM_CODED. But if the parent ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. ** The TERM_LIKECOND marking indicates that the term should be coded inside ** a conditional such that is only evaluated on the second pass of a ** LIKE-optimization loop, when scanning BLOBs instead of strings. */ static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ int nLoop = 0; while( pTerm && (pTerm->wtFlags & TERM_CODED)==0 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) && (pLevel->notReady & pTerm->prereqAll)==0 ){ if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ pTerm->wtFlags |= TERM_LIKECOND; }else{ pTerm->wtFlags |= TERM_CODED; } if( pTerm->iParent<0 ) break; pTerm = &pTerm->pWC->a[pTerm->iParent]; pTerm->nChild--; if( pTerm->nChild!=0 ) break; nLoop++; } } /* ** Code an OP_Affinity opcode to apply the column affinity string zAff ** to the n registers starting at base. ** ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the ** beginning and end of zAff are ignored. If all entries in zAff are ** SQLITE_AFF_BLOB, then no code gets generated. ** ** This routine makes its own copy of zAff so that the caller is free ** to modify zAff after this routine returns. */ static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ Vdbe *v = pParse->pVdbe; if( zAff==0 ){ assert( pParse->db->mallocFailed ); return; } assert( v!=0 ); /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning ** and end of the affinity string. */ while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ n--; base++; zAff++; } while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ n--; } /* Code the OP_Affinity opcode if there is anything left to do. */ if( n>0 ){ sqlite3VdbeAddOp2(v, OP_Affinity, base, n); sqlite3VdbeChangeP4(v, -1, zAff, n); sqlite3ExprCacheAffinityChange(pParse, base, n); } } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. ** ** The current value for the constraint is left in register iReg. ** ** For a constraint of the form X=expr, the expression is evaluated and its ** result is left on the stack. For constraints of the form X IN (...) ** this routine sets up a loop that will iterate over all values of X. */ static int codeEqualityTerm( Parse *pParse, /* The parsing context */ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ WhereLevel *pLevel, /* The level of the FROM clause we are working on */ int iEq, /* Index of the equality term within this level */ int bRev, /* True for reverse-order IN operations */ int iTarget /* Attempt to leave results in this register */ ){ Expr *pX = pTerm->pExpr; Vdbe *v = pParse->pVdbe; int iReg; /* Register holding results */ assert( iTarget>0 ); if( pX->op==TK_EQ || pX->op==TK_IS ){ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); }else if( pX->op==TK_ISNULL ){ iReg = iTarget; sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); #ifndef SQLITE_OMIT_SUBQUERY }else{ int eType; int iTab; struct InLoop *pIn; WhereLoop *pLoop = pLevel->pWLoop; if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 && pLoop->u.btree.pIndex->aSortOrder[iEq] ){ testcase( iEq==0 ); testcase( bRev ); bRev = !bRev; } assert( pX->op==TK_IN ); iReg = iTarget; eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); VdbeCoverageIf(v, bRev); VdbeCoverageIf(v, !bRev); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); pLoop->wsFlags |= WHERE_IN_ABLE; if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); } pLevel->u.in.nIn++; pLevel->u.in.aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); pIn = pLevel->u.in.aInLoop; if( pIn ){ pIn += pLevel->u.in.nIn - 1; pIn->iCur = iTab; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); }else{ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); } pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); }else{ pLevel->u.in.nIn = 0; } #endif } disableTerm(pLevel, pTerm); return iReg; } /* ** Generate code that will evaluate all == and IN constraints for an ** index scan. ** ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 ** The index has as many as three equality constraints, but in this ** example, the third "c" value is an inequality. So only two ** constraints are coded. This routine will generate code to evaluate ** a==5 and b IN (1,2,3). The current values for a and b will be stored ** in consecutive registers and the index of the first register is returned. ** ** In the example above nEq==2. But this subroutine works for any value ** of nEq including 0. If nEq==0, this routine is nearly a no-op. ** The only thing it does is allocate the pLevel->iMem memory cell and ** compute the affinity string. ** ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that ** occurs after the nEq quality constraints. ** ** This routine allocates a range of nEq+nExtraReg memory cells and returns ** the index of the first memory cell in that range. The code that ** calls this routine will use that memory range to store keys for ** start and termination conditions of the loop. ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. ** ** Before returning, *pzAff is set to point to a buffer containing a ** copy of the column affinity string of the index allocated using ** sqlite3DbMalloc(). Except, entries in the copy of the string associated ** with equality constraints that use BLOB or NONE affinity are set to ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: ** ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; ** ** In the example above, the index on t1(a) has TEXT affinity. But since ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_BLOB. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ int bRev, /* Reverse the order of IN operators */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ u16 nEq; /* The number of == or IN constraints to code */ u16 nSkip; /* Number of left-most columns to skip */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ WhereTerm *pTerm; /* A single constraint term */ WhereLoop *pLoop; /* The WhereLoop object */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ pLoop = pLevel->pWLoop; assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); nEq = pLoop->u.btree.nEq; nSkip = pLoop->nSkip; pIdx = pLoop->u.btree.pIndex; assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = pLoop->u.btree.nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); if( !zAff ){ pParse->db->mallocFailed = 1; } if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); j = sqlite3VdbeAddOp0(v, OP_Goto); pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), iIdxCur, 0, regBase, nSkip); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); sqlite3VdbeJumpHere(v, j); for(j=0; j<nSkip; j++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); assert( pIdx->aiColumn[j]>=0 ); VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); } } /* Evaluate the equality constraints */ assert( zAff==0 || (int)strlen(zAff)>=nEq ); for(j=nSkip; j<nEq; j++){ int r1; pTerm = pLoop->aLTerm[j]; assert( pTerm!=0 ); /* The following testcase is true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ Expr *pRight = pTerm->pExpr->pRight; if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); VdbeCoverage(v); } if( zAff ){ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ zAff[j] = SQLITE_AFF_BLOB; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ zAff[j] = SQLITE_AFF_BLOB; } } } } *pzAff = zAff; return regBase; } /* ** If the most recently coded instruction is a constant range contraint ** that originated from the LIKE optimization, then change the P3 to be ** pLoop->iLikeRepCntr and set P5. ** ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range ** expression: "x>='ABC' AND x<'abd'". But this requires that the range ** scan loop run twice, once for strings and a second time for BLOBs. ** The OP_String opcodes on the second pass convert the upper and lower ** bound string contants to blobs. This routine makes the necessary changes ** to the OP_String opcodes for that to happen. */ static void whereLikeOptimizationStringFixup( Vdbe *v, /* prepared statement under construction */ WhereLevel *pLevel, /* The loop that contains the LIKE operator */ WhereTerm *pTerm /* The upper or lower bound just coded */ ){ if( pTerm->wtFlags & TERM_LIKEOPT ){ VdbeOp *pOp; assert( pLevel->iLikeRepCntr>0 ); pOp = sqlite3VdbeGetOp(v, -1); assert( pOp!=0 ); assert( pOp->opcode==OP_String8 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); pOp->p3 = pLevel->iLikeRepCntr; pOp->p5 = 1; } } /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart( WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ Bitmask notReady /* Which tables are currently available */ ){ int j, k; /* Loop counters */ int iCur; /* The VDBE cursor for the table */ int addrNxt; /* Where to jump to continue with the next IN case */ int omitTable; /* True if we use the index only */ int bRev; /* True if we need to scan in reverse order */ WhereLevel *pLevel; /* The where level to be coded */ WhereLoop *pLoop; /* The WhereLoop object being coded */ WhereClause *pWC; /* Decomposition of the entire WHERE clause */ WhereTerm *pTerm; /* A WHERE clause term */ Parse *pParse; /* Parsing context */ sqlite3 *db; /* Database connection */ Vdbe *v; /* The prepared stmt under constructions */ struct SrcList_item *pTabItem; /* FROM clause term being coded */ int addrBrk; /* Jump here to break out of the loop */ int addrCont; /* Jump here to continue with next cycle */ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ int iReleaseReg = 0; /* Temp register to free before returning */ pParse = pWInfo->pParse; v = pParse->pVdbe; pWC = &pWInfo->sWC; db = pParse->db; pLevel = &pWInfo->a[iLevel]; pLoop = pLevel->pWLoop; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; iCur = pTabItem->iCursor; pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); bRev = (pWInfo->revMask>>iLevel)&1; omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); /* Create labels for the "break" and "continue" instructions ** for the current loop. Jump to addrBrk to break out of a loop. ** Jump to cont to go immediately to the next iteration of the ** loop. ** ** When there is an IN operator, we also have a "addrNxt" label that ** means to continue with the next IN value combination. When ** there are no IN operators in the constraints, the "addrNxt" label ** is the same as "addrBrk". */ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); /* If this is the right table of a LEFT OUTER JOIN, allocate and ** initialize a memory cell that records if this table matches any ** row of the left table of the join. */ if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ pLevel->iLeftJoin = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); VdbeComment((v, "init LEFT JOIN no-match flag")); } /* Special case of a FROM clause subquery implemented as a co-routine */ if( pTabItem->viaCoroutine ){ int regYield = pTabItem->regReturn; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); VdbeCoverage(v); VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ /* Case 1: The table is a virtual-table. Use the VFilter and VNext ** to access the data. */ int iReg; /* P3 Value for OP_VFilter */ int addrNotFound; int nConstraint = pLoop->nLTerm; sqlite3ExprCachePush(pParse); iReg = sqlite3GetTempRange(pParse, nConstraint+2); addrNotFound = pLevel->addrBrk; for(j=0; j<nConstraint; j++){ int iTarget = iReg+j+2; pTerm = pLoop->aLTerm[j]; if( pTerm==0 ) continue; if( pTerm->eOperator & WO_IN ){ codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); addrNotFound = pLevel->addrNxt; }else{ sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); VdbeCoverage(v); pLoop->u.vtab.needFree = 0; for(j=0; j<nConstraint && j<16; j++){ if( (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->op = OP_VNext; pLevel->p1 = iCur; pLevel->p2 = sqlite3VdbeCurrentAddr(v); sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); sqlite3ExprCachePop(pParse); }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 ){ /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( pLoop->u.btree.nEq==1 ); pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( omitTable==0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); iReleaseReg = ++pParse->nMem; iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); VdbeCoverage(v); sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); VdbeComment((v, "pk")); pLevel->op = OP_Noop; }else if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 ){ /* Case 3: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; int memEndValue = 0; WhereTerm *pStart, *pEnd; assert( omitTable==0 ); j = 0; pStart = pEnd = 0; if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; assert( pStart!=0 || pEnd!=0 ); if( bRev ){ pTerm = pStart; pStart = pEnd; pEnd = pTerm; } if( pStart ){ Expr *pX; /* The expression that defines the start bound */ int r1, rTemp; /* Registers for holding the start boundary */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ const u8 aMoveOp[] = { /* TK_GT */ OP_SeekGT, /* TK_LE */ OP_SeekLE, /* TK_LT */ OP_SeekLT, /* TK_GE */ OP_SeekGE }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ assert( (pStart->wtFlags & TERM_VNULL)==0 ); testcase( pStart->wtFlags & TERM_VIRTUAL ); pX = pStart->pExpr; assert( pX!=0 ); testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); VdbeComment((v, "pk")); VdbeCoverageIf(v, pX->op==TK_GT); VdbeCoverageIf(v, pX->op==TK_LE); VdbeCoverageIf(v, pX->op==TK_LT); VdbeCoverageIf(v, pX->op==TK_GE); sqlite3ExprCacheAffinityChange(pParse, r1, 1); sqlite3ReleaseTempReg(pParse, rTemp); disableTerm(pLevel, pStart); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( (pEnd->wtFlags & TERM_VNULL)==0 ); testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ testcase( pEnd->wtFlags & TERM_VIRTUAL ); memEndValue = ++pParse->nMem; sqlite3ExprCode(pParse, pX->pRight, memEndValue); if( pX->op==TK_LT || pX->op==TK_GT ){ testOp = bRev ? OP_Le : OP_Ge; }else{ testOp = bRev ? OP_Lt : OP_Gt; } disableTerm(pLevel, pEnd); } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; assert( pLevel->p5==0 ); if( testOp!=OP_Noop ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); VdbeCoverageIf(v, testOp==OP_Le); VdbeCoverageIf(v, testOp==OP_Lt); VdbeCoverageIf(v, testOp==OP_Ge); VdbeCoverageIf(v, testOp==OP_Gt); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); } }else if( pLoop->wsFlags & WHERE_INDEXED ){ /* Case 4: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N ** left-most columns of the index. It may also contain ** inequality constraints (>, <, >= or <=) on the indexed ** column that immediately follows the N equalities. Only ** the right-most column can be an inequality - the rest must ** use the "==" and "IN" operators. For example, if the ** index is on (x,y,z), then the following clauses are all ** optimized: ** ** x=5 ** x=5 AND y=10 ** x=5 AND y<10 ** x=5 AND y>5 AND y<10 ** x=5 AND y=5 AND z<=10 ** ** The z<10 term of the following cannot be used, only ** the x=5 term: ** ** x=5 AND z<10 ** ** N may be zero if there are inequality constraints. ** If there are no inequality constraints, then N is at ** least one. ** ** This case is also used when there are no WHERE clause ** constraints but an index is selected anyway, in order ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ int regBase; /* Base register holding constraint values */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char cEndAff = 0; /* Affinity for end of range constraint */ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=pLoop->nSkip ); /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ assert( pWInfo->pOrderBy==0 || pWInfo->pOrderBy->nExpr==1 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 && pWInfo->nOBSat>0 && (pIdx->nKeyCol>nEq) ){ assert( pLoop->nSkip==0 ); bSeekPastNull = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ j = nEq; if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; /* Like optimization range constraints always occur in pairs */ assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ assert( pRangeStart!=0 ); /* LIKE opt constraints */ assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ pLevel->iLikeRepCntr = ++pParse->nMem; testcase( bRev ); testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); sqlite3VdbeAddOp2(v, OP_Integer, bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC), pLevel->iLikeRepCntr); VdbeComment((v, "LIKE loop counter")); pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); } if( pRangeStart==0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ bSeekPastNull = 1; } } assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); if( zStartAff ) cEndAff = zStartAff[nEq]; addrNxt = pLevel->addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) || (bRev && pIdx->nKeyCol==nEq) ){ SWAP(WhereTerm *, pRangeEnd, pRangeStart); SWAP(u8, bSeekPastNull, bStopAtNull); } testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); if( (pRangeStart->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zStartAff ){ if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){ /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_BLOB. */ zStartAff[nEq] = SQLITE_AFF_BLOB; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ zStartAff[nEq] = SQLITE_AFF_BLOB; } } nConstraint++; testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); }else if( bSeekPastNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; assert( op!=0 ); sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); VdbeCoverage(v); VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) ){ codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); } nConstraint++; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); }else if( bStopAtNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); endEq = 0; nConstraint++; } sqlite3DbFree(db, zStartAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ if( nConstraint ){ op = aEndOp[bRev*2 + endEq]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); } /* Seek the table cursor, if required */ disableTerm(pLevel, pRangeStart); disableTerm(pLevel, pRangeEnd); if( omitTable ){ /* pIdx is a covering index. No need to access the main table. */ }else if( HasRowid(pIdx->pTable) ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ }else if( iCur!=iIdxCur ){ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); for(j=0; j<pPk->nKeyCol; j++){ k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); } sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, iRowidReg, pPk->nKeyCol); VdbeCoverage(v); } /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ if( pLoop->wsFlags & WHERE_ONEROW ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; }else{ pLevel->op = OP_Next; } pLevel->p1 = iIdxCur; pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; }else{ assert( pLevel->p5==0 ); } }else #ifndef SQLITE_OMIT_OR_OPTIMIZATION if( pLoop->wsFlags & WHERE_MULTI_OR ){ /* Case 5: Two or more separately indexed terms connected by OR ** ** Example: ** ** CREATE TABLE t1(a,b,c,d); ** CREATE INDEX i1 ON t1(a); ** CREATE INDEX i2 ON t1(b); ** CREATE INDEX i3 ON t1(c); ** ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) ** ** In the example, there are three indexed terms connected by OR. ** The top of the loop looks like this: ** ** Null 1 # Zero the rowset in reg 1 ** ** Then, for each indexed term, the following. The arguments to ** RowSetTest are such that the rowid of the current row is inserted ** into the RowSet. If it is already present, control skips the ** Gosub opcode and jumps straight to the code generated by WhereEnd(). ** ** sqlite3WhereBegin(<term>) ** RowSetTest # Insert rowid into rowset ** Gosub 2 A ** sqlite3WhereEnd() ** ** Following the above, code to terminate the loop. Label A, the target ** of the Gosub above, jumps to the instruction right after the Goto. ** ** Null 1 # Zero the rowset in reg 1 ** Goto B # The loop is finished. ** ** A: <loop body> # Return data, whatever. ** ** Return 2 # Jump back to the Gosub ** ** B: <after the loop> ** ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then ** use an ephemeral index instead of a RowSet to record the primary ** keys of the rows we have already seen. ** */ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ SrcList *pOrTab; /* Shortened table list or OR-clause generation */ Index *pCov = 0; /* Potential covering index (or NULL) */ int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ int regRowset = 0; /* Register for RowSet object */ int regRowid = 0; /* Register holding rowid */ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; /* Loop counter */ u16 wctrlFlags; /* Flags for sub-WHERE clause */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ Table *pTab = pTabItem->pTab; pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->eOperator & WO_OR ); assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); pOrWc = &pTerm->u.pOrInfo->wc; pLevel->op = OP_Return; pLevel->p1 = regReturn; /* Set up a new SrcList in pOrTab containing the table being scanned ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). */ if( pWInfo->nLevel>1 ){ int nNotReady; /* The number of notReady tables */ struct SrcList_item *origSrc; /* Original list of tables */ nNotReady = pWInfo->nLevel - iLevel - 1; pOrTab = sqlite3StackAllocRaw(db, sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); if( pOrTab==0 ) return notReady; pOrTab->nAlloc = (u8)(nNotReady + 1); pOrTab->nSrc = pOrTab->nAlloc; memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); origSrc = pWInfo->pTabList->a; for(k=1; k<=nNotReady; k++){ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); } }else{ pOrTab = pWInfo->pTabList; } /* Initialize the rowset register to contain NULL. An SQL NULL is ** equivalent to an empty rowset. Or, create an ephemeral index ** capable of holding primary keys in the case of a WITHOUT ROWID. ** ** Also initialize regReturn to contain the address of the instruction ** immediately following the OP_Return at the bottom of the loop. This ** is required in a few obscure LEFT JOIN cases where control jumps ** over the top of the loop into the body of it. In this case the ** correct response for the end-of-loop code (the OP_Return) is to ** fall through to the next instruction, just as an OP_Next does if ** called on an uninitialized cursor. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ if( HasRowid(pTab) ){ regRowset = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); regRowset = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); sqlite3VdbeSetP4KeyInfo(pParse, pPk); } regRowid = ++pParse->nMem; } iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y ** Then for every term xN, evaluate as the subexpression: xN AND z ** That way, terms in y that are factored into the disjunction will ** be picked up by the recursive calls to sqlite3WhereBegin() below. ** ** Actually, each subexpression is converted to "xN AND w" where w is ** the "interesting" terms of z - terms that did not originate in the ** ON or USING clause of a LEFT JOIN, and terms that are usable as ** indices. ** ** This optimization also only applies if the (x1 OR x2 OR ...) term ** is not contained in the ON clause of a LEFT JOIN. ** See ticket http://www.sqlite.org/src/info/f2369304e4 */ if( pWC->nTerm>1 ){ int iTerm; for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ Expr *pExpr = pWC->a[iTerm].pExpr; if( &pWC->a[iTerm] == pTerm ) continue; if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue; if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); pExpr = sqlite3ExprDup(db, pExpr, 0); pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); } if( pAndExpr ){ pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); } } /* Run a separate WHERE clause for each term of the OR clause. After ** eliminating duplicates from other WHERE clauses, the action for each ** sub-WHERE clause is to to invoke the main loop body as a subroutine. */ wctrlFlags = WHERE_OMIT_OPEN_CLOSE | WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY | WHERE_NO_AUTOINDEX; for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ int j1 = 0; /* Address of jump operation */ if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ pAndExpr->pLeft = pOrExpr; pOrExpr = pAndExpr; } /* Loop through table entries that match term pOrTerm. */ WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, wctrlFlags, iCovCur); assert( pSubWInfo || pParse->nErr || db->mallocFailed ); if( pSubWInfo ){ WhereLoop *pSubLoop; int addrExplain = sqlite3WhereExplainOneScan( pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 ); sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); /* This is the sub-WHERE clause body. First skip over ** duplicate rows from prior sub-WHERE clauses, and record the ** rowid (or PRIMARY KEY) for the current row so that the same ** row will be skipped in subsequent sub-WHERE clauses. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int r; int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); if( HasRowid(pTab) ){ r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); VdbeCoverage(v); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); int nPk = pPk->nKeyCol; int iPk; /* Read the PK into an array of temp registers. */ r = sqlite3GetTempRange(pParse, nPk); for(iPk=0; iPk<nPk; iPk++){ int iCol = pPk->aiColumn[iPk]; sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); } /* Check if the temp table already contains this key. If so, ** the row has already been included in the result set and ** can be ignored (by jumping past the Gosub below). Otherwise, ** insert the key into the temp table and proceed with processing ** the row. ** ** Use some of the same optimizations as OP_RowSetTest: If iSet ** is zero, assume that the key cannot already be present in ** the temp table. And if iSet is -1, assume that there is no ** need to insert the key into the temp table, as it will never ** be tested for. */ if( iSet ){ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); VdbeCoverage(v); } if( iSet>=0 ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } /* Release the array of temp registers */ sqlite3ReleaseTempRange(pParse, r, nPk); } } /* Invoke the main loop body as a subroutine */ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* Jump here (skipping the main loop body subroutine) if the ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ if( j1 ) sqlite3VdbeJumpHere(v, j1); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. */ if( pSubWInfo->untestedTerms ) untestedTerms = 1; /* If all of the OR-connected terms are optimized using the same ** index, and the index is opened using the same cursor number ** by each call to sqlite3WhereBegin() made by this loop, it may ** be possible to use that index as a covering index. ** ** If the call to sqlite3WhereBegin() above resulted in a scan that ** uses an index, and this is either the first OR-connected term ** processed or the index is the same as that used by all previous ** terms, set pCov to the candidate covering index. Otherwise, set ** pCov to NULL to indicate that no candidate covering index will ** be available. */ pSubLoop = pSubWInfo->a[0].pWLoop; assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) ){ assert( pSubWInfo->a[0].iIdxCur==iCovCur ); pCov = pSubLoop->u.btree.pIndex; wctrlFlags |= WHERE_REOPEN_IDX; }else{ pCov = 0; } /* Finish the loop through table entries that match term pOrTerm. */ sqlite3WhereEnd(pSubWInfo); } } } pLevel->u.pCovidx = pCov; if( pCov ) pLevel->iIdxCur = iCovCur; if( pAndExpr ){ pAndExpr->pLeft = 0; sqlite3ExprDelete(db, pAndExpr); } sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); sqlite3VdbeResolveLabel(v, iLoopBody); if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); if( !untestedTerms ) disableTerm(pLevel, pTerm); }else #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ { /* Case 6: There is no usable index. We must do a complete ** scan of the entire table. */ static const u8 aStep[] = { OP_Next, OP_Prev }; static const u8 aStart[] = { OP_Rewind, OP_Last }; assert( bRev==0 || bRev==1 ); if( pTabItem->isRecursive ){ /* Tables marked isRecursive have only a single row that is stored in ** a pseudo-cursor. No need to Rewind or Next such cursors. */ pLevel->op = OP_Noop; }else{ pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); #endif /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; int skipLikeAddr = 0; testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ continue; } if( pTerm->wtFlags & TERM_LIKECOND ){ assert( pLevel->iLikeRepCntr>0 ); skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr); VdbeCoverage(v); } sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); pTerm->wtFlags |= TERM_CODED; } /* Insert code to test for implied constraints based on transitivity ** of the "==" operator. ** ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" ** and we are coding the t1 loop and the t2 loop has not yet coded, ** then we cannot use the "t1.a=t2.b" constraint, but we can code ** the implied "t1.a=123" constraint. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE, *pEAlt; WhereTerm *pAlt; if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; if( pTerm->leftCursor!=iCur ) continue; if( pLevel->iLeftJoin ) continue; pE = pTerm->pExpr; assert( !ExprHasProperty(pE, EP_FromJoin) ); assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN|WO_IS, 0); if( pAlt==0 ) continue; if( pAlt->wtFlags & (TERM_CODED) ) continue; testcase( pAlt->eOperator & WO_EQ ); testcase( pAlt->eOperator & WO_IS ); testcase( pAlt->eOperator & WO_IN ); VdbeModuleComment((v, "begin transitive constraint")); pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); if( pEAlt ){ *pEAlt = *pAlt->pExpr; pEAlt->pLeft = pE->pLeft; sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); sqlite3StackFree(db, pEAlt); } } /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if( pLevel->iLeftJoin ){ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); VdbeComment((v, "record LEFT JOIN hit")); sqlite3ExprCacheClear(pParse); for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ assert( pWInfo->untestedTerms ); continue; } assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } return pLevel->notReady; } /************** End of wherecode.c *******************************************/ /************** Begin file whereexpr.c ***************************************/ /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was originally part of where.c but was split out to improve ** readability and editabiliity. This file contains utility routines for ** analyzing Expr objects in the WHERE clause. */ /* Forward declarations */ static void exprAnalyze(SrcList*, WhereClause*, int); /* ** Deallocate all memory associated with a WhereOrInfo object. */ static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ sqlite3WhereClauseClear(&p->wc); sqlite3DbFree(db, p); } /* ** Deallocate all memory associated with a WhereAndInfo object. */ static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ sqlite3WhereClauseClear(&p->wc); sqlite3DbFree(db, p); } /* ** Add a single new WhereTerm entry to the WhereClause object pWC. ** The new WhereTerm object is constructed from Expr p and with wtFlags. ** The index in pWC->a[] of the new WhereTerm is returned on success. ** 0 is returned if the new WhereTerm could not be added due to a memory ** allocation error. The memory allocation failure will be recorded in ** the db->mallocFailed flag so that higher-level functions can detect it. |
︙ | ︙ | |||
116525 116526 116527 116528 116529 116530 116531 | pTerm->pExpr = sqlite3ExprSkipCollate(p); pTerm->wtFlags = wtFlags; pTerm->pWC = pWC; pTerm->iParent = -1; return idx; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 118637 118638 118639 118640 118641 118642 118643 118644 118645 118646 118647 118648 118649 118650 | pTerm->pExpr = sqlite3ExprSkipCollate(p); pTerm->wtFlags = wtFlags; pTerm->pWC = pWC; pTerm->iParent = -1; return idx; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" */ static int allowedOp(int op){ assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
︙ | ︙ | |||
116721 116722 116723 116724 116725 116726 116727 | assert( op!=TK_LE || c==WO_LE ); assert( op!=TK_GT || c==WO_GT ); assert( op!=TK_GE || c==WO_GE ); assert( op!=TK_IS || c==WO_IS ); return c; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 118717 118718 118719 118720 118721 118722 118723 118724 118725 118726 118727 118728 118729 118730 | assert( op!=TK_LE || c==WO_LE ); assert( op!=TK_GT || c==WO_GT ); assert( op!=TK_GE || c==WO_GE ); assert( op!=TK_IS || c==WO_IS ); return c; } #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* ** Check to see if the given expression is a LIKE or GLOB operator that ** can be optimized using inequality constraints. Return TRUE if it is ** so and false if not. ** |
︙ | ︙ | |||
116968 116969 116970 116971 116972 116973 116974 | assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); op = pRight->op; if( op==TK_VARIABLE ){ Vdbe *pReprepare = pParse->pReprepare; int iCol = pRight->iColumn; | | | 118771 118772 118773 118774 118775 118776 118777 118778 118779 118780 118781 118782 118783 118784 118785 | assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); op = pRight->op; if( op==TK_VARIABLE ){ Vdbe *pReprepare = pParse->pReprepare; int iCol = pRight->iColumn; pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ z = (char *)sqlite3_value_text(pVal); } sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); }else if( op==TK_STRING ){ z = pRight->u.zToken; |
︙ | ︙ | |||
117179 117180 117181 117182 117183 117184 117185 | ** ** then create a new virtual term like this: ** ** x IN (expr1,expr2,expr3) ** ** CASE 2: ** | | | 118982 118983 118984 118985 118986 118987 118988 118989 118990 118991 118992 118993 118994 118995 118996 | ** ** then create a new virtual term like this: ** ** x IN (expr1,expr2,expr3) ** ** CASE 2: ** ** If there are exactly two disjuncts and one side has x>A and the other side ** has x=A (for the same x and A) then add a new virtual conjunct term to the ** WHERE clause of the form "x>=A". Example: ** ** x>A OR (x=A AND y>B) adds: x>=A ** ** The added conjunct can sometimes be helpful in query planning. ** |
︙ | ︙ | |||
117208 117209 117210 117211 117212 117213 117214 | ** ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is decided elsewhere. This analysis only looks at whether subterms ** appropriate for indexing exist. ** | | | | | | 119011 119012 119013 119014 119015 119016 119017 119018 119019 119020 119021 119022 119023 119024 119025 119026 119027 119028 119029 119030 119031 119032 119033 119034 119035 119036 119037 119038 119039 119040 | ** ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is decided elsewhere. This analysis only looks at whether subterms ** appropriate for indexing exist. ** ** All examples A through E above satisfy case 3. But if a term ** also satisfies case 1 (such as B) we know that the optimizer will ** always prefer case 1, so in that case we pretend that case 3 is not ** satisfied. ** ** It might be the case that multiple tables are indexable. For example, ** (E) above is indexable on tables P, Q, and R. ** ** Terms that satisfy case 3 are candidates for lookup by using ** separate indices to find rowids for each subterm and composing ** the union of all rowids using a RowSet object. This is similar ** to "bitmap indices" in other database engines. ** ** OTHERWISE: ** ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to ** zero. This term is not useful for search. */ static void exprAnalyzeOrTerm( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the complete WHERE clause */ int idxTerm /* Index of the OR-term to be analyzed */ ){ |
︙ | ︙ | |||
117254 117255 117256 117257 117258 117259 117260 | */ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); assert( pExpr->op==TK_OR ); pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); if( pOrInfo==0 ) return; pTerm->wtFlags |= TERM_ORINFO; pOrWc = &pOrInfo->wc; | | | | | | | | | | | | 119057 119058 119059 119060 119061 119062 119063 119064 119065 119066 119067 119068 119069 119070 119071 119072 119073 119074 119075 119076 119077 119078 119079 119080 119081 119082 119083 119084 119085 119086 119087 119088 119089 119090 119091 119092 119093 119094 119095 119096 119097 119098 119099 119100 119101 119102 119103 119104 119105 119106 119107 119108 119109 119110 119111 119112 119113 119114 119115 119116 119117 119118 119119 119120 | */ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); assert( pExpr->op==TK_OR ); pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); if( pOrInfo==0 ) return; pTerm->wtFlags |= TERM_ORINFO; pOrWc = &pOrInfo->wc; sqlite3WhereClauseInit(pOrWc, pWInfo); sqlite3WhereSplit(pOrWc, pExpr, TK_OR); sqlite3WhereExprAnalyze(pSrc, pOrWc); if( db->mallocFailed ) return; assert( pOrWc->nTerm>=2 ); /* ** Compute the set of tables that might satisfy cases 1 or 3. */ indexable = ~(Bitmask)0; chngToIN = ~(Bitmask)0; for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ WhereAndInfo *pAndInfo; assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); chngToIN = 0; pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); if( pAndInfo ){ WhereClause *pAndWC; WhereTerm *pAndTerm; int j; Bitmask b = 0; pOrTerm->u.pAndInfo = pAndInfo; pOrTerm->wtFlags |= TERM_ANDINFO; pOrTerm->eOperator = WO_AND; pAndWC = &pAndInfo->wc; sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); sqlite3WhereExprAnalyze(pSrc, pAndWC); pAndWC->pOuter = pWC; testcase( db->mallocFailed ); if( !db->mallocFailed ){ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ assert( pAndTerm->pExpr ); if( allowedOp(pAndTerm->pExpr->op) ){ b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); } } } indexable &= b; } }else if( pOrTerm->wtFlags & TERM_COPIED ){ /* Skip this term for now. We revisit it when we process the ** corresponding TERM_VIRTUAL term */ }else{ Bitmask b; b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); if( pOrTerm->wtFlags & TERM_VIRTUAL ){ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); } indexable &= b; if( (pOrTerm->eOperator & WO_EQ)==0 ){ chngToIN = 0; }else{ chngToIN &= b; } |
︙ | ︙ | |||
117379 117380 117381 117382 117383 117384 117385 | pOrTerm->wtFlags &= ~TERM_OR_OK; if( pOrTerm->leftCursor==iCursor ){ /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } | > | | | 119182 119183 119184 119185 119186 119187 119188 119189 119190 119191 119192 119193 119194 119195 119196 119197 119198 119199 119200 119201 119202 119203 119204 119205 119206 119207 119208 119209 119210 119211 119212 119213 119214 119215 119216 | pOrTerm->wtFlags &= ~TERM_OR_OK; if( pOrTerm->leftCursor==iCursor ){ /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceded ** or follwed by an inverted copy (t2.b==t1.a). Skip this term ** and use its inversion. */ testcase( pOrTerm->wtFlags & TERM_COPIED ); testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); continue; } iColumn = pOrTerm->u.leftColumn; iCursor = pOrTerm->leftCursor; break; } if( i<0 ){ /* No candidate table+column was found. This can only occur ** on the second iteration */ assert( j==1 ); assert( IsPowerOfTwo(chngToIN) ); assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); break; } testcase( j==1 ); /* We have found a candidate table and column. Check to see if that ** table and column is common to every term in the OR clause */ okToChngToIN = 1; |
︙ | ︙ | |||
117476 117477 117478 117479 117480 117481 117482 | /* ** We already know that pExpr is a binary operator where both operands are ** column references. This routine checks to see if pExpr is an equivalence ** relation: ** 1. The SQLITE_Transitive optimization must be enabled ** 2. Must be either an == or an IS operator | | | 119280 119281 119282 119283 119284 119285 119286 119287 119288 119289 119290 119291 119292 119293 119294 | /* ** We already know that pExpr is a binary operator where both operands are ** column references. This routine checks to see if pExpr is an equivalence ** relation: ** 1. The SQLITE_Transitive optimization must be enabled ** 2. Must be either an == or an IS operator ** 3. Not originating in the ON clause of an OUTER JOIN ** 4. The affinities of A and B must be compatible ** 5a. Both operands use the same collating sequence OR ** 5b. The overall collating sequence is BINARY ** If this routine returns TRUE, that means that the RHS can be substituted ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. ** This is an optimization. No harm comes from returning 0. But if 1 is ** returned when it should not be, then incorrect answers might result. |
︙ | ︙ | |||
117509 117510 117511 117512 117513 117514 117515 117516 117517 117518 117519 117520 117521 117522 | /* Since pLeft and pRight are both a column references, their collating ** sequence should always be defined. */ zColl1 = ALWAYS(pColl) ? pColl->zName : 0; pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); zColl2 = ALWAYS(pColl) ? pColl->zName : 0; return sqlite3StrICmp(zColl1, zColl2)==0; } /* ** The input to this routine is an WhereTerm structure with only the ** "pExpr" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the WhereTerm ** structure. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > | 119313 119314 119315 119316 119317 119318 119319 119320 119321 119322 119323 119324 119325 119326 119327 119328 119329 119330 119331 119332 119333 119334 119335 119336 119337 119338 119339 119340 119341 119342 119343 119344 119345 119346 119347 119348 119349 119350 119351 119352 | /* Since pLeft and pRight are both a column references, their collating ** sequence should always be defined. */ zColl1 = ALWAYS(pColl) ? pColl->zName : 0; pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); zColl2 = ALWAYS(pColl) ? pColl->zName : 0; return sqlite3StrICmp(zColl1, zColl2)==0; } /* ** Recursively walk the expressions of a SELECT statement and generate ** a bitmask indicating which tables are used in that expression ** tree. */ static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ Bitmask mask = 0; while( pS ){ SrcList *pSrc = pS->pSrc; mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); if( ALWAYS(pSrc!=0) ){ int i; for(i=0; i<pSrc->nSrc; i++){ mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); } } pS = pS->pPrior; } return mask; } /* ** The input to this routine is an WhereTerm structure with only the ** "pExpr" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the WhereTerm ** structure. ** |
︙ | ︙ | |||
117554 117555 117556 117557 117558 117559 117560 | if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = &pWInfo->sMaskSet; pExpr = pTerm->pExpr; assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); | | | | | | | | 119384 119385 119386 119387 119388 119389 119390 119391 119392 119393 119394 119395 119396 119397 119398 119399 119400 119401 119402 119403 119404 119405 119406 119407 119408 119409 119410 119411 119412 119413 119414 | if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = &pWInfo->sMaskSet; pExpr = pTerm->pExpr; assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); op = pExpr->op; if( op==TK_IN ){ assert( pExpr->pRight==0 ); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); }else{ pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); } }else if( op==TK_ISNULL ){ pTerm->prereqRight = 0; }else{ pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); } prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); if( ExprHasProperty(pExpr, EP_FromJoin) ){ Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); prereqAll |= x; extraRight = x-1; /* ON clause terms may not be used with an index ** on left table of a LEFT JOIN. Ticket #3015 */ } pTerm->prereqAll = prereqAll; pTerm->leftCursor = -1; pTerm->iParent = -1; |
︙ | ︙ | |||
117775 117776 117777 117778 117779 117780 117781 | int idxNew; Expr *pRight, *pLeft; WhereTerm *pNewTerm; Bitmask prereqColumn, prereqExpr; pRight = pExpr->x.pList->a[0].pExpr; pLeft = pExpr->x.pList->a[1].pExpr; | | | | 119605 119606 119607 119608 119609 119610 119611 119612 119613 119614 119615 119616 119617 119618 119619 119620 | int idxNew; Expr *pRight, *pLeft; WhereTerm *pNewTerm; Bitmask prereqColumn, prereqExpr; pRight = pExpr->x.pList->a[0].pExpr; pLeft = pExpr->x.pList->a[1].pExpr; prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); if( (prereqExpr & prereqColumn)==0 ){ Expr *pNewExpr; pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 0, sqlite3ExprDup(db, pRight, 0), 0); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); pNewTerm = &pWC->a[idxNew]; |
︙ | ︙ | |||
117839 117840 117841 117842 117843 117844 117845 117846 117847 117848 117849 117850 117851 117852 | #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /* ** This function searches pList for an entry that matches the iCol-th column ** of index pIdx. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 119669 119670 119671 119672 119673 119674 119675 119676 119677 119678 119679 119680 119681 119682 119683 119684 119685 119686 119687 119688 119689 119690 119691 119692 119693 119694 119695 119696 119697 119698 119699 119700 119701 119702 119703 119704 119705 119706 119707 119708 119709 119710 119711 119712 119713 119714 119715 119716 119717 119718 119719 119720 119721 119722 119723 119724 119725 119726 119727 119728 119729 119730 119731 119732 119733 119734 119735 119736 119737 119738 119739 119740 119741 119742 119743 119744 119745 119746 119747 119748 119749 119750 119751 119752 119753 119754 119755 119756 119757 119758 119759 119760 119761 119762 119763 119764 119765 119766 119767 119768 119769 119770 119771 119772 119773 119774 119775 119776 119777 119778 119779 119780 119781 119782 119783 119784 119785 119786 119787 119788 119789 119790 119791 119792 119793 119794 119795 119796 119797 119798 119799 119800 119801 119802 119803 119804 119805 119806 119807 119808 119809 119810 119811 119812 119813 119814 119815 119816 119817 119818 119819 119820 119821 119822 119823 119824 119825 119826 119827 119828 119829 119830 119831 119832 119833 119834 119835 119836 119837 119838 119839 119840 119841 119842 119843 119844 119845 119846 119847 119848 119849 119850 119851 119852 119853 119854 119855 119856 119857 119858 119859 119860 119861 119862 119863 119864 119865 119866 119867 119868 119869 119870 119871 119872 119873 119874 119875 119876 119877 119878 119879 119880 119881 119882 119883 119884 119885 119886 119887 119888 119889 119890 119891 119892 119893 119894 119895 119896 119897 119898 119899 119900 119901 119902 119903 119904 119905 119906 119907 119908 119909 119910 119911 119912 119913 119914 119915 119916 119917 119918 119919 119920 119921 119922 119923 119924 119925 119926 119927 119928 119929 119930 119931 119932 119933 119934 119935 119936 119937 119938 119939 119940 119941 119942 119943 119944 119945 119946 119947 119948 119949 119950 119951 119952 119953 119954 119955 119956 119957 119958 119959 119960 119961 119962 119963 119964 119965 119966 119967 119968 119969 119970 119971 119972 119973 119974 119975 119976 119977 119978 119979 119980 119981 119982 119983 119984 119985 119986 119987 119988 119989 119990 119991 119992 119993 119994 119995 119996 119997 119998 119999 120000 120001 120002 120003 120004 120005 120006 120007 120008 120009 120010 120011 120012 120013 120014 120015 120016 120017 120018 120019 120020 120021 120022 120023 120024 120025 120026 120027 120028 120029 120030 120031 120032 120033 120034 120035 120036 120037 120038 120039 120040 120041 120042 120043 120044 120045 120046 120047 120048 120049 120050 120051 120052 120053 120054 120055 120056 120057 120058 120059 120060 120061 120062 120063 120064 120065 120066 120067 120068 120069 120070 120071 120072 120073 120074 120075 120076 120077 120078 120079 120080 120081 120082 120083 120084 120085 120086 120087 120088 120089 120090 120091 120092 120093 120094 120095 120096 120097 120098 120099 120100 120101 120102 120103 120104 120105 120106 120107 120108 120109 120110 120111 120112 120113 120114 120115 120116 120117 120118 120119 120120 120121 120122 120123 120124 120125 120126 120127 120128 120129 120130 120131 120132 120133 120134 120135 120136 120137 120138 120139 120140 120141 120142 120143 120144 120145 120146 120147 120148 120149 | #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /*************************************************************************** ** Routines with file scope above. Interface to the rest of the where.c ** subsystem follows. ***************************************************************************/ /* ** This routine identifies subexpressions in the WHERE clause where ** each subexpression is separated by the AND operator or some other ** operator specified in the op parameter. The WhereClause structure ** is filled with pointers to subexpressions. For example: ** ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) ** \________/ \_______________/ \________________/ ** slot[0] slot[1] slot[2] ** ** The original WHERE clause in pExpr is unaltered. All this routine ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ SQLITE_PRIVATE void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ Expr *pE2 = sqlite3ExprSkipCollate(pExpr); pWC->op = op; if( pE2==0 ) return; if( pE2->op!=op ){ whereClauseInsert(pWC, pExpr, 0); }else{ sqlite3WhereSplit(pWC, pE2->pLeft, op); sqlite3WhereSplit(pWC, pE2->pRight, op); } } /* ** Initialize a preallocated WhereClause structure. */ SQLITE_PRIVATE void sqlite3WhereClauseInit( WhereClause *pWC, /* The WhereClause to be initialized */ WhereInfo *pWInfo /* The WHERE processing context */ ){ pWC->pWInfo = pWInfo; pWC->pOuter = 0; pWC->nTerm = 0; pWC->nSlot = ArraySize(pWC->aStatic); pWC->a = pWC->aStatic; } /* ** Deallocate a WhereClause structure. The WhereClause structure ** itself is not freed. This routine is the inverse of sqlite3WhereClauseInit(). */ SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause *pWC){ int i; WhereTerm *a; sqlite3 *db = pWC->pWInfo->pParse->db; for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ if( a->wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, a->pExpr); } if( a->wtFlags & TERM_ORINFO ){ whereOrInfoDelete(db, a->u.pOrInfo); }else if( a->wtFlags & TERM_ANDINFO ){ whereAndInfoDelete(db, a->u.pAndInfo); } } if( pWC->a!=pWC->aStatic ){ sqlite3DbFree(db, pWC->a); } } /* ** These routines walk (recursively) an expression tree and generate ** a bitmask indicating which tables are used in that expression ** tree. */ SQLITE_PRIVATE Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ Bitmask mask = 0; if( p==0 ) return 0; if( p->op==TK_COLUMN ){ mask = sqlite3WhereGetMask(pMaskSet, p->iTable); return mask; } mask = sqlite3WhereExprUsage(pMaskSet, p->pRight); mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); if( ExprHasProperty(p, EP_xIsSelect) ){ mask |= exprSelectUsage(pMaskSet, p->x.pSelect); }else{ mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); } return mask; } SQLITE_PRIVATE Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ int i; Bitmask mask = 0; if( pList ){ for(i=0; i<pList->nExpr; i++){ mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); } } return mask; } /* ** Call exprAnalyze on all terms in a WHERE clause. ** ** Note that exprAnalyze() might add new virtual terms onto the ** end of the WHERE clause. We do not want to analyze these new ** virtual terms, so start analyzing at the end and work forward ** so that the added virtual terms are never processed. */ SQLITE_PRIVATE void sqlite3WhereExprAnalyze( SrcList *pTabList, /* the FROM clause */ WhereClause *pWC /* the WHERE clause to be analyzed */ ){ int i; for(i=pWC->nTerm-1; i>=0; i--){ exprAnalyze(pTabList, pWC, i); } } /************** End of whereexpr.c *******************************************/ /************** Begin file where.c *******************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is responsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". */ /* Forward declaration of methods */ static int whereLoopResize(sqlite3*, WhereLoop*, int); /* Test variable that can be set to enable WHERE tracing */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) /***/ int sqlite3WhereTrace = 0; #endif /* ** Return the estimated number of output rows from a WHERE clause */ SQLITE_PRIVATE u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ return sqlite3LogEstToInt(pWInfo->nRowOut); } /* ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this ** WHERE clause returns outputs for DISTINCT processing. */ SQLITE_PRIVATE int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ return pWInfo->eDistinct; } /* ** Return TRUE if the WHERE clause returns rows in ORDER BY order. ** Return FALSE if the output needs to be sorted. */ SQLITE_PRIVATE int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ return pWInfo->nOBSat; } /* ** Return the VDBE address or label to jump to in order to continue ** immediately with the next row of a WHERE clause. */ SQLITE_PRIVATE int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ assert( pWInfo->iContinue!=0 ); return pWInfo->iContinue; } /* ** Return the VDBE address or label to jump to in order to break ** out of a WHERE loop. */ SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ return pWInfo->iBreak; } /* ** Return TRUE if an UPDATE or DELETE statement can operate directly on ** the rowids returned by a WHERE clause. Return FALSE if doing an ** UPDATE or DELETE might change subsequent WHERE clause results. ** ** If the ONEPASS optimization is used (if this routine returns true) ** then also write the indices of open cursors used by ONEPASS ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data ** table and iaCur[1] gets the cursor used by an auxiliary index. ** Either value may be -1, indicating that cursor is not used. ** Any cursors returned will have been opened for writing. ** ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is ** unable to use the ONEPASS optimization. */ SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); return pWInfo->okOnePass; } /* ** Move the content of pSrc into pDest */ static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ pDest->n = pSrc->n; memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); } /* ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. ** ** The new entry might overwrite an existing entry, or it might be ** appended, or it might be discarded. Do whatever is the right thing ** so that pSet keeps the N_OR_COST best entries seen so far. */ static int whereOrInsert( WhereOrSet *pSet, /* The WhereOrSet to be updated */ Bitmask prereq, /* Prerequisites of the new entry */ LogEst rRun, /* Run-cost of the new entry */ LogEst nOut /* Number of outputs for the new entry */ ){ u16 i; WhereOrCost *p; for(i=pSet->n, p=pSet->a; i>0; i--, p++){ if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ goto whereOrInsert_done; } if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ return 0; } } if( pSet->n<N_OR_COST ){ p = &pSet->a[pSet->n++]; p->nOut = nOut; }else{ p = pSet->a; for(i=1; i<pSet->n; i++){ if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; } if( p->rRun<=rRun ) return 0; } whereOrInsert_done: p->prereq = prereq; p->rRun = rRun; if( p->nOut>nOut ) p->nOut = nOut; return 1; } /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ SQLITE_PRIVATE Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ int i; assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); for(i=0; i<pMaskSet->n; i++){ if( pMaskSet->ix[i]==iCursor ){ return MASKBIT(i); } } return 0; } /* ** Create a new mask for cursor iCursor. ** ** There is one cursor per table in the FROM clause. The number of ** tables in the FROM clause is limited by a test early in the ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] ** array will never overflow. */ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); pMaskSet->ix[pMaskSet->n++] = iCursor; } /* ** Advance to the next WhereTerm that matches according to the criteria ** established when the pScan object was initialized by whereScanInit(). ** Return NULL if there are no more matching WhereTerms. */ static WhereTerm *whereScanNext(WhereScan *pScan){ int iCur; /* The cursor on the LHS of the term */ int iColumn; /* The column on the LHS of the term. -1 for IPK */ Expr *pX; /* An expression being tested */ WhereClause *pWC; /* Shorthand for pScan->pWC */ WhereTerm *pTerm; /* The term being tested */ int k = pScan->k; /* Where to start scanning */ while( pScan->iEquiv<=pScan->nEquiv ){ iCur = pScan->aEquiv[pScan->iEquiv-2]; iColumn = pScan->aEquiv[pScan->iEquiv-1]; while( (pWC = pScan->pWC)!=0 ){ for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ if( pTerm->leftCursor==iCur && pTerm->u.leftColumn==iColumn && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) ){ if( (pTerm->eOperator & WO_EQUIV)!=0 && pScan->nEquiv<ArraySize(pScan->aEquiv) ){ int j; pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); assert( pX->op==TK_COLUMN ); for(j=0; j<pScan->nEquiv; j+=2){ if( pScan->aEquiv[j]==pX->iTable && pScan->aEquiv[j+1]==pX->iColumn ){ break; } } if( j==pScan->nEquiv ){ pScan->aEquiv[j] = pX->iTable; pScan->aEquiv[j+1] = pX->iColumn; pScan->nEquiv += 2; } } if( (pTerm->eOperator & pScan->opMask)!=0 ){ /* Verify the affinity and collating sequence match */ if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ CollSeq *pColl; Parse *pParse = pWC->pWInfo->pParse; pX = pTerm->pExpr; if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ continue; } assert(pX->pLeft); pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); if( pColl==0 ) pColl = pParse->db->pDfltColl; if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ continue; } } if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN && pX->iTable==pScan->aEquiv[0] && pX->iColumn==pScan->aEquiv[1] ){ testcase( pTerm->eOperator & WO_IS ); continue; } pScan->k = k+1; return pTerm; } } } pScan->pWC = pScan->pWC->pOuter; k = 0; } pScan->pWC = pScan->pOrigWC; k = 0; pScan->iEquiv += 2; } return 0; } /* ** Initialize a WHERE clause scanner object. Return a pointer to the ** first match. Return NULL if there are no matches. ** ** The scanner will be searching the WHERE clause pWC. It will look ** for terms of the form "X <op> <expr>" where X is column iColumn of table ** iCur. The <op> must be one of the operators described by opMask. ** ** If the search is for X and the WHERE clause contains terms of the ** form X=Y then this routine might also return terms of the form ** "Y <op> <expr>". The number of levels of transitivity is limited, ** but is enough to handle most commonly occurring SQL statements. ** ** If X is not the INTEGER PRIMARY KEY then X must be compatible with ** index pIdx. */ static WhereTerm *whereScanInit( WhereScan *pScan, /* The WhereScan object being initialized */ WhereClause *pWC, /* The WHERE clause to be scanned */ int iCur, /* Cursor to scan for */ int iColumn, /* Column to scan for */ u32 opMask, /* Operator(s) to scan for */ Index *pIdx /* Must be compatible with this index */ ){ int j; /* memset(pScan, 0, sizeof(*pScan)); */ pScan->pOrigWC = pWC; pScan->pWC = pWC; if( pIdx && iColumn>=0 ){ pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ if( NEVER(j>pIdx->nColumn) ) return 0; } pScan->zCollName = pIdx->azColl[j]; }else{ pScan->idxaff = 0; pScan->zCollName = 0; } pScan->opMask = opMask; pScan->k = 0; pScan->aEquiv[0] = iCur; pScan->aEquiv[1] = iColumn; pScan->nEquiv = 2; pScan->iEquiv = 2; return whereScanNext(pScan); } /* ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" ** where X is a reference to the iColumn of table iCur and <op> is one of ** the WO_xx operator codes specified by the op parameter. ** Return a pointer to the term. Return 0 if not found. ** ** The term returned might by Y=<expr> if there is another constraint in ** the WHERE clause that specifies that X=Y. Any such constraints will be ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The ** aEquiv[] array holds X and all its equivalents, with each SQL variable ** taking up two slots in aEquiv[]. The first slot is for the cursor number ** and the second is for the column number. There are 22 slots in aEquiv[] ** so that means we can look for X plus up to 10 other equivalent values. ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 ** and ... and A9=A10 and A10=<expr>. ** ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" ** then try for the one with no dependencies on <expr> - in other words where ** <expr> is a constant expression of some kind. Only return entries of ** the form "X <op> Y" where Y is a column in another table if no terms of ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS ** exist, try to return a term that does not use WO_EQUIV. */ SQLITE_PRIVATE WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ WhereTerm *pResult = 0; WhereTerm *p; WhereScan scan; p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); op &= WO_EQ|WO_IS; while( p ){ if( (p->prereqRight & notReady)==0 ){ if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ testcase( p->eOperator & WO_IS ); return p; } if( pResult==0 ) pResult = p; } p = whereScanNext(&scan); } return pResult; } /* ** This function searches pList for an entry that matches the iCol-th column ** of index pIdx. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. |
︙ | ︙ | |||
117877 117878 117879 117880 117881 117882 117883 | return -1; } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. ** | | | | 120174 120175 120176 120177 120178 120179 120180 120181 120182 120183 120184 120185 120186 120187 120188 120189 | return -1; } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. ** ** A DISTINCT list is redundant if any subset of the columns in the ** DISTINCT list are collectively unique and individually non-null. */ static int isDistinctRedundant( Parse *pParse, /* Parsing context */ SrcList *pTabList, /* The FROM clause */ WhereClause *pWC, /* The WHERE clause */ ExprList *pDistinct /* The result set that needs to be DISTINCT */ ){ |
︙ | ︙ | |||
117924 117925 117926 117927 117928 117929 117930 | ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !IsUniqueIndex(pIdx) ) continue; for(i=0; i<pIdx->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; | | | 120221 120222 120223 120224 120225 120226 120227 120228 120229 120230 120231 120232 120233 120234 120235 | ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !IsUniqueIndex(pIdx) ) continue; for(i=0; i<pIdx->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; if( 0==sqlite3WhereFindTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ break; } } } if( i==pIdx->nKeyCol ){ |
︙ | ︙ | |||
118255 118256 118257 118258 118259 118260 118261 118262 118263 118264 118265 118266 118267 118268 118269 118270 118271 118272 118273 118274 118275 118276 118277 118278 118279 118280 118281 118282 118283 118284 | ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure ** by passing the pointer returned by this function to sqlite3_free(). */ static sqlite3_index_info *allocateIndexInfo( Parse *pParse, WhereClause *pWC, struct SrcList_item *pSrc, ExprList *pOrderBy ){ int i, j; int nTerm; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_orderby *pIdxOrderBy; struct sqlite3_index_constraint_usage *pUsage; WhereTerm *pTerm; int nOrderBy; sqlite3_index_info *pIdxInfo; /* Count the number of possible WHERE clause constraints referring ** to this virtual table */ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IS ); testcase( pTerm->eOperator & WO_ALL ); if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; | > > | 120552 120553 120554 120555 120556 120557 120558 120559 120560 120561 120562 120563 120564 120565 120566 120567 120568 120569 120570 120571 120572 120573 120574 120575 120576 120577 120578 120579 120580 120581 120582 120583 | ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure ** by passing the pointer returned by this function to sqlite3_free(). */ static sqlite3_index_info *allocateIndexInfo( Parse *pParse, WhereClause *pWC, Bitmask mUnusable, /* Ignore terms with these prereqs */ struct SrcList_item *pSrc, ExprList *pOrderBy ){ int i, j; int nTerm; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_orderby *pIdxOrderBy; struct sqlite3_index_constraint_usage *pUsage; WhereTerm *pTerm; int nOrderBy; sqlite3_index_info *pIdxInfo; /* Count the number of possible WHERE clause constraints referring ** to this virtual table */ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; if( pTerm->prereqRight & mUnusable ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IS ); testcase( pTerm->eOperator & WO_ALL ); if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; |
︙ | ︙ | |||
118325 118326 118327 118328 118329 118330 118331 118332 118333 118334 118335 118336 118337 118338 | *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = pUsage; for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ u8 op; if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_IS ); testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_ALL ); if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; | > | 120624 120625 120626 120627 120628 120629 120630 120631 120632 120633 120634 120635 120636 120637 120638 | *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = pUsage; for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ u8 op; if( pTerm->leftCursor != pSrc->iCursor ) continue; if( pTerm->prereqRight & mUnusable ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_IS ); testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_ALL ); if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; if( pTerm->wtFlags & TERM_VNULL ) continue; |
︙ | ︙ | |||
119046 119047 119048 119049 119050 119051 119052 | WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); } assert( pBuilder->nRecValid==nRecValid ); return rc; } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 121346 121347 121348 121349 121350 121351 121352 121353 121354 121355 121356 121357 121358 121359 | WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); } assert( pBuilder->nRecValid==nRecValid ); return rc; } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ #ifdef WHERETRACE_ENABLED /* ** Print the content of a WhereTerm object */ static void whereTermPrint(WhereTerm *pTerm, int iTerm){ if( pTerm==0 ){ |
︙ | ︙ | |||
120693 120694 120695 120696 120697 120698 120699 | int i; for(i=0; i<pWInfo->nLevel; i++){ WhereLevel *pLevel = &pWInfo->a[i]; if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ sqlite3DbFree(db, pLevel->u.in.aInLoop); } } | | | 121512 121513 121514 121515 121516 121517 121518 121519 121520 121521 121522 121523 121524 121525 121526 | int i; for(i=0; i<pWInfo->nLevel; i++){ WhereLevel *pLevel = &pWInfo->a[i]; if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ sqlite3DbFree(db, pLevel->u.in.aInLoop); } } sqlite3WhereClauseClear(&pWInfo->sWC); while( pWInfo->pLoops ){ WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } sqlite3DbFree(db, pWInfo); } |
︙ | ︙ | |||
121645 121646 121647 121648 121649 121650 121651 121652 121653 121654 | return rc; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Add all WhereLoop objects for a table of the join identified by ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. */ static int whereLoopAddVirtual( WhereLoopBuilder *pBuilder, /* WHERE clause information */ | > > > > > > > > > > > > > > > > > > > > > | > > | | 122464 122465 122466 122467 122468 122469 122470 122471 122472 122473 122474 122475 122476 122477 122478 122479 122480 122481 122482 122483 122484 122485 122486 122487 122488 122489 122490 122491 122492 122493 122494 122495 122496 122497 122498 122499 122500 122501 122502 122503 122504 122505 122506 122507 122508 122509 122510 122511 122512 122513 122514 122515 122516 122517 122518 122519 122520 122521 122522 122523 122524 122525 122526 122527 122528 122529 122530 122531 122532 122533 | return rc; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Add all WhereLoop objects for a table of the join identified by ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. ** ** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and ** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause ** entries that occur before the virtual table in the FROM clause and are ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the ** mUnusable mask contains all FROM clause entries that occur after the ** virtual table and are separated from it by at least one LEFT or ** CROSS JOIN. ** ** For example, if the query were: ** ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; ** ** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6). ** ** All the tables in mExtra must be scanned before the current virtual ** table. So any terms for which all prerequisites are satisfied by ** mExtra may be specified as "usable" in all calls to xBestIndex. ** Conversely, all tables in mUnusable must be scanned after the current ** virtual table, so any terms for which the prerequisites overlap with ** mUnusable should always be configured as "not-usable" for xBestIndex. */ static int whereLoopAddVirtual( WhereLoopBuilder *pBuilder, /* WHERE clause information */ Bitmask mExtra, /* Tables that must be scanned before this one */ Bitmask mUnusable /* Tables that must be scanned after this one */ ){ WhereInfo *pWInfo; /* WHERE analysis context */ Parse *pParse; /* The parsing context */ WhereClause *pWC; /* The WHERE clause */ struct SrcList_item *pSrc; /* The FROM clause term to search */ Table *pTab; sqlite3 *db; sqlite3_index_info *pIdxInfo; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_constraint_usage *pUsage; WhereTerm *pTerm; int i, j; int iTerm, mxTerm; int nConstraint; int seenIn = 0; /* True if an IN operator is seen */ int seenVar = 0; /* True if a non-constant constraint is seen */ int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ WhereLoop *pNew; int rc = SQLITE_OK; assert( (mExtra & mUnusable)==0 ); pWInfo = pBuilder->pWInfo; pParse = pWInfo->pParse; db = pParse->db; pWC = pBuilder->pWC; pNew = pBuilder->pNew; pSrc = &pWInfo->pTabList->a[pNew->iTab]; pTab = pSrc->pTab; assert( IsVirtual(pTab) ); pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy); if( pIdxInfo==0 ) return SQLITE_NOMEM; pNew->prereq = 0; pNew->rSetup = 0; pNew->wsFlags = WHERE_VIRTUALTABLE; pNew->nLTerm = 0; pNew->u.vtab.needFree = 0; pUsage = pIdxInfo->aConstraintUsage; |
︙ | ︙ | |||
121707 121708 121709 121710 121711 121712 121713 | pTerm = &pWC->a[j]; switch( iPhase ){ case 0: /* Constants without IN operator */ pIdxCons->usable = 0; if( (pTerm->eOperator & WO_IN)!=0 ){ seenIn = 1; } | | | | 122549 122550 122551 122552 122553 122554 122555 122556 122557 122558 122559 122560 122561 122562 122563 122564 122565 122566 122567 122568 122569 122570 122571 | pTerm = &pWC->a[j]; switch( iPhase ){ case 0: /* Constants without IN operator */ pIdxCons->usable = 0; if( (pTerm->eOperator & WO_IN)!=0 ){ seenIn = 1; } if( (pTerm->prereqRight & ~mExtra)!=0 ){ seenVar = 1; }else if( (pTerm->eOperator & WO_IN)==0 ){ pIdxCons->usable = 1; } break; case 1: /* Constants with IN operators */ assert( seenIn ); pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0; break; case 2: /* Variables without IN */ assert( seenVar ); pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; break; default: /* Variables with IN */ assert( seenVar && seenIn ); |
︙ | ︙ | |||
121814 121815 121816 121817 121818 121819 121820 | } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Add WhereLoop entries to handle OR terms. This works for either ** btrees or virtual tables. */ | | > > > > | 122656 122657 122658 122659 122660 122661 122662 122663 122664 122665 122666 122667 122668 122669 122670 122671 122672 122673 122674 | } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Add WhereLoop entries to handle OR terms. This works for either ** btrees or virtual tables. */ static int whereLoopAddOr( WhereLoopBuilder *pBuilder, Bitmask mExtra, Bitmask mUnusable ){ WhereInfo *pWInfo = pBuilder->pWInfo; WhereClause *pWC; WhereLoop *pNew; WhereTerm *pTerm, *pWCEnd; int rc = SQLITE_OK; int iCur; WhereClause tempWC; |
︙ | ︙ | |||
121873 121874 121875 121876 121877 121878 121879 | for(i=0; i<sSubBuild.pWC->nTerm; i++){ whereTermPrint(&sSubBuild.pWC->a[i], i); } } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pItem->pTab) ){ | | | | 122719 122720 122721 122722 122723 122724 122725 122726 122727 122728 122729 122730 122731 122732 122733 122734 122735 122736 122737 122738 122739 122740 | for(i=0; i<sSubBuild.pWC->nTerm; i++){ whereTermPrint(&sSubBuild.pWC->a[i], i); } } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pItem->pTab) ){ rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable); }else #endif { rc = whereLoopAddBtree(&sSubBuild, mExtra); } if( rc==SQLITE_OK ){ rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable); } assert( rc==SQLITE_OK || sCur.n==0 ); if( sCur.n==0 ){ sSum.n = 0; break; }else if( once ){ whereOrMove(&sSum, &sCur); |
︙ | ︙ | |||
121942 121943 121944 121945 121946 121947 121948 121949 | static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ WhereInfo *pWInfo = pBuilder->pWInfo; Bitmask mExtra = 0; Bitmask mPrior = 0; int iTab; SrcList *pTabList = pWInfo->pTabList; struct SrcList_item *pItem; sqlite3 *db = pWInfo->pParse->db; | > < < > | > | | > > | > > > > > > | | > | 122788 122789 122790 122791 122792 122793 122794 122795 122796 122797 122798 122799 122800 122801 122802 122803 122804 122805 122806 122807 122808 122809 122810 122811 122812 122813 122814 122815 122816 122817 122818 122819 122820 122821 122822 122823 122824 122825 122826 122827 122828 122829 122830 122831 122832 122833 122834 122835 122836 122837 122838 | static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ WhereInfo *pWInfo = pBuilder->pWInfo; Bitmask mExtra = 0; Bitmask mPrior = 0; int iTab; SrcList *pTabList = pWInfo->pTabList; struct SrcList_item *pItem; struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; sqlite3 *db = pWInfo->pParse->db; int rc = SQLITE_OK; WhereLoop *pNew; u8 priorJointype = 0; /* Loop over the tables in the join, from left to right */ pNew = pBuilder->pNew; whereLoopInit(pNew); for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ Bitmask mUnusable = 0; pNew->iTab = iTab; pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); if( ((pItem->jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ /* This condition is true when pItem is the FROM clause term on the ** right-hand-side of a LEFT or CROSS JOIN. */ mExtra = mPrior; } priorJointype = pItem->jointype; if( IsVirtual(pItem->pTab) ){ struct SrcList_item *p; for(p=&pItem[1]; p<pEnd; p++){ if( mUnusable || (p->jointype & (JT_LEFT|JT_CROSS)) ){ mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); } } rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable); }else{ rc = whereLoopAddBtree(pBuilder, mExtra); } if( rc==SQLITE_OK ){ rc = whereLoopAddOr(pBuilder, mExtra, mUnusable); } mPrior |= pNew->maskSelf; if( rc || db->mallocFailed ) break; } whereLoopClear(db, pNew); return rc; } /* ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th ** parameters) to see if it outputs rows in the requested ORDER BY |
︙ | ︙ | |||
122074 122075 122076 122077 122078 122079 122080 | ** loops. */ for(i=0; i<nOrderBy; i++){ if( MASKBIT(i) & obSat ) continue; pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); if( pOBExpr->op!=TK_COLUMN ) continue; if( pOBExpr->iTable!=iCur ) continue; | | | 122930 122931 122932 122933 122934 122935 122936 122937 122938 122939 122940 122941 122942 122943 122944 | ** loops. */ for(i=0; i<nOrderBy; i++){ if( MASKBIT(i) & obSat ) continue; pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); if( pOBExpr->op!=TK_COLUMN ) continue; if( pOBExpr->iTable!=iCur ) continue; pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, ~ready, WO_EQ|WO_ISNULL|WO_IS, 0); if( pTerm==0 ) continue; if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ const char *z1, *z2; pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); if( !pColl ) pColl = db->pDfltColl; z1 = pColl->zName; |
︙ | ︙ | |||
122211 122212 122213 122214 122215 122216 122217 | if( isOrderDistinct ){ orderDistinctMask |= pLoop->maskSelf; for(i=0; i<nOrderBy; i++){ Expr *p; Bitmask mTerm; if( MASKBIT(i) & obSat ) continue; p = pOrderBy->a[i].pExpr; | | | 123067 123068 123069 123070 123071 123072 123073 123074 123075 123076 123077 123078 123079 123080 123081 | if( isOrderDistinct ){ orderDistinctMask |= pLoop->maskSelf; for(i=0; i<nOrderBy; i++){ Expr *p; Bitmask mTerm; if( MASKBIT(i) & obSat ) continue; p = pOrderBy->a[i].pExpr; mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; if( (mTerm&~orderDistinctMask)==0 ){ obSat |= MASKBIT(i); } } } } /* End the loop over all WhereLoops from outer-most down to inner-most */ |
︙ | ︙ | |||
122684 122685 122686 122687 122688 122689 122690 | pWInfo = pBuilder->pWInfo; if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; assert( pWInfo->pTabList->nSrc>=1 ); pItem = pWInfo->pTabList->a; pTab = pItem->pTab; if( IsVirtual(pTab) ) return 0; | | | | | | 123540 123541 123542 123543 123544 123545 123546 123547 123548 123549 123550 123551 123552 123553 123554 123555 123556 123557 123558 123559 123560 123561 123562 123563 123564 123565 123566 123567 123568 123569 123570 123571 123572 123573 123574 123575 123576 123577 123578 123579 123580 123581 123582 123583 123584 123585 123586 123587 123588 123589 123590 123591 123592 123593 123594 123595 123596 123597 123598 123599 123600 | pWInfo = pBuilder->pWInfo; if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; assert( pWInfo->pTabList->nSrc>=1 ); pItem = pWInfo->pTabList->a; pTab = pItem->pTab; if( IsVirtual(pTab) ) return 0; if( pItem->zIndexedBy ) return 0; iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pLoop->nSkip = 0; pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); if( pTerm ){ testcase( pTerm->eOperator & WO_IS ); pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; pLoop->aLTerm[0] = pTerm; pLoop->nLTerm = 1; pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int opMask; assert( pLoop->aLTermSpace==pLoop->aLTerm ); if( !IsUniqueIndex(pIdx) || pIdx->pPartIdxWhere!=0 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) ) continue; opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; for(j=0; j<pIdx->nKeyCol; j++){ pTerm = sqlite3WhereFindTerm(pWC, iCur, pIdx->aiColumn[j], 0, opMask, pIdx); if( pTerm==0 ) break; testcase( pTerm->eOperator & WO_IS ); pLoop->aLTerm[j] = pTerm; } if( j!=pIdx->nKeyCol ) continue; pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ pLoop->wsFlags |= WHERE_IDX_ONLY; } pLoop->nLTerm = j; pLoop->u.btree.nEq = j; pLoop->u.btree.pIndex = pIdx; /* TUNING: Cost of a unique index lookup is 15 */ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ break; } } if( pLoop->wsFlags ){ pLoop->nOut = (LogEst)1; pWInfo->a[0].pWLoop = pLoop; pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); pWInfo->a[0].iTabCur = iCur; pWInfo->nRowOut = 1; if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } #ifdef SQLITE_DEBUG |
︙ | ︙ | |||
122924 122925 122926 122927 122928 122929 122930 | sWLB.pNew->cId = '*'; #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); | | | | 123780 123781 123782 123783 123784 123785 123786 123787 123788 123789 123790 123791 123792 123793 123794 123795 | sWLB.pNew->cId = '*'; #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); /* Special case: a WHERE clause that is constant. Evaluate the ** expression and either jump over all of the code or fall thru. */ for(ii=0; ii<sWLB.pWC->nTerm; ii++){ if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, |
︙ | ︙ | |||
122970 122971 122972 122973 122974 122975 122976 | for(ii=0; ii<pTabList->nSrc; ii++){ createMask(pMaskSet, pTabList->a[ii].iCursor); } #ifndef NDEBUG { Bitmask toTheLeft = 0; for(ii=0; ii<pTabList->nSrc; ii++){ | | | < < < < | | < < < | < | | | | | | 123826 123827 123828 123829 123830 123831 123832 123833 123834 123835 123836 123837 123838 123839 123840 123841 123842 123843 123844 123845 123846 123847 123848 123849 123850 123851 123852 123853 123854 123855 123856 123857 123858 123859 123860 123861 123862 123863 123864 123865 123866 123867 123868 123869 123870 123871 123872 123873 123874 123875 123876 123877 123878 123879 123880 123881 123882 123883 123884 123885 123886 123887 123888 123889 123890 123891 123892 123893 123894 123895 123896 123897 123898 123899 123900 123901 123902 123903 | for(ii=0; ii<pTabList->nSrc; ii++){ createMask(pMaskSet, pTabList->a[ii].iCursor); } #ifndef NDEBUG { Bitmask toTheLeft = 0; for(ii=0; ii<pTabList->nSrc; ii++){ Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); assert( (m-1)==toTheLeft ); toTheLeft |= m; } } #endif /* Analyze all of the subexpressions. */ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); if( db->mallocFailed ) goto whereBeginError; if( wctrlFlags & WHERE_WANT_DISTINCT ){ if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ /* The DISTINCT marking is pointless. Ignore it. */ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; }else if( pOrderBy==0 ){ /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; pWInfo->pOrderBy = pResultSet; } } /* Construct the WhereLoop objects */ WHERETRACE(0xffff,("*** Optimizer Start ***\n")); #if defined(WHERETRACE_ENABLED) if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ int i; for(i=0; i<sWLB.pWC->nTerm; i++){ whereTermPrint(&sWLB.pWC->a[i], i); } } #endif if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ rc = whereLoopAddAll(&sWLB); if( rc ) goto whereBeginError; #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ WhereLoop *p; int i; static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ p->cId = zLabel[i%sizeof(zLabel)]; whereLoopPrint(p, sWLB.pWC); } } #endif wherePathSolver(pWInfo, 0); if( db->mallocFailed ) goto whereBeginError; if( pWInfo->pOrderBy ){ wherePathSolver(pWInfo, pWInfo->nRowOut+1); if( db->mallocFailed ) goto whereBeginError; } } if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ pWInfo->revMask = (Bitmask)(-1); } if( pParse->nErr || NEVER(db->mallocFailed) ){ goto whereBeginError; } #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace ){ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); if( pWInfo->nOBSat>0 ){ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); } switch( pWInfo->eDistinct ){ case WHERE_DISTINCT_UNIQUE: { |
︙ | ︙ | |||
123072 123073 123074 123075 123076 123077 123078 | } #endif /* Attempt to omit tables from the join that do not effect the result */ if( pWInfo->nLevel>=2 && pResultSet!=0 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) ){ | | | > > | 123920 123921 123922 123923 123924 123925 123926 123927 123928 123929 123930 123931 123932 123933 123934 123935 123936 123937 | } #endif /* Attempt to omit tables from the join that do not effect the result */ if( pWInfo->nLevel>=2 && pResultSet!=0 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) ){ Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); if( sWLB.pOrderBy ){ tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); } while( pWInfo->nLevel>=2 ){ WhereTerm *pTerm, *pEnd; pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 && (pLoop->wsFlags & WHERE_ONEROW)==0 ){ |
︙ | ︙ | |||
123104 123105 123106 123107 123108 123109 123110 | } WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** The one-pass algorithm only works if the WHERE clause constrains | | < | 123954 123955 123956 123957 123958 123959 123960 123961 123962 123963 123964 123965 123966 123967 123968 123969 123970 123971 123972 123973 123974 123975 123976 123977 123978 123979 123980 123981 | } WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** The one-pass algorithm only works if the WHERE clause constrains ** the statement to update or delete a single row. */ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ pWInfo->okOnePass = 1; if( HasRowid(pTabList->a[0].pTab) ){ pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; } } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ Table *pTab; /* Table to open */ int iDb; /* Index of database containing table/index */ struct SrcList_item *pTabItem; pTabItem = &pTabList->a[pLevel->iFrom]; pTab = pTabItem->pTab; |
︙ | ︙ | |||
123159 123160 123161 123162 123163 123164 123165 123166 123167 123168 123169 123170 123171 123172 | Bitmask b = pTabItem->colUsed; int n = 0; for(; b; b=b>>1, n++){} sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32); assert( n<=pTab->nCol ); } }else{ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); } if( pLoop->wsFlags & WHERE_INDEXED ){ Index *pIx = pLoop->u.btree.pIndex; int iIndexCur; int op = OP_OpenRead; | > > > > | 124008 124009 124010 124011 124012 124013 124014 124015 124016 124017 124018 124019 124020 124021 124022 124023 124024 124025 | Bitmask b = pTabItem->colUsed; int n = 0; for(; b; b=b>>1, n++){} sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32); assert( n<=pTab->nCol ); } #ifdef SQLITE_ENABLE_COLUMN_USED_MASK sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, (const u8*)&pTabItem->colUsed, P4_INT64); #endif }else{ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); } if( pLoop->wsFlags & WHERE_INDEXED ){ Index *pIx = pLoop->u.btree.pIndex; int iIndexCur; int op = OP_OpenRead; |
︙ | ︙ | |||
123204 123205 123206 123207 123208 123209 123210 123211 123212 123213 | if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ){ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ } VdbeComment((v, "%s", pIx->zName)); } } if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); | > > > > > > > > > > > > > > > < | 124057 124058 124059 124060 124061 124062 124063 124064 124065 124066 124067 124068 124069 124070 124071 124072 124073 124074 124075 124076 124077 124078 124079 124080 124081 124082 124083 124084 124085 124086 124087 124088 | if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ){ sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ } VdbeComment((v, "%s", pIx->zName)); #ifdef SQLITE_ENABLE_COLUMN_USED_MASK { u64 colUsed = 0; int ii, jj; for(ii=0; ii<pIx->nColumn; ii++){ jj = pIx->aiColumn[ii]; if( jj<0 ) continue; if( jj>63 ) jj = 63; if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; colUsed |= ((u64)1)<<(ii<63 ? ii : 63); } sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, (u8*)&colUsed, P4_INT64); } #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ } } if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if( db->mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. |
︙ | ︙ | |||
123229 123230 123231 123232 123233 123234 123235 | #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if( db->mallocFailed ) goto whereBeginError; } #endif | | | | | 124096 124097 124098 124099 124100 124101 124102 124103 124104 124105 124106 124107 124108 124109 124110 124111 124112 124113 124114 124115 124116 124117 | #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if( db->mallocFailed ) goto whereBeginError; } #endif addrExplain = sqlite3WhereExplainOneScan( pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags ); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); pWInfo->iContinue = pLevel->addrCont; if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); } } /* Done. */ VdbeModuleComment((v, "Begin WHERE-core")); return pWInfo; |
︙ | ︙ | |||
124922 124923 124924 124925 124926 124927 124928 | */ static int yy_pop_parser_stack(yyParser *pParser){ YYCODETYPE yymajor; yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; /* There is no mechanism by which the parser stack can be popped below ** empty in SQLite. */ | | | 125789 125790 125791 125792 125793 125794 125795 125796 125797 125798 125799 125800 125801 125802 125803 | */ static int yy_pop_parser_stack(yyParser *pParser){ YYCODETYPE yymajor; yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; /* There is no mechanism by which the parser stack can be popped below ** empty in SQLite. */ assert( pParser->yyidx>=0 ); #ifndef NDEBUG if( yyTraceFILE && pParser->yyidx>=0 ){ fprintf(yyTraceFILE,"%sPopping %s\n", yyTracePrompt, yyTokenName[yytos->major]); } #endif |
︙ | ︙ | |||
127394 127395 127396 127397 127398 127399 127400 127401 127402 127403 127404 127405 127406 127407 127408 | 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */ }; #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) #endif SQLITE_PRIVATE int sqlite3IsIdChar(u8 c){ return IdChar(c); } /* ** Return the length of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){ | > > > > | 128261 128262 128263 128264 128265 128266 128267 128268 128269 128270 128271 128272 128273 128274 128275 128276 128277 128278 128279 | 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */ }; #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) #endif /* Make the IdChar function accessible from ctime.c */ #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS SQLITE_PRIVATE int sqlite3IsIdChar(u8 c){ return IdChar(c); } #endif /* ** Return the length of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){ |
︙ | ︙ | |||
128102 128103 128104 128105 128106 128107 128108 | zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zSql8 ){ rc = sqlite3_complete(zSql8); }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); | | | 128973 128974 128975 128976 128977 128978 128979 128980 128981 128982 128983 128984 128985 128986 128987 | zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zSql8 ){ rc = sqlite3_complete(zSql8); }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); return rc & 0xff; } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_COMPLETE */ /************** End of complete.c ********************************************/ /************** Begin file main.c ********************************************/ /* |
︙ | ︙ | |||
130280 130281 130282 130283 130284 130285 130286 130287 130288 130289 130290 130291 130292 130293 130294 130295 130296 | #if SQLITE_TEMP_STORE==1 return ( db->temp_store==2 ); #endif #if SQLITE_TEMP_STORE==2 return ( db->temp_store!=1 ); #endif #if SQLITE_TEMP_STORE==3 return 1; #endif #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 return 0; #endif } /* ** Return UTF-8 encoded English language explanation of the most recent ** error. | > > | 131151 131152 131153 131154 131155 131156 131157 131158 131159 131160 131161 131162 131163 131164 131165 131166 131167 131168 131169 | #if SQLITE_TEMP_STORE==1 return ( db->temp_store==2 ); #endif #if SQLITE_TEMP_STORE==2 return ( db->temp_store!=1 ); #endif #if SQLITE_TEMP_STORE==3 UNUSED_PARAMETER(db); return 1; #endif #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 UNUSED_PARAMETER(db); return 0; #endif } /* ** Return UTF-8 encoded English language explanation of the most recent ** error. |
︙ | ︙ | |||
131124 131125 131126 131127 131128 131129 131130 | #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Opening a db handle. Fourth parameter is passed 0. */ void *pArg = sqlite3GlobalConfig.pSqllogArg; sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); } #endif | | | 131997 131998 131999 132000 132001 132002 132003 132004 132005 132006 132007 132008 132009 132010 132011 | #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Opening a db handle. Fourth parameter is passed 0. */ void *pArg = sqlite3GlobalConfig.pSqllogArg; sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); } #endif return rc & 0xff; } /* ** Open a new database handle. */ SQLITE_API int SQLITE_STDCALL sqlite3_open( const char *zFilename, |
︙ | ︙ | |||
131182 131183 131184 131185 131186 131187 131188 | SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; } }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); | | | 132055 132056 132057 132058 132059 132060 132061 132062 132063 132064 132065 132066 132067 132068 132069 | SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; } }else{ rc = SQLITE_NOMEM; } sqlite3ValueFree(pVal); return rc & 0xff; } #endif /* SQLITE_OMIT_UTF16 */ /* ** Register a new collation sequence with the database handle db. */ SQLITE_API int SQLITE_STDCALL sqlite3_create_collation( |
︙ | ︙ | |||
131554 131555 131556 131557 131558 131559 131560 | } /* ** Interface to the testing logic. */ SQLITE_API int SQLITE_CDECL sqlite3_test_control(int op, ...){ int rc = 0; | | > > | 132427 132428 132429 132430 132431 132432 132433 132434 132435 132436 132437 132438 132439 132440 132441 132442 132443 | } /* ** Interface to the testing logic. */ SQLITE_API int SQLITE_CDECL sqlite3_test_control(int op, ...){ int rc = 0; #ifdef SQLITE_OMIT_BUILTIN_TEST UNUSED_PARAMETER(op); #else va_list ap; va_start(ap, op); switch( op ){ /* ** Save the current state of the PRNG. */ |
︙ | ︙ | |||
154902 154903 154904 154905 154906 154907 154908 | int prevEscape = 0; /* True if the previous character was uEsc */ while( zPattern[iPattern]!=0 ){ /* Read (and consume) the next character from the input pattern. */ UChar32 uPattern; U8_NEXT_UNSAFE(zPattern, iPattern, uPattern); | < | 155777 155778 155779 155780 155781 155782 155783 155784 155785 155786 155787 155788 155789 155790 | int prevEscape = 0; /* True if the previous character was uEsc */ while( zPattern[iPattern]!=0 ){ /* Read (and consume) the next character from the input pattern. */ UChar32 uPattern; U8_NEXT_UNSAFE(zPattern, iPattern, uPattern); /* There are now 4 possibilities: ** ** 1. uPattern is an unescaped match-all character "%", ** 2. uPattern is an unescaped match-one character "_", ** 3. uPattern is an unescaped escape character, or ** 4. uPattern is to be handled as an ordinary character |
︙ | ︙ | |||
155241 155242 155243 155244 155245 155246 155247 155248 155249 155250 155251 155252 155253 155254 | UErrorCode status = U_ZERO_ERROR; const char *zLocale; /* Locale identifier - (eg. "jp_JP") */ const char *zName; /* SQL Collation sequence name (eg. "japanese") */ UCollator *pUCollator; /* ICU library collation object */ int rc; /* Return code from sqlite3_create_collation_x() */ assert(nArg==2); zLocale = (const char *)sqlite3_value_text(apArg[0]); zName = (const char *)sqlite3_value_text(apArg[1]); if( !zLocale || !zName ){ return; } | > | 156115 156116 156117 156118 156119 156120 156121 156122 156123 156124 156125 156126 156127 156128 156129 | UErrorCode status = U_ZERO_ERROR; const char *zLocale; /* Locale identifier - (eg. "jp_JP") */ const char *zName; /* SQL Collation sequence name (eg. "japanese") */ UCollator *pUCollator; /* ICU library collation object */ int rc; /* Return code from sqlite3_create_collation_x() */ assert(nArg==2); (void)nArg; /* Unused parameter */ zLocale = (const char *)sqlite3_value_text(apArg[0]); zName = (const char *)sqlite3_value_text(apArg[1]); if( !zLocale || !zName ){ return; } |
︙ | ︙ | |||
155564 155565 155566 155567 155568 155569 155570 | return SQLITE_OK; } /* ** The set of routines that implement the simple tokenizer */ static const sqlite3_tokenizer_module icuTokenizerModule = { | | | | | | | > | 156439 156440 156441 156442 156443 156444 156445 156446 156447 156448 156449 156450 156451 156452 156453 156454 156455 156456 156457 156458 156459 | return SQLITE_OK; } /* ** The set of routines that implement the simple tokenizer */ static const sqlite3_tokenizer_module icuTokenizerModule = { 0, /* iVersion */ icuCreate, /* xCreate */ icuDestroy, /* xCreate */ icuOpen, /* xOpen */ icuClose, /* xClose */ icuNext, /* xNext */ 0, /* xLanguageid */ }; /* ** Set *ppModule to point at the implementation of the ICU tokenizer. */ SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule( sqlite3_tokenizer_module const**ppModule |
︙ | ︙ | |||
159129 159130 159131 159132 159133 159134 159135 | ** File control method. For custom operations on an otaVfs-file. */ static int otaVfsFileControl(sqlite3_file *pFile, int op, void *pArg){ ota_file *p = (ota_file *)pFile; int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl; int rc; | | | | 160005 160006 160007 160008 160009 160010 160011 160012 160013 160014 160015 160016 160017 160018 160019 160020 | ** File control method. For custom operations on an otaVfs-file. */ static int otaVfsFileControl(sqlite3_file *pFile, int op, void *pArg){ ota_file *p = (ota_file *)pFile; int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl; int rc; assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL) ); if( op==SQLITE_FCNTL_OTA ){ sqlite3ota *pOta = (sqlite3ota*)pArg; /* First try to find another OTA vfs lower down in the vfs stack. If ** one is found, this vfs will operate in pass-through mode. The lower ** level vfs will do the special OTA handling. */ |
︙ | ︙ |
Changes to src/sqlite3.h.
︙ | ︙ | |||
19 20 21 22 23 24 25 | ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve the right to make minor changes ** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ** "experimental". Experimental interfaces are normally new ** features recently added to SQLite. We do not anticipate changes ** to experimental interfaces but reserve the right to make minor changes ** if experience from use "in the wild" suggest such changes are prudent. ** ** The official C-language API documentation for SQLite is derived ** from comments in this file. This file is the authoritative source ** on how SQLite interfaces are supposed to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. */ #ifndef _SQLITE3_H_ |
︙ | ︙ | |||
109 110 111 112 113 114 115 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 | | | 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.11" #define SQLITE_VERSION_NUMBER 3008011 #define SQLITE_SOURCE_ID "2015-06-30 15:10:29 8bfcda3d10aec864d71d12a1248c37e4db6f8899" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
952 953 954 955 956 957 958 | ** ** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This ** opcode causes the xFileControl method to swap the file handle with the one ** pointed to by the pArg argument. This capability is used during testing ** and only needs to be supported when SQLITE_TEST is defined. ** | | | 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 | ** ** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This ** opcode causes the xFileControl method to swap the file handle with the one ** pointed to by the pArg argument. This capability is used during testing ** and only needs to be supported when SQLITE_TEST is defined. ** ** <li>[[SQLITE_FCNTL_WAL_BLOCK]] ** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might ** be advantageous to block on the next WAL lock if the lock is not immediately ** available. The WAL subsystem issues this signal during rare ** circumstances in order to fix a problem with priority inversion. ** Applications should <em>not</em> use this file-control. ** ** <li>[[SQLITE_FCNTL_ZIPVFS]] |
︙ | ︙ |