Fossil

Check-in [40debe47]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merging from trunk.

I solved some conflicts on the report for merges (cherrypick/...), adding some comments, and adopted the trunk solution to unchanged checkin messages.

Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | annotate_links
Files: files | file ages | folders
SHA1: 40debe4782f084c316b27bb0f144f6db9f47714f
User & Date: viriketo 2012-04-22 10:09:02.182
Context
2012-08-08
13:46
Updating from trunk. I solved three merge conflicts about hyperlinks. ... (check-in: 08db3204 user: viriketo tags: annotate_links)
2012-04-22
10:09
Merging from trunk.

I solved some conflicts on the report for merges (cherrypick/...), adding some comments, and adopted the trunk solution to unchanged checkin messages. ... (check-in: 40debe47 user: viriketo tags: annotate_links)

09:56
Fix a comment in my previous commit. ... (check-in: 515e7fa0 user: viriketo tags: annotate_links)
2012-04-21
18:06
Enhance to #ifdef lines to enable Fossil to build and run on haiku. ... (check-in: b2cc8710 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/add.c.
194
195
196
197
198
199
200




201
202

203
204
205
206
207
208
209
210
211
212
** the "--dotfiles" option to the command-line.
**
** The --ignore option is a comma-separate list of glob patterns for files
** to be excluded.  Example:  '*.o,*.obj,*.exe'  If the --ignore option
** does not appear on the command line then the "ignore-glob" setting is
** used.
**




** Options:
**

**    --dotfiles       include files beginning with a dot (".")   
**    --ignore <CSG>   ignore files matching patterns from the 
**                     comma separated list of glob patterns.
** 
** See also: addremove, rm
*/
void add_cmd(void){
  int i;                     /* Loop counter */
  int vid;                   /* Currently checked out version */
  int nRoot;                 /* Full path characters in g.zLocalRoot */







>
>
>
>


>
|
|
|







194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
** the "--dotfiles" option to the command-line.
**
** The --ignore option is a comma-separate list of glob patterns for files
** to be excluded.  Example:  '*.o,*.obj,*.exe'  If the --ignore option
** does not appear on the command line then the "ignore-glob" setting is
** used.
**
** The --case-sensitive option determines whether or not filenames should
** be treated case sensitive or not. If the option is not given, the default
** depends on the global setting, or the operating system default, if not set.
**
** Options:
**
**    --case-sensitive <BOOL> override case-sensitive setting
**    --dotfiles              include files beginning with a dot (".")   
**    --ignore <CSG>          ignore files matching patterns from the 
**                            comma separated list of glob patterns.
** 
** See also: addremove, rm
*/
void add_cmd(void){
  int i;                     /* Loop counter */
  int vid;                   /* Currently checked out version */
  int nRoot;                 /* Full path characters in g.zLocalRoot */
371
372
373
374
375
376
377












378
379
380
381
382
383
384
**   ""                 (empty string) if filenames are case sensitive
**
**   "COLLATE nocase"   if filenames are not case sensitive.
*/
const char *filename_collation(void){
  return filenames_are_case_sensitive() ? "" : "COLLATE nocase";
}













/*
** COMMAND: addremove
**
** Usage: %fossil addremove ?OPTIONS?
**
** Do all necessary "add" and "rm" commands to synchronize the repository







>
>
>
>
>
>
>
>
>
>
>
>







376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
**   ""                 (empty string) if filenames are case sensitive
**
**   "COLLATE nocase"   if filenames are not case sensitive.
*/
const char *filename_collation(void){
  return filenames_are_case_sensitive() ? "" : "COLLATE nocase";
}

/*
** Do a strncmp() operation which is either case-sensitive or not
** depending on the setting of filenames_are_case_sensitive().
*/
int filenames_strncmp(const char *zA, const char *zB, int nByte){
  if( filenames_are_case_sensitive() ){
    return fossil_strncmp(zA,zB,nByte);
  }else{
    return fossil_strnicmp(zA,zB,nByte);
  }
}

/*
** COMMAND: addremove
**
** Usage: %fossil addremove ?OPTIONS?
**
** Do all necessary "add" and "rm" commands to synchronize the repository
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
**
** The command does not "commit".  You must run the "commit" separately
** as a separate step.
**
** Files and directories whose names begin with "." are ignored unless
** the --dotfiles option is used.
**
** The --ignore option overrides the "ignore-glob" setting.  See

** documentation on the "settings" command for further information.
**
** The --test option shows what would happen without actually doing anything.
**
** This command can be used to track third party software.
** 
** Options: 

**   --dotfiles       include files beginning with a dot (".")   
**   --ignore <CSG>   ignore files matching patterns from the 
**                    comma separated list of glob patterns.
**   --test           If given, show what would be done without doing so.
**
** See also: add, rm
*/
void addremove_cmd(void){
  Blob path;
  const char *zIgnoreFlag = find_option("ignore",0,1);
  int allFlag = find_option("dotfiles",0,0)!=0;







|
>







>
|
|
|
|







411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
**
** The command does not "commit".  You must run the "commit" separately
** as a separate step.
**
** Files and directories whose names begin with "." are ignored unless
** the --dotfiles option is used.
**
** The --ignore option overrides the "ignore-glob" setting, as does the
** --case-sensitive option with the "case-sensitive" setting. See the
** documentation on the "settings" command for further information.
**
** The --test option shows what would happen without actually doing anything.
**
** This command can be used to track third party software.
** 
** Options: 
**   --case-sensitive <BOOL> override case-sensitive setting
**   --dotfiles              include files beginning with a dot (".")   
**   --ignore <CSG>          ignore files matching patterns from the 
**                           comma separated list of glob patterns.
**   --test                  If given, display instead of run actions
**
** See also: add, rm
*/
void addremove_cmd(void){
  Blob path;
  const char *zIgnoreFlag = find_option("ignore",0,1);
  int allFlag = find_option("dotfiles",0,0)!=0;
Changes to src/attach.c.
236
237
238
239
240
241
242


243
244
245







246
247
248
249
250
251
252
253
254

255
256
257
258
259
260
261
    Blob manifest;
    Blob cksum;
    char *zUUID;
    const char *zComment;
    char *zDate;
    int rid;
    int i, n;



    db_begin_transaction();
    blob_init(&content, aContent, szContent);







    rid = content_put(&content);
    zUUID = db_text(0, "SELECT uuid FROM blob WHERE rid=%d", rid);
    blob_zero(&manifest);
    for(i=n=0; zName[i]; i++){
      if( zName[i]=='/' || zName[i]=='\\' ) n = i;
    }
    zName += n;
    if( zName[0]==0 ) zName = "unknown";
    blob_appendf(&manifest, "A %F %F %s\n", zName, zTarget, zUUID);

    zComment = PD("comment", "");
    while( fossil_isspace(zComment[0]) ) zComment++;
    n = strlen(zComment);
    while( n>0 && fossil_isspace(zComment[n-1]) ){ n--; }
    if( n>0 ){
      blob_appendf(&manifest, "C %F\n", zComment);
    }







>
>



>
>
>
>
>
>
>








|
>







236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    Blob manifest;
    Blob cksum;
    char *zUUID;
    const char *zComment;
    char *zDate;
    int rid;
    int i, n;
    int addCompress = 0;
    Manifest *pManifest;

    db_begin_transaction();
    blob_init(&content, aContent, szContent);
    pManifest = manifest_parse(&content, 0);
    manifest_destroy(pManifest);
    blob_init(&content, aContent, szContent);
    if( pManifest ){
      blob_compress(&content, &content);
      addCompress = 1;
    }
    rid = content_put(&content);
    zUUID = db_text(0, "SELECT uuid FROM blob WHERE rid=%d", rid);
    blob_zero(&manifest);
    for(i=n=0; zName[i]; i++){
      if( zName[i]=='/' || zName[i]=='\\' ) n = i;
    }
    zName += n;
    if( zName[0]==0 ) zName = "unknown";
    blob_appendf(&manifest, "A %F%s %F %s\n",
                 zName, addCompress ? ".gz" : "", zTarget, zUUID);
    zComment = PD("comment", "");
    while( fossil_isspace(zComment[0]) ) zComment++;
    n = strlen(zComment);
    while( n>0 && fossil_isspace(zComment[n-1]) ){ n--; }
    if( n>0 ){
      blob_appendf(&manifest, "C %F\n", zComment);
    }
Changes to src/branch.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
** This file contains code used to create new branches within a repository.
*/
#include "config.h"
#include "branch.h"
#include <assert.h>

/*
**  fossil branch new    BRANCH-NAME ?ORIGIN-CHECK-IN? ?-bgcolor COLOR?
**  argv0  argv1  argv2  argv3       argv4
*/
void branch_new(void){
  int rootid;            /* RID of the root check-in - what we branch off of */
  int brid;              /* RID of the branch check-in */
  int noSign;            /* True if the branch is unsigned */
  int i;                 /* Loop counter */
  char *zUuid;           /* Artifact ID of origin */







|
|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
** This file contains code used to create new branches within a repository.
*/
#include "config.h"
#include "branch.h"
#include <assert.h>

/*
**  fossil branch new    NAME BASIS ?OPTIONS?
**  argv0  argv1  argv2  argv3 argv4
*/
void branch_new(void){
  int rootid;            /* RID of the root check-in - what we branch off of */
  int brid;              /* RID of the branch check-in */
  int noSign;            /* True if the branch is unsigned */
  int i;                 /* Loop counter */
  char *zUuid;           /* Artifact ID of origin */
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  noSign = find_option("nosign","",0)!=0;
  zColor = find_option("bgcolor","c",1);
  isPrivate = find_option("private",0,0)!=0;
  zDateOvrd = find_option("date-override",0,1);
  zUserOvrd = find_option("user-override",0,1);
  verify_all_options();
  if( g.argc<5 ){
    usage("new BRANCH-NAME CHECK-IN ?-bgcolor COLOR?");
  }
  db_find_and_open_repository(0, 0);  
  noSign = db_get_int("omitsign", 0)|noSign;
  
  /* fossil branch new name */
  zBranch = g.argv[3];
  if( zBranch==0 || zBranch[0]==0 ){







|







46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  noSign = find_option("nosign","",0)!=0;
  zColor = find_option("bgcolor","c",1);
  isPrivate = find_option("private",0,0)!=0;
  zDateOvrd = find_option("date-override",0,1);
  zUserOvrd = find_option("user-override",0,1);
  verify_all_options();
  if( g.argc<5 ){
    usage("new BRANCH-NAME BASIS ?OPTIONS?");
  }
  db_find_and_open_repository(0, 0);  
  noSign = db_get_int("omitsign", 0)|noSign;
  
  /* fossil branch new name */
  zBranch = g.argv[3];
  if( zBranch==0 || zBranch[0]==0 ){
224
225
226
227
228
229
230
231
232
233
234
235




236
237
238
239
240
241
242
243
244
245
** COMMAND: branch
**
** Usage: %fossil branch SUBCOMMAND ... ?OPTIONS?
**
** Run various subcommands to manage branches of the open repository or
** of the repository identified by the -R or --repository option.
**
**    %fossil branch new BRANCH-NAME BASIS ?--bgcolor COLOR? ?--private?
**
**        Create a new branch BRANCH-NAME off of check-in BASIS.
**        You can optionally give the branch a default color.  The
**        --private option makes the branch private.




**
**    %fossil branch list ?-all | --closed?
**    %fossil branch ls ?-all | --closed?
**
**        List all branches.  Use --all or --closed to list all branches
**        or closed branches.  The default is to show only open branches.
**
** Options:
**    -R|--repository FILE       Run commands on repository FILE
*/







|


|
|
>
>
>
>

|
|







224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
** COMMAND: branch
**
** Usage: %fossil branch SUBCOMMAND ... ?OPTIONS?
**
** Run various subcommands to manage branches of the open repository or
** of the repository identified by the -R or --repository option.
**
**    %fossil branch new BRANCH-NAME BASIS ?OPTIONS?
**
**        Create a new branch BRANCH-NAME off of check-in BASIS.
**        Supported options for this subcommand include:
**        --private             branch is private (i.e., remains local)
**        --bgcolor COLOR       use COLOR instead of automatic background
**        --nosign              do not sign contents on this branch
**        --date-override DATE  DATE to use instead of 'now'
**        --user-override USER  USER to use instead of the current default
**
**    %fossil branch list ?--all | --closed?
**    %fossil branch ls ?--all | --closed?
**
**        List all branches.  Use --all or --closed to list all branches
**        or closed branches.  The default is to show only open branches.
**
** Options:
**    -R|--repository FILE       Run commands on repository FILE
*/
Changes to src/browse.c.
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
227
228
229

    db_prepare(&ins,
       "INSERT OR IGNORE INTO localfiles VALUES(pathelement(:x,0), :u)"
    );
    manifest_file_rewind(pM);
    while( (pFile = manifest_file_next(pM,0))!=0 ){
      if( nD>0 

       && (memcmp(pFile->zName, zD, nD-1)!=0 || pFile->zName[nD-1]!='/')
      ){
        continue;
      }
      if( pPrev
       && memcmp(&pFile->zName[nD],&pPrev->zName[nD],nPrev)==0
       && (pFile->zName[nD+nPrev]==0 || pFile->zName[nD+nPrev]=='/')
      ){
        continue;
      }
      db_bind_text(&ins, ":x", &pFile->zName[nD]);
      db_bind_text(&ins, ":u", pFile->zUuid);
      db_step(&ins);







>
|




|







210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    db_prepare(&ins,
       "INSERT OR IGNORE INTO localfiles VALUES(pathelement(:x,0), :u)"
    );
    manifest_file_rewind(pM);
    while( (pFile = manifest_file_next(pM,0))!=0 ){
      if( nD>0 
       && (filenames_strncmp(pFile->zName, zD, nD-1)!=0
           || pFile->zName[nD-1]!='/')
      ){
        continue;
      }
      if( pPrev
       && filenames_strncmp(&pFile->zName[nD],&pPrev->zName[nD],nPrev)==0
       && (pFile->zName[nD+nPrev]==0 || pFile->zName[nD+nPrev]=='/')
      ){
        continue;
      }
      db_bind_text(&ins, ":x", &pFile->zName[nD]);
      db_bind_text(&ins, ":u", pFile->zUuid);
      db_step(&ins);
Changes to src/checkin.c.
93
94
95
96
97
98
99



100
101
102





103
104
105
106
107
108
109
110
111
    }else if( isRenamed ){
      blob_appendf(report, "RENAMED    %s\n", zDisplayName);
    }
    free(zFullName);
  }
  blob_reset(&rewrittenPathname);
  db_finalize(&q);



  db_prepare(&q, "SELECT uuid FROM vmerge JOIN blob ON merge=rid"
                 " WHERE id=0");
  while( db_step(&q)==SQLITE_ROW ){





    blob_append(report, zPrefix, nPrefix);
    blob_appendf(report, "MERGED_WITH %s\n", db_column_text(&q, 0));
  }
  db_finalize(&q);
  if( nErr ){
    fossil_fatal("aborting due to prior errors");
  }
}








>
>
>
|
|

>
>
>
>
>

|







93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    }else if( isRenamed ){
      blob_appendf(report, "RENAMED    %s\n", zDisplayName);
    }
    free(zFullName);
  }
  blob_reset(&rewrittenPathname);
  db_finalize(&q);
  /* -3 holds the baseline-based merges - nor cherrypick nor backout.
   * Now we can't report easily the baseline-based merges, because
   * we don't store the baseline point in vmerge */
  db_prepare(&q, "SELECT uuid, id FROM vmerge JOIN blob ON merge=rid"
                 " WHERE id<=0 AND id >= -2");
  while( db_step(&q)==SQLITE_ROW ){
    const char *zLabel = "MERGED_WITH";
    switch( db_column_int(&q, 1) ){
      case -1:  zLabel = "CHERRYPICK ";  break;
      case -2:  zLabel = "BACKOUT    ";  break;
    }
    blob_append(report, zPrefix, nPrefix);
    blob_appendf(report, "%s %s\n", zLabel, db_column_text(&q, 0));
  }
  db_finalize(&q);
  if( nErr ){
    fossil_fatal("aborting due to prior errors");
  }
}

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
                    g.zLocalRoot);
  }
#if defined(_WIN32)
  blob_add_cr(&text);
#endif
  blob_write_to_file(&text, zFile);
  if( zEditor ){
    i64 original_time;
    zCmd = mprintf("%s \"%s\"", zEditor, zFile);
    fossil_print("%s\n", zCmd);
    original_time = file_mtime(zFile);
    if( fossil_system(zCmd) ){
      fossil_panic("editor aborted");
    }
    blob_reset(&text);
    if (file_mtime(zFile) != original_time)
        blob_read_from_file(&text, zFile);
  }else{
    char zIn[300];
    blob_reset(&text);
    while( fgets(zIn, sizeof(zIn), stdin)!=0 ){
      char *zUtf8 = fossil_mbcs_to_utf8(zIn);
      if( zUtf8[0]=='.' && (zUtf8[1]==0 || zUtf8[1]=='\r' || zUtf8[1]=='\n') ){
        fossil_mbcs_free(zUtf8);







<


<




<
|







486
487
488
489
490
491
492

493
494

495
496
497
498

499
500
501
502
503
504
505
506
                    g.zLocalRoot);
  }
#if defined(_WIN32)
  blob_add_cr(&text);
#endif
  blob_write_to_file(&text, zFile);
  if( zEditor ){

    zCmd = mprintf("%s \"%s\"", zEditor, zFile);
    fossil_print("%s\n", zCmd);

    if( fossil_system(zCmd) ){
      fossil_panic("editor aborted");
    }
    blob_reset(&text);

    blob_read_from_file(&text, zFile);
  }else{
    char zIn[300];
    blob_reset(&text);
    while( fgets(zIn, sizeof(zIn), stdin)!=0 ){
      char *zUtf8 = fossil_mbcs_to_utf8(zIn);
      if( zUtf8[0]=='.' && (zUtf8[1]==0 || zUtf8[1]=='\r' || zUtf8[1]=='\n') ){
        fossil_mbcs_free(zUtf8);
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    blob_appendf(pOut, "F %F\n", pFile->zName);
    pFile = manifest_file_next(pBaseline, 0);
    nFBcard++;
  }
  blob_appendf(pOut, "P %s", zParentUuid);
  if( verifyDate ) checkin_verify_younger(vid, zParentUuid, zDate);
  free(zParentUuid);
  db_prepare(&q2, "SELECT merge FROM vmerge WHERE id=:id");
  db_bind_int(&q2, ":id", 0);
  while( db_step(&q2)==SQLITE_ROW ){
    char *zMergeUuid;
    int mid = db_column_int(&q2, 0);
    if( !g.markPrivate && content_is_private(mid) ) continue;
    zMergeUuid = db_text(0, "SELECT uuid FROM blob WHERE rid=%d", mid);
    if( zMergeUuid ){
      blob_appendf(pOut, " %s", zMergeUuid);







|
<







744
745
746
747
748
749
750
751

752
753
754
755
756
757
758
    blob_appendf(pOut, "F %F\n", pFile->zName);
    pFile = manifest_file_next(pBaseline, 0);
    nFBcard++;
  }
  blob_appendf(pOut, "P %s", zParentUuid);
  if( verifyDate ) checkin_verify_younger(vid, zParentUuid, zDate);
  free(zParentUuid);
  db_prepare(&q2, "SELECT merge FROM vmerge WHERE id=0");

  while( db_step(&q2)==SQLITE_ROW ){
    char *zMergeUuid;
    int mid = db_column_int(&q2, 0);
    if( !g.markPrivate && content_is_private(mid) ) continue;
    zMergeUuid = db_text(0, "SELECT uuid FROM blob WHERE rid=%d", mid);
    if( zMergeUuid ){
      blob_appendf(pOut, " %s", zMergeUuid);
1111
1112
1113
1114
1115
1116
1117






1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
    blob_append(&comment, zComment, -1);
  }else if( zComFile ){
    blob_zero(&comment);
    blob_read_from_file(&comment, zComFile);
  }else{
    char *zInit = db_text(0, "SELECT value FROM vvar WHERE name='ci-comment'");
    prepare_commit_comment(&comment, zInit, zBranch, vid, zUserOvrd);






    free(zInit);
  }
  if( blob_size(&comment)==0 ){
    Blob ans;
    blob_zero(&ans);
    prompt_user("empty/unchanged check-in comment.  continue (y/N)? ", &ans);
    if( blob_str(&ans)[0]!='y' ){
      fossil_exit(1);
    }
  }else{
    db_multi_exec("REPLACE INTO vvar VALUES('ci-comment',%B)", &comment);
    db_end_transaction(0);
    db_begin_transaction();







>
>
>
>
>
>





|







1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
    blob_append(&comment, zComment, -1);
  }else if( zComFile ){
    blob_zero(&comment);
    blob_read_from_file(&comment, zComFile);
  }else{
    char *zInit = db_text(0, "SELECT value FROM vvar WHERE name='ci-comment'");
    prepare_commit_comment(&comment, zInit, zBranch, vid, zUserOvrd);
    if( zInit && zInit[0] && fossil_strcmp(zInit, blob_str(&comment))==0 ){
      Blob ans;
      blob_zero(&ans);
      prompt_user("unchanged check-in comment.  continue (y/N)? ", &ans);
      if( blob_str(&ans)[0]!='y' ) fossil_exit(1);;
    }
    free(zInit);
  }
  if( blob_size(&comment)==0 ){
    Blob ans;
    blob_zero(&ans);
    prompt_user("empty check-in comment.  continue (y/N)? ", &ans);
    if( blob_str(&ans)[0]!='y' ){
      fossil_exit(1);
    }
  }else{
    db_multi_exec("REPLACE INTO vvar VALUES('ci-comment',%B)", &comment);
    db_end_transaction(0);
    db_begin_transaction();
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
    blob_reset(&muuid);
  }

  
  /* Update the vfile and vmerge tables */
  db_multi_exec(
    "DELETE FROM vfile WHERE (vid!=%d OR deleted) AND file_is_selected(id);"
    "DELETE FROM vmerge WHERE file_is_selected(id) OR id=0;"
    "UPDATE vfile SET vid=%d;"
    "UPDATE vfile SET rid=mrid, chnged=0, deleted=0, origname=NULL"
    " WHERE file_is_selected(id);"
    , vid, nvid
  );
  db_lset_int("checkout", nvid);








|







1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
    blob_reset(&muuid);
  }

  
  /* Update the vfile and vmerge tables */
  db_multi_exec(
    "DELETE FROM vfile WHERE (vid!=%d OR deleted) AND file_is_selected(id);"
    "DELETE FROM vmerge;"
    "UPDATE vfile SET vid=%d;"
    "UPDATE vfile SET rid=mrid, chnged=0, deleted=0, origname=NULL"
    " WHERE file_is_selected(id);"
    , vid, nvid
  );
  db_lset_int("checkout", nvid);

Changes to src/login.c.
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*
** Look at the HTTP_USER_AGENT parameter and try to determine if the user agent
** is a manually operated browser or a bot.  When in doubt, assume a bot.
** Return true if we believe the agent is a real person.
*/
static int isHuman(const char *zAgent){
  int i;
  if( zAgent==0 ) return 0;  /* If not UserAgent, the probably a bot */
  for(i=0; zAgent[i]; i++){
    if( prefix_match("bot", zAgent+i) ) return 0;
    if( prefix_match("spider", zAgent+i) ) return 0;
    if( prefix_match("crawl", zAgent+i) ) return 0;
    /* If a URI appears in the User-Agent, it is probably a bot */
    if( memcmp("http", zAgent+i,4)==0 ) return 0;
  }







|







383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*
** Look at the HTTP_USER_AGENT parameter and try to determine if the user agent
** is a manually operated browser or a bot.  When in doubt, assume a bot.
** Return true if we believe the agent is a real person.
*/
static int isHuman(const char *zAgent){
  int i;
  if( zAgent==0 ) return 0;  /* If not UserAgent, then probably a bot */
  for(i=0; zAgent[i]; i++){
    if( prefix_match("bot", zAgent+i) ) return 0;
    if( prefix_match("spider", zAgent+i) ) return 0;
    if( prefix_match("crawl", zAgent+i) ) return 0;
    /* If a URI appears in the User-Agent, it is probably a bot */
    if( memcmp("http", zAgent+i,4)==0 ) return 0;
  }
Changes to src/main.c.
710
711
712
713
714
715
716



717
718
719
720
721
722
723
** Turn off any NL to CRNL translation on the stream given as an
** argument.  This is a no-op on unix but is necessary on windows.
*/
void fossil_binary_mode(FILE *p){
#if defined(_WIN32)
  _setmode(_fileno(p), _O_BINARY);
#endif



}



/*
** Return a name for an SQLite error code
*/







>
>
>







710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
** Turn off any NL to CRNL translation on the stream given as an
** argument.  This is a no-op on unix but is necessary on windows.
*/
void fossil_binary_mode(FILE *p){
#if defined(_WIN32)
  _setmode(_fileno(p), _O_BINARY);
#endif
#ifdef __EMX__     /* OS/2 */
  setmode(fileno(p), O_BINARY);
#endif
}



/*
** Return a name for an SQLite error code
*/
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
  if( g.argc==3 && fossil_strcmp(g.argv[1],"cgi")==0 ){
    zFile = g.argv[2];
  }else{
    zFile = g.argv[1];
  }
  g.httpOut = stdout;
  g.httpIn = stdin;
#if defined(_WIN32)
  /* Set binary mode on windows to avoid undesired translations
  ** between \n and \r\n. */
  setmode(_fileno(g.httpOut), _O_BINARY);
  setmode(_fileno(g.httpIn), _O_BINARY);
#endif
#ifdef __EMX__
  /* Similar hack for OS/2 */
  setmode(fileno(g.httpOut), O_BINARY);
  setmode(fileno(g.httpIn), O_BINARY);
#endif
  g.cgiOutput = 1;
  blob_read_from_file(&config, zFile);
  while( blob_line(&config, &line) ){
    if( !blob_token(&line, &key) ) continue;
    if( blob_buffer(&key)[0]=='#' ) continue;
    if( blob_eq(&key, "debug:") && blob_token(&line, &value) ){
      g.fDebug = fopen(blob_str(&value), "a");







<
<
<
<
<
<
<
<
|
|
<







1407
1408
1409
1410
1411
1412
1413








1414
1415

1416
1417
1418
1419
1420
1421
1422
  if( g.argc==3 && fossil_strcmp(g.argv[1],"cgi")==0 ){
    zFile = g.argv[2];
  }else{
    zFile = g.argv[1];
  }
  g.httpOut = stdout;
  g.httpIn = stdin;








  fossil_binary_mode(g.httpOut);
  fossil_binary_mode(g.httpIn);

  g.cgiOutput = 1;
  blob_read_from_file(&config, zFile);
  while( blob_line(&config, &line) ){
    if( !blob_token(&line, &key) ) continue;
    if( blob_buffer(&key)[0]=='#' ) continue;
    if( blob_eq(&key, "debug:") && blob_token(&line, &value) ){
      g.fDebug = fopen(blob_str(&value), "a");
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
  g.cgiOutput = 1;
  g.fullHttpReply = 1;
  cgi_handle_http_request(0);
  process_one_web_page(0);
}

#if !defined(_WIN32)
#if !defined(__DARWIN__) && !defined(__APPLE__)
/*
** Search for an executable on the PATH environment variable.
** Return true (1) if found and false (0) if not found.
*/
static int binaryOnPath(const char *zBinary){
  const char *zPath = fossil_getenv("PATH");
  char *zFull;







|







1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
  g.cgiOutput = 1;
  g.fullHttpReply = 1;
  cgi_handle_http_request(0);
  process_one_web_page(0);
}

#if !defined(_WIN32)
#if !defined(__DARWIN__) && !defined(__APPLE__) && !defined(__HAIKU__)
/*
** Search for an executable on the PATH environment variable.
** Return true (1) if found and false (0) if not found.
*/
static int binaryOnPath(const char *zBinary){
  const char *zPath = fossil_getenv("PATH");
  char *zFull;
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
  }else{
    iPort = db_get_int("http-port", 8080);
    mxPort = iPort+100;
  }
#if !defined(_WIN32)
  /* Unix implementation */
  if( isUiCmd ){
#if !defined(__DARWIN__) && !defined(__APPLE__)
    zBrowser = db_get("web-browser", 0);
    if( zBrowser==0 ){
      static char *azBrowserProg[] = { "xdg-open", "gnome-open", "firefox" };
      int i;
      zBrowser = "echo";
      for(i=0; i<sizeof(azBrowserProg)/sizeof(azBrowserProg[0]); i++){
        if( binaryOnPath(azBrowserProg[i]) ){







|







1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
  }else{
    iPort = db_get_int("http-port", 8080);
    mxPort = iPort+100;
  }
#if !defined(_WIN32)
  /* Unix implementation */
  if( isUiCmd ){
#if !defined(__DARWIN__) && !defined(__APPLE__) && !defined(__HAIKU__)
    zBrowser = db_get("web-browser", 0);
    if( zBrowser==0 ){
      static char *azBrowserProg[] = { "xdg-open", "gnome-open", "firefox" };
      int i;
      zBrowser = "echo";
      for(i=0; i<sizeof(azBrowserProg)/sizeof(azBrowserProg[0]); i++){
        if( binaryOnPath(azBrowserProg[i]) ){
Changes to src/makemake.tcl.
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
ZLIBDIR = $(SRCDIR)/../zlib-1.2.6

#### The directories where the OpenSSL include and library files are located.
#    The recommended usage here is to use the Sysinternals junction tool
#    to create a hard link between an "openssl-1.x" sub-directory of the
#    Fossil source code directory and the target OpenSSL source directory.
#
OPENSSLINCDIR = $(SRCDIR)/../openssl-1.0.0g/include
OPENSSLLIBDIR = $(SRCDIR)/../openssl-1.0.0g

#### Either the directory where the Tcl library is installed or the Tcl
#    source code directory resides (depending on the value of the macro
#    FOSSIL_TCL_SOURCE).  If this points to the Tcl install directory,
#    this directory must have "include" and "lib" sub-directories.  If
#    this points to the Tcl source code directory, this directory must
#    have "generic" and "win" sub-directories.  The recommended usage







|
|







372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
ZLIBDIR = $(SRCDIR)/../zlib-1.2.6

#### The directories where the OpenSSL include and library files are located.
#    The recommended usage here is to use the Sysinternals junction tool
#    to create a hard link between an "openssl-1.x" sub-directory of the
#    Fossil source code directory and the target OpenSSL source directory.
#
OPENSSLINCDIR = $(SRCDIR)/../openssl-1.0.1a/include
OPENSSLLIBDIR = $(SRCDIR)/../openssl-1.0.1a

#### Either the directory where the Tcl library is installed or the Tcl
#    source code directory resides (depending on the value of the macro
#    FOSSIL_TCL_SOURCE).  If this points to the Tcl install directory,
#    this directory must have "include" and "lib" sub-directories.  If
#    this points to the Tcl source code directory, this directory must
#    have "generic" and "win" sub-directories.  The recommended usage
Changes to src/manifest.c.
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352


353
354
355
356
357
358
359
360
** The file consists of zero or more cards, one card per line.
** (Except: the content of the W card can extend of multiple lines.)
** Each card is divided into tokens by a single space character.
** The first token is a single upper-case letter which is the card type.
** The card type determines the other parameters to the card.
** Cards must occur in lexicographical order.
*/
static Manifest *manifest_parse(Blob *pContent, int rid){
  Manifest *p;
  int seenZ = 0;
  int i, lineNo=0;
  ManifestText x;
  char cPrevType = 0;
  char cType;
  char *z;
  int n;
  char *zUuid;
  int sz = 0;
  int isRepeat;
  static Bag seen;



  if( bag_find(&seen, rid) ){
    isRepeat = 1;
  }else{
    isRepeat = 0;
    bag_insert(&seen, rid);
  }

  /* Every control artifact ends with a '\n' character.  Exit early







|













>
>
|







332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
** The file consists of zero or more cards, one card per line.
** (Except: the content of the W card can extend of multiple lines.)
** Each card is divided into tokens by a single space character.
** The first token is a single upper-case letter which is the card type.
** The card type determines the other parameters to the card.
** Cards must occur in lexicographical order.
*/
Manifest *manifest_parse(Blob *pContent, int rid){
  Manifest *p;
  int seenZ = 0;
  int i, lineNo=0;
  ManifestText x;
  char cPrevType = 0;
  char cType;
  char *z;
  int n;
  char *zUuid;
  int sz = 0;
  int isRepeat;
  static Bag seen;

  if( rid==0 ){
    isRepeat = 1;
  }else if( bag_find(&seen, rid) ){
    isRepeat = 1;
  }else{
    isRepeat = 0;
    bag_insert(&seen, rid);
  }

  /* Every control artifact ends with a '\n' character.  Exit early
Changes to src/printf.c.
860
861
862
863
864
865
866

















867
868
869
870
871
872
873
    int a, b;
    do{ 
      a = *zA++;
      b = *zB++;
    }while( a==b && a!=0 );
    return ((unsigned char)a) - (unsigned char)b;
  }

















}

/*
** Case insensitive string comparison.
*/
int fossil_strnicmp(const char *zA, const char *zB, int nByte){
  if( zA==0 ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    int a, b;
    do{ 
      a = *zA++;
      b = *zB++;
    }while( a==b && a!=0 );
    return ((unsigned char)a) - (unsigned char)b;
  }
}
int fossil_strncmp(const char *zA, const char *zB, int nByte){
  if( zA==0 ){
    if( zB==0 ) return 0;
    return -1;
  }else if( zB==0 ){
    return +1;
  }else if( nByte>0 ){
    int a, b;
    do{ 
      a = *zA++;
      b = *zB++;
    }while( a==b && a!=0 && (--nByte)>0 );
    return ((unsigned char)a) - (unsigned char)b;
  }else{
    return 0;
  }
}

/*
** Case insensitive string comparison.
*/
int fossil_strnicmp(const char *zA, const char *zB, int nByte){
  if( zA==0 ){
Changes to src/shell.c.
417
418
419
420
421
422
423

424
425
426
427
428
429
430
*/
struct callback_data {
  sqlite3 *db;           /* The database */
  int echoOn;            /* True to echo input commands */
  int statsOn;           /* True to display memory stats before each finalize */
  int cnt;               /* Number of records displayed so far */
  FILE *out;             /* Write results here */

  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int writableSchema;    /* True if PRAGMA writable_schema=ON */
  int showHeader;        /* True to show column names in List or Column mode */
  char *zDestTable;      /* Name of destination table when MODE_Insert */
  char separator[20];    /* Separator character for MODE_List */
  int colWidth[100];     /* Requested width of each column when in column mode*/







>







417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
*/
struct callback_data {
  sqlite3 *db;           /* The database */
  int echoOn;            /* True to echo input commands */
  int statsOn;           /* True to display memory stats before each finalize */
  int cnt;               /* Number of records displayed so far */
  FILE *out;             /* Write results here */
  FILE *traceOut;        /* Output for sqlite3_trace() */
  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int writableSchema;    /* True if PRAGMA writable_schema=ON */
  int showHeader;        /* True to show column names in List or Column mode */
  char *zDestTable;      /* Name of destination table when MODE_Insert */
  char separator[20];    /* Separator character for MODE_List */
  int colWidth[100];     /* Requested width of each column when in column mode*/
1305
1306
1307
1308
1309
1310
1311

1312
1313
1314
1315
1316
1317
1318

    zSelect = appendText(zSelect, "SELECT 'INSERT INTO ' || ", 0);
    /* Always quote the table name, even if it appears to be pure ascii,
    ** in case it is a keyword. Ex:  INSERT INTO "table" ... */
    zTmp = appendText(zTmp, zTable, '"');
    if( zTmp ){
      zSelect = appendText(zSelect, zTmp, '\'');

    }
    zSelect = appendText(zSelect, " || ' VALUES(' || ", 0);
    rc = sqlite3_step(pTableInfo);
    while( rc==SQLITE_ROW ){
      const char *zText = (const char *)sqlite3_column_text(pTableInfo, 1);
      zSelect = appendText(zSelect, "quote(", 0);
      zSelect = appendText(zSelect, zText, '"');







>







1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

    zSelect = appendText(zSelect, "SELECT 'INSERT INTO ' || ", 0);
    /* Always quote the table name, even if it appears to be pure ascii,
    ** in case it is a keyword. Ex:  INSERT INTO "table" ... */
    zTmp = appendText(zTmp, zTable, '"');
    if( zTmp ){
      zSelect = appendText(zSelect, zTmp, '\'');
      free(zTmp);
    }
    zSelect = appendText(zSelect, " || ' VALUES(' || ", 0);
    rc = sqlite3_step(pTableInfo);
    while( rc==SQLITE_ROW ){
      const char *zText = (const char *)sqlite3_column_text(pTableInfo, 1);
      zSelect = appendText(zSelect, "quote(", 0);
      zSelect = appendText(zSelect, zText, '"');
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    zSelect = appendText(zSelect, zTable, '"');

    rc = run_table_dump_query(p, zSelect, zPrepStmt);
    if( rc==SQLITE_CORRUPT ){
      zSelect = appendText(zSelect, " ORDER BY rowid DESC", 0);
      run_table_dump_query(p, zSelect, 0);
    }
    if( zSelect ) free(zSelect);
  }
  return 0;
}

/*
** Run zQuery.  Use dump_callback() as the callback routine so that
** the contents of the query are output as SQL statements.







|







1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
    zSelect = appendText(zSelect, zTable, '"');

    rc = run_table_dump_query(p, zSelect, zPrepStmt);
    if( rc==SQLITE_CORRUPT ){
      zSelect = appendText(zSelect, " ORDER BY rowid DESC", 0);
      run_table_dump_query(p, zSelect, 0);
    }
    free(zSelect);
  }
  return 0;
}

/*
** Run zQuery.  Use dump_callback() as the callback routine so that
** the contents of the query are output as SQL statements.
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
    if( zErr ){
      fprintf(p->out, "/****** %s ******/\n", zErr);
      sqlite3_free(zErr);
      zErr = 0;
    }
    zQ2 = malloc( len+100 );
    if( zQ2==0 ) return rc;
    sqlite3_snprintf(sizeof(zQ2), zQ2, "%s ORDER BY rowid DESC", zQuery);
    rc = sqlite3_exec(p->db, zQ2, dump_callback, p, &zErr);
    if( rc ){
      fprintf(p->out, "/****** ERROR: %s ******/\n", zErr);
    }else{
      rc = SQLITE_CORRUPT;
    }
    sqlite3_free(zErr);







|







1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
    if( zErr ){
      fprintf(p->out, "/****** %s ******/\n", zErr);
      sqlite3_free(zErr);
      zErr = 0;
    }
    zQ2 = malloc( len+100 );
    if( zQ2==0 ) return rc;
    sqlite3_snprintf(len+100, zQ2, "%s ORDER BY rowid DESC", zQuery);
    rc = sqlite3_exec(p->db, zQ2, dump_callback, p, &zErr);
    if( rc ){
      fprintf(p->out, "/****** ERROR: %s ******/\n", zErr);
    }else{
      rc = SQLITE_CORRUPT;
    }
    sqlite3_free(zErr);
1429
1430
1431
1432
1433
1434
1435

1436
1437
1438
1439
1440
1441
1442
  ".separator STRING      Change separator used by output mode and .import\n"
  ".show                  Show the current values for various settings\n"
  ".stats ON|OFF          Turn stats on or off\n"
  ".tables ?TABLE?        List names of tables\n"
  "                         If TABLE specified, only list tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".timeout MS            Try opening locked tables for MS milliseconds\n"

  ".vfsname ?AUX?         Print the name of the VFS stack\n"
  ".width NUM1 NUM2 ...   Set column widths for \"column\" mode\n"
;

static char zTimerHelp[] =
  ".timer ON|OFF          Turn the CPU timer measurement on or off\n"
;







>







1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
  ".separator STRING      Change separator used by output mode and .import\n"
  ".show                  Show the current values for various settings\n"
  ".stats ON|OFF          Turn stats on or off\n"
  ".tables ?TABLE?        List names of tables\n"
  "                         If TABLE specified, only list tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".timeout MS            Try opening locked tables for MS milliseconds\n"
  ".trace FILE|off        Output each SQL statement as it is run\n"
  ".vfsname ?AUX?         Print the name of the VFS stack\n"
  ".width NUM1 NUM2 ...   Set column widths for \"column\" mode\n"
;

static char zTimerHelp[] =
  ".timer ON|OFF          Turn the CPU timer measurement on or off\n"
;
1517
1518
1519
1520
1521
1522
1523














































1524
1525
1526
1527
1528
1529
1530
  if( strcmp(zArg,"on")==0 ){
    val = 1;
  }else if( strcmp(zArg,"yes")==0 ){
    val = 1;
  }
  return val;
}















































/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
  if( strcmp(zArg,"on")==0 ){
    val = 1;
  }else if( strcmp(zArg,"yes")==0 ){
    val = 1;
  }
  return val;
}

/*
** Close an output file, assuming it is not stderr or stdout
*/
static void output_file_close(FILE *f){
  if( f && f!=stdout && f!=stderr ) fclose(f);
}

/*
** Try to open an output file.   The names "stdout" and "stderr" are
** recognized and do the right thing.  NULL is returned if the output 
** filename is "off".
*/
static FILE *output_file_open(const char *zFile){
  FILE *f;
  if( strcmp(zFile,"stdout")==0 ){
    f = stdout;
  }else if( strcmp(zFile, "stderr")==0 ){
    f = stderr;
  }else if( strcmp(zFile, "off")==0 ){
    f = 0;
  }else{
    f = fopen(zFile, "wb");
    if( f==0 ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zFile);
    }
  }
  return f;
}

/*
** A routine for handling output from sqlite3_trace().
*/
static void sql_trace_callback(void *pArg, const char *z){
  FILE *f = (FILE*)pArg;
  if( f ) fprintf(f, "%s\n", z);
}

/*
** A no-op routine that runs with the ".breakpoint" doc-command.  This is
** a useful spot to set a debugger breakpoint.
*/
static void test_breakpoint(void){
  static int nCall = 0;
  nCall++;
}

/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
1596
1597
1598
1599
1600
1601
1602







1603
1604
1605
1606
1607
1608
1609
    }
    sqlite3_close(pDest);
  }else

  if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 && nArg>1 && nArg<3 ){
    bail_on_error = booleanValue(azArg[1]);
  }else








  if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 && nArg==1 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 1;







>
>
>
>
>
>
>







1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
    }
    sqlite3_close(pDest);
  }else

  if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 && nArg>1 && nArg<3 ){
    bail_on_error = booleanValue(azArg[1]);
  }else

  /* The undocumented ".breakpoint" command causes a call to the no-op
  ** routine named test_breakpoint().
  */
  if( c=='b' && n>=3 && strncmp(azArg[0], "breakpoint", n)==0 ){
    test_breakpoint();
  }else

  if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 && nArg==1 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 1;
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
      rc = 1;
    }
  }else
#endif

  if( c=='l' && strncmp(azArg[0], "log", n)==0 && nArg>=2 ){
    const char *zFile = azArg[1];
    if( p->pLog && p->pLog!=stdout && p->pLog!=stderr ){
      fclose(p->pLog);
      p->pLog = 0;
    }
    if( strcmp(zFile,"stdout")==0 ){
      p->pLog = stdout;
    }else if( strcmp(zFile, "stderr")==0 ){
      p->pLog = stderr;
    }else if( strcmp(zFile, "off")==0 ){
      p->pLog = 0;
    }else{
      p->pLog = fopen(zFile, "w");
      if( p->pLog==0 ){
        fprintf(stderr, "Error: cannot open \"%s\"\n", zFile);
      }
    }
  }else

  if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg==2 ){
    int n2 = strlen30(azArg[1]);
    if( (n2==4 && strncmp(azArg[1],"line",n2)==0)
        ||
        (n2==5 && strncmp(azArg[1],"lines",n2)==0) ){







<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<







1984
1985
1986
1987
1988
1989
1990

1991
1992













1993
1994
1995
1996
1997
1998
1999
      rc = 1;
    }
  }else
#endif

  if( c=='l' && strncmp(azArg[0], "log", n)==0 && nArg>=2 ){
    const char *zFile = azArg[1];

    output_file_close(p->pLog);
    p->pLog = output_file_open(zFile);













  }else

  if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg==2 ){
    int n2 = strlen30(azArg[1]);
    if( (n2==4 && strncmp(azArg[1],"line",n2)==0)
        ||
        (n2==5 && strncmp(azArg[1],"lines",n2)==0) ){
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

2025

2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

  if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 && nArg==2 ) {
    sqlite3_snprintf(sizeof(p->nullvalue), p->nullvalue,
                     "%.*s", (int)ArraySize(p->nullvalue)-1, azArg[1]);
  }else

  if( c=='o' && strncmp(azArg[0], "output", n)==0 && nArg==2 ){
    if( p->out!=stdout ){
      if( p->outfile[0]=='|' ){
        pclose(p->out);
      }else{
        fclose(p->out);
      }
    }
    if( strcmp(azArg[1],"stdout")==0 ){
      p->out = stdout;
      sqlite3_snprintf(sizeof(p->outfile), p->outfile, "stdout");
    }else if( azArg[1][0]=='|' ){
      p->out = popen(&azArg[1][1], "w");
      if( p->out==0 ){
        fprintf(stderr,"Error: cannot open pipe \"%s\"\n", &azArg[1][1]);
        p->out = stdout;
        rc = 1;
      }else{
        sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]);
      }
    }else{
      p->out = fopen(azArg[1], "wb");
      if( p->out==0 ){

        fprintf(stderr,"Error: cannot write to \"%s\"\n", azArg[1]);

        p->out = stdout;
        rc = 1;
      } else {
         sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]);
      }
    }
  }else

  if( c=='p' && strncmp(azArg[0], "prompt", n)==0 && (nArg==2 || nArg==3)){
    if( nArg >= 2) {
      strncpy(mainPrompt,azArg[1],(int)ArraySize(mainPrompt)-1);







<
|
|
|
|
|
<
<
|
<
|









|

>
|
>



|







2038
2039
2040
2041
2042
2043
2044

2045
2046
2047
2048
2049


2050

2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076

  if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 && nArg==2 ) {
    sqlite3_snprintf(sizeof(p->nullvalue), p->nullvalue,
                     "%.*s", (int)ArraySize(p->nullvalue)-1, azArg[1]);
  }else

  if( c=='o' && strncmp(azArg[0], "output", n)==0 && nArg==2 ){

    if( p->outfile[0]=='|' ){
      pclose(p->out);
    }else{
      output_file_close(p->out);
    }


    p->outfile[0] = 0;

    if( azArg[1][0]=='|' ){
      p->out = popen(&azArg[1][1], "w");
      if( p->out==0 ){
        fprintf(stderr,"Error: cannot open pipe \"%s\"\n", &azArg[1][1]);
        p->out = stdout;
        rc = 1;
      }else{
        sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]);
      }
    }else{
      p->out = output_file_open(azArg[1]);
      if( p->out==0 ){
        if( strcmp(azArg[1],"off")!=0 ){
          fprintf(stderr,"Error: cannot write to \"%s\"\n", azArg[1]);
        }
        p->out = stdout;
        rc = 1;
      } else {
        sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]);
      }
    }
  }else

  if( c=='p' && strncmp(azArg[0], "prompt", n)==0 && (nArg==2 || nArg==3)){
    if( nArg >= 2) {
      strncpy(mainPrompt,azArg[1],(int)ArraySize(mainPrompt)-1);
2392
2393
2394
2395
2396
2397
2398












2399
2400
2401
2402
2403
2404
2405
    
  if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0
   && nArg==2
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  












  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    printf("SQLite %s %s\n" /*extra-version-info*/,
        sqlite3_libversion(), sqlite3_sourceid());
  }else

  if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){
    const char *zDbName = nArg==2 ? azArg[1] : "main";







>
>
>
>
>
>
>
>
>
>
>
>







2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
    
  if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0
   && nArg==2
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  
  if( c=='t' && strncmp(azArg[0], "trace", n)==0 && nArg>1 ){
    output_file_close(p->traceOut);
    p->traceOut = output_file_open(azArg[1]);
#ifndef SQLITE_OMIT_TRACE
    if( p->traceOut==0 ){
      sqlite3_trace(p->db, 0, 0);
    }else{
      sqlite3_trace(p->db, sql_trace_callback, p->traceOut);
    }
#endif
  }else

  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    printf("SQLite %s %s\n" /*extra-version-info*/,
        sqlite3_libversion(), sqlite3_sourceid());
  }else

  if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){
    const char *zDbName = nArg==2 ? azArg[1] : "main";
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615

2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
  }
  free(zLine);
  return errCnt;
}

/*
** Return a pathname which is the user's home directory.  A
** 0 return indicates an error of some kind.  Space to hold the
** resulting string is obtained from malloc().  The calling
** function should free the result.
*/
static char *find_home_dir(void){
  char *home_dir = NULL;


#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) && !defined(_WIN32_WCE) && !defined(__RTP__) && !defined(_WRS_KERNEL)
  struct passwd *pwent;
  uid_t uid = getuid();
  if( (pwent=getpwuid(uid)) != NULL) {
    home_dir = pwent->pw_dir;
  }
#endif

#if defined(_WIN32_WCE)
  /* Windows CE (arm-wince-mingw32ce-gcc) does not provide getenv()
   */
  home_dir = strdup("/");
#else

#if defined(_WIN32) || defined(WIN32) || defined(__OS2__)
  if (!home_dir) {
    home_dir = getenv("USERPROFILE");
  }
#endif







|
<
<


|
>












|







2655
2656
2657
2658
2659
2660
2661
2662


2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
  }
  free(zLine);
  return errCnt;
}

/*
** Return a pathname which is the user's home directory.  A
** 0 return indicates an error of some kind.


*/
static char *find_home_dir(void){
  static char *home_dir = NULL;
  if( home_dir ) return home_dir;

#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) && !defined(_WIN32_WCE) && !defined(__RTP__) && !defined(_WRS_KERNEL)
  struct passwd *pwent;
  uid_t uid = getuid();
  if( (pwent=getpwuid(uid)) != NULL) {
    home_dir = pwent->pw_dir;
  }
#endif

#if defined(_WIN32_WCE)
  /* Windows CE (arm-wince-mingw32ce-gcc) does not provide getenv()
   */
  home_dir = "/";
#else

#if defined(_WIN32) || defined(WIN32) || defined(__OS2__)
  if (!home_dir) {
    home_dir = getenv("USERPROFILE");
  }
#endif
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
  struct callback_data *p,        /* Configuration data */
  const char *sqliterc_override   /* Name of config file. NULL to use default */
){
  char *home_dir = NULL;
  const char *sqliterc = sqliterc_override;
  char *zBuf = 0;
  FILE *in = NULL;
  int nBuf;
  int rc = 0;

  if (sqliterc == NULL) {
    home_dir = find_home_dir();
    if( home_dir==0 ){
#if !defined(__RTP__) && !defined(_WRS_KERNEL)
      fprintf(stderr,"%s: Error: cannot locate your home directory\n", Argv0);
#endif
      return 1;
    }
    nBuf = strlen30(home_dir) + 16;
    zBuf = malloc( nBuf );
    if( zBuf==0 ){
      fprintf(stderr,"%s: Error: out of memory\n",Argv0);
      return 1;
    }
    sqlite3_snprintf(nBuf, zBuf,"%s/.sqliterc",home_dir);
    free(home_dir);
    sqliterc = (const char*)zBuf;
  }
  in = fopen(sqliterc,"rb");
  if( in ){
    if( stdin_is_interactive ){
      fprintf(stderr,"-- Loading resources from %s\n",sqliterc);
    }
    rc = process_input(p,in);
    fclose(in);
  }
  free(zBuf);
  return rc;
}

/*
** Show available command line options
*/
static const char zOptions[] = 







<










<
<
<
<
<
<
|
<
|









|







2728
2729
2730
2731
2732
2733
2734

2735
2736
2737
2738
2739
2740
2741
2742
2743
2744






2745

2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
  struct callback_data *p,        /* Configuration data */
  const char *sqliterc_override   /* Name of config file. NULL to use default */
){
  char *home_dir = NULL;
  const char *sqliterc = sqliterc_override;
  char *zBuf = 0;
  FILE *in = NULL;

  int rc = 0;

  if (sqliterc == NULL) {
    home_dir = find_home_dir();
    if( home_dir==0 ){
#if !defined(__RTP__) && !defined(_WRS_KERNEL)
      fprintf(stderr,"%s: Error: cannot locate your home directory\n", Argv0);
#endif
      return 1;
    }






    zBuf = sqlite3_mprintf("%s/.sqliterc",home_dir);

    sqliterc = zBuf;
  }
  in = fopen(sqliterc,"rb");
  if( in ){
    if( stdin_is_interactive ){
      fprintf(stderr,"-- Loading resources from %s\n",sqliterc);
    }
    rc = process_input(p,in);
    fclose(in);
  }
  sqlite3_free(zBuf);
  return rc;
}

/*
** Show available command line options
*/
static const char zOptions[] = 
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
#endif
      rc = process_input(&data, 0);
      if( zHistory ){
        stifle_history(100);
        write_history(zHistory);
        free(zHistory);
      }
      free(zHome);
    }else{
      rc = process_input(&data, stdin);
    }
  }
  set_table_name(&data, 0);
  if( data.db ){
    sqlite3_close(data.db);
  }
  return rc;
}







<










3096
3097
3098
3099
3100
3101
3102

3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
#endif
      rc = process_input(&data, 0);
      if( zHistory ){
        stifle_history(100);
        write_history(zHistory);
        free(zHistory);
      }

    }else{
      rc = process_input(&data, stdin);
    }
  }
  set_table_name(&data, 0);
  if( data.db ){
    sqlite3_close(data.db);
  }
  return rc;
}
Changes to src/sqlite3.c.
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.12"
#define SQLITE_VERSION_NUMBER 3007012
#define SQLITE_SOURCE_ID      "2012-03-31 19:12:23 af602d87736b52802a4e760ffeeaa28112b99d9a"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.12"
#define SQLITE_VERSION_NUMBER 3007012
#define SQLITE_SOURCE_ID      "2012-04-17 09:09:33 8e2363ad76446e863d03ead91fd621e59d5cb495"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
** connection is opened. If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.
**
** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFNIG_GETPCACHE
** <dd> These options are obsolete and should not be used by new code.
** They are retained for backwards compatibility but are now no-ops.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */







|







2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
** connection is opened. If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.
**
** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
** <dd> These options are obsolete and should not be used by new code.
** They are retained for backwards compatibility but are now no-ops.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
7531
7532
7533
7534
7535
7536
7537



7538

7539
7540
7541
7542
7543
7544
7545
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,



  int (*xGeom)(sqlite3_rtree_geometry *, int nCoord, double *aCoord, int *pRes),

  void *pContext
);


/*
** A pointer to a structure of the following type is passed as the first
** argument to callbacks registered using rtree_geometry_callback().







>
>
>
|
>







7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
#ifdef SQLITE_RTREE_INT_ONLY
  int (*xGeom)(sqlite3_rtree_geometry*, int n, sqlite3_int64 *a, int *pRes),
#else
  int (*xGeom)(sqlite3_rtree_geometry*, int n, double *a, int *pRes),
#endif
  void *pContext
);


/*
** A pointer to a structure of the following type is passed as the first
** argument to callbacks registered using rtree_geometry_callback().
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of named expressions */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 allowAgg;         /* Aggregate functions allowed here */
  u8 hasAgg;           /* True if aggregates are seen */
  u8 isCheck;          /* True if resolving names in a CHECK constraint */
  int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.







<







10935
10936
10937
10938
10939
10940
10941

10942
10943
10944
10945
10946
10947
10948
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of named expressions */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 allowAgg;         /* Aggregate functions allowed here */
  u8 hasAgg;           /* True if aggregates are seen */
  u8 isCheck;          /* True if resolving names in a CHECK constraint */

  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
11397
11398
11399
11400
11401
11402
11403

11404
11405
11406
11407
11408
11409
11410
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int i;                                     /* Integer value */

  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);







>







11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int i;                                     /* Integer value */
    SrcList *pSrcList;                         /* FROM clause */
  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, char*, int);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void);
SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);








|







11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, char*, int);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void);
SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);

24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
** Default permissions when creating a new file
*/
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
#endif

/*
 ** Default permissions when creating auto proxy dir
 */
#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
#endif

/*
** Maximum supported path-length.
*/







|
|







24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
** Default permissions when creating a new file
*/
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
#endif

/*
** Default permissions when creating auto proxy dir
*/
#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
#endif

/*
** Maximum supported path-length.
*/
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579






25580
25581
25582
25583



25584
25585
25586
25587
25588
25589
25590
25591
    if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
  }
  return 0;
}

/*
** Invoke open().  Do so multiple times, until it either succeeds or
** files for some reason other than EINTR.
**
** If the file creation mode "m" is 0 then set it to the default for
** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
** 0644) as modified by the system umask.  If m is not 0, then
** make the file creation mode be exactly m ignoring the umask.
**
** The m parameter will be non-zero only when creating -wal, -journal,
** and -shm files.  We want those files to have *exactly* the same
** permissions as their original database, unadulterated by the umask.
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int rc;
  mode_t m2;
  mode_t origM = 0;
  if( m==0 ){
    m2 = SQLITE_DEFAULT_FILE_PERMISSIONS;
  }else{
    m2 = m;
    origM = osUmask(0);
  }






  do{ rc = osOpen(z,f,m2); }while( rc<0 && errno==EINTR );
  if( m ){
    osUmask(origM);
  }



  return rc;
}

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be 
** shared by multiple threads.







|















|








>
>
>
>
>
>
|



>
>
>
|







25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
    if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
  }
  return 0;
}

/*
** Invoke open().  Do so multiple times, until it either succeeds or
** fails for some reason other than EINTR.
**
** If the file creation mode "m" is 0 then set it to the default for
** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
** 0644) as modified by the system umask.  If m is not 0, then
** make the file creation mode be exactly m ignoring the umask.
**
** The m parameter will be non-zero only when creating -wal, -journal,
** and -shm files.  We want those files to have *exactly* the same
** permissions as their original database, unadulterated by the umask.
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int fd;
  mode_t m2;
  mode_t origM = 0;
  if( m==0 ){
    m2 = SQLITE_DEFAULT_FILE_PERMISSIONS;
  }else{
    m2 = m;
    origM = osUmask(0);
  }
  do{
#if defined(O_CLOEXEC)
    fd = osOpen(z,f|O_CLOEXEC,m2);
#else
    fd = osOpen(z,f,m2);
#endif
  }while( fd<0 && errno==EINTR );
  if( m ){
    osUmask(origM);
  }
#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
  if( fd>=0 ) osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif
  return fd;
}

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be 
** shared by multiple threads.
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388

  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
  for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
  if( ii>0 ){
    zDirname[ii] = '\0';
    fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
    if( fd>=0 ){
#ifdef FD_CLOEXEC
      osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif
      OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
    }
  }
  *pFd = fd;
  return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
}








<
<
<







28385
28386
28387
28388
28389
28390
28391



28392
28393
28394
28395
28396
28397
28398

  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
  for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
  if( ii>0 ){
    zDirname[ii] = '\0';
    fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
    if( fd>=0 ){



      OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
    }
  }
  *pFd = fd;
  return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
}

28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
  SimulateIOError( return SQLITE_IOERR_TRUNCATE );

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  rc = robust_ftruncate(pFile->h, (off_t)nByte);
  if( rc ){
    pFile->lastErrno = errno;
    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);







|







28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
  SimulateIOError( return SQLITE_IOERR_TRUNCATE );

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  rc = robust_ftruncate(pFile->h, (off_t)nByte);
  if( rc ){
    pFile->lastErrno = errno;
    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
  }
#if SQLITE_ENABLE_LOCKING_STYLE
  else{
    p->openFlags = openFlags;
  }
#endif

#ifdef FD_CLOEXEC
  osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif

  noLock = eType!=SQLITE_OPEN_MAIN_DB;

  
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
  if( fstatfs(fd, &fsInfo) == -1 ){
    ((unixFile*)pFile)->lastErrno = errno;
    robust_close(p, fd, __LINE__);







<
<
<
<







30229
30230
30231
30232
30233
30234
30235




30236
30237
30238
30239
30240
30241
30242
  }
#if SQLITE_ENABLE_LOCKING_STYLE
  else{
    p->openFlags = openFlags;
  }
#endif





  noLock = eType!=SQLITE_OPEN_MAIN_DB;

  
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
  if( fstatfs(fd, &fsInfo) == -1 ){
    ((unixFile*)pFile)->lastErrno = errno;
    robust_close(p, fd, __LINE__);
37999
38000
38001
38002
38003
38004
38005





38006
38007
38008
38009
38010
38011
38012
** The number of rowset entries per allocation chunk.
*/
#define ROWSET_ENTRY_PER_CHUNK  \
                       ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))

/*
** Each entry in a RowSet is an instance of the following object.





*/
struct RowSetEntry {            
  i64 v;                        /* ROWID value for this entry */
  struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
  struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
};








>
>
>
>
>







38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
** The number of rowset entries per allocation chunk.
*/
#define ROWSET_ENTRY_PER_CHUNK  \
                       ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))

/*
** Each entry in a RowSet is an instance of the following object.
**
** This same object is reused to store a linked list of trees of RowSetEntry
** objects.  In that alternative use, pRight points to the next entry
** in the list, pLeft points to the tree, and v is unused.  The
** RowSet.pForest value points to the head of this forest list.
*/
struct RowSetEntry {            
  i64 v;                        /* ROWID value for this entry */
  struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
  struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
};

38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040






38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084


38085























38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106

38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
*/
struct RowSet {
  struct RowSetChunk *pChunk;    /* List of all chunk allocations */
  sqlite3 *db;                   /* The database connection */
  struct RowSetEntry *pEntry;    /* List of entries using pRight */
  struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
  struct RowSetEntry *pFresh;    /* Source of new entry objects */
  struct RowSetEntry *pTree;     /* Binary tree of entries */
  u16 nFresh;                    /* Number of objects on pFresh */
  u8 isSorted;                   /* True if pEntry is sorted */
  u8 iBatch;                     /* Current insert batch */
};







/*
** Turn bulk memory into a RowSet object.  N bytes of memory
** are available at pSpace.  The db pointer is used as a memory context
** for any subsequent allocations that need to occur.
** Return a pointer to the new RowSet object.
**
** It must be the case that N is sufficient to make a Rowset.  If not
** an assertion fault occurs.
** 
** If N is larger than the minimum, use the surplus as an initial
** allocation of entries available to be filled.
*/
SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
  RowSet *p;
  assert( N >= ROUND8(sizeof(*p)) );
  p = pSpace;
  p->pChunk = 0;
  p->db = db;
  p->pEntry = 0;
  p->pLast = 0;
  p->pTree = 0;
  p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
  p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
  p->isSorted = 1;
  p->iBatch = 0;
  return p;
}

/*
** Deallocate all chunks from a RowSet.  This frees all memory that
** the RowSet has allocated over its lifetime.  This routine is
** the destructor for the RowSet.
*/
SQLITE_PRIVATE void sqlite3RowSetClear(RowSet *p){
  struct RowSetChunk *pChunk, *pNextChunk;
  for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
    pNextChunk = pChunk->pNextChunk;
    sqlite3DbFree(p->db, pChunk);
  }
  p->pChunk = 0;
  p->nFresh = 0;
  p->pEntry = 0;
  p->pLast = 0;
  p->pTree = 0;


  p->isSorted = 1;























}

/*
** Insert a new value into a RowSet.
**
** The mallocFailed flag of the database connection is set if a
** memory allocation fails.
*/
SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){
  struct RowSetEntry *pEntry;  /* The new entry */
  struct RowSetEntry *pLast;   /* The last prior entry */
  assert( p!=0 );
  if( p->nFresh==0 ){
    struct RowSetChunk *pNew;
    pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
    if( pNew==0 ){
      return;
    }
    pNew->pNextChunk = p->pChunk;
    p->pChunk = pNew;
    p->pFresh = pNew->aEntry;

    p->nFresh = ROWSET_ENTRY_PER_CHUNK;
  }
  pEntry = p->pFresh++;
  p->nFresh--;
  pEntry->v = rowid;
  pEntry->pRight = 0;
  pLast = p->pLast;
  if( pLast ){
    if( p->isSorted && rowid<=pLast->v ){
      p->isSorted = 0;
    }
    pLast->pRight = pEntry;
  }else{
    assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
    p->pEntry = pEntry;
  }
  p->pLast = pEntry;
}

/*
** Merge two lists of RowSetEntry objects.  Remove duplicates.
**
** The input lists are connected via pRight pointers and are 
** assumed to each already be in sorted order.
*/
static struct RowSetEntry *rowSetMerge(
  struct RowSetEntry *pA,    /* First sorted list to be merged */
  struct RowSetEntry *pB     /* Second sorted list to be merged */
){
  struct RowSetEntry head;
  struct RowSetEntry *pTail;

  pTail = &head;







|

|



>
>
>
>
>
>




















|


|



















|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











<
<
<
<
<
<
|
<
<
<
>
|
|
|
|




|
|



<











|







38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138






38139



38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153

38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
*/
struct RowSet {
  struct RowSetChunk *pChunk;    /* List of all chunk allocations */
  sqlite3 *db;                   /* The database connection */
  struct RowSetEntry *pEntry;    /* List of entries using pRight */
  struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
  struct RowSetEntry *pFresh;    /* Source of new entry objects */
  struct RowSetEntry *pForest;   /* List of binary trees of entries */
  u16 nFresh;                    /* Number of objects on pFresh */
  u8 rsFlags;                    /* Various flags */
  u8 iBatch;                     /* Current insert batch */
};

/*
** Allowed values for RowSet.rsFlags
*/
#define ROWSET_SORTED  0x01   /* True if RowSet.pEntry is sorted */
#define ROWSET_NEXT    0x02   /* True if sqlite3RowSetNext() has been called */

/*
** Turn bulk memory into a RowSet object.  N bytes of memory
** are available at pSpace.  The db pointer is used as a memory context
** for any subsequent allocations that need to occur.
** Return a pointer to the new RowSet object.
**
** It must be the case that N is sufficient to make a Rowset.  If not
** an assertion fault occurs.
** 
** If N is larger than the minimum, use the surplus as an initial
** allocation of entries available to be filled.
*/
SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
  RowSet *p;
  assert( N >= ROUND8(sizeof(*p)) );
  p = pSpace;
  p->pChunk = 0;
  p->db = db;
  p->pEntry = 0;
  p->pLast = 0;
  p->pForest = 0;
  p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
  p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
  p->rsFlags = ROWSET_SORTED;
  p->iBatch = 0;
  return p;
}

/*
** Deallocate all chunks from a RowSet.  This frees all memory that
** the RowSet has allocated over its lifetime.  This routine is
** the destructor for the RowSet.
*/
SQLITE_PRIVATE void sqlite3RowSetClear(RowSet *p){
  struct RowSetChunk *pChunk, *pNextChunk;
  for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
    pNextChunk = pChunk->pNextChunk;
    sqlite3DbFree(p->db, pChunk);
  }
  p->pChunk = 0;
  p->nFresh = 0;
  p->pEntry = 0;
  p->pLast = 0;
  p->pForest = 0;
  p->rsFlags = ROWSET_SORTED;
}

/*
** Allocate a new RowSetEntry object that is associated with the
** given RowSet.  Return a pointer to the new and completely uninitialized
** objected.
**
** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
** routine returns NULL.
*/
static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
  assert( p!=0 );
  if( p->nFresh==0 ){
    struct RowSetChunk *pNew;
    pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
    if( pNew==0 ){
      return 0;
    }
    pNew->pNextChunk = p->pChunk;
    p->pChunk = pNew;
    p->pFresh = pNew->aEntry;
    p->nFresh = ROWSET_ENTRY_PER_CHUNK;
  }
  p->nFresh--;
  return p->pFresh++;
}

/*
** Insert a new value into a RowSet.
**
** The mallocFailed flag of the database connection is set if a
** memory allocation fails.
*/
SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){
  struct RowSetEntry *pEntry;  /* The new entry */
  struct RowSetEntry *pLast;   /* The last prior entry */










  /* This routine is never called after sqlite3RowSetNext() */
  assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );

  pEntry = rowSetEntryAlloc(p);
  if( pEntry==0 ) return;
  pEntry->v = rowid;
  pEntry->pRight = 0;
  pLast = p->pLast;
  if( pLast ){
    if( (p->rsFlags & ROWSET_SORTED)!=0 && rowid<=pLast->v ){
      p->rsFlags &= ~ROWSET_SORTED;
    }
    pLast->pRight = pEntry;
  }else{

    p->pEntry = pEntry;
  }
  p->pLast = pEntry;
}

/*
** Merge two lists of RowSetEntry objects.  Remove duplicates.
**
** The input lists are connected via pRight pointers and are 
** assumed to each already be in sorted order.
*/
static struct RowSetEntry *rowSetEntryMerge(
  struct RowSetEntry *pA,    /* First sorted list to be merged */
  struct RowSetEntry *pB     /* Second sorted list to be merged */
){
  struct RowSetEntry head;
  struct RowSetEntry *pTail;

  pTail = &head;
38159
38160
38161
38162
38163
38164
38165
38166

38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183

38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
    assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
    pTail->pRight = pB;
  }
  return head.pRight;
}

/*
** Sort all elements on the pEntry list of the RowSet into ascending order.

*/ 
static void rowSetSort(RowSet *p){
  unsigned int i;
  struct RowSetEntry *pEntry;
  struct RowSetEntry *aBucket[40];

  assert( p->isSorted==0 );
  memset(aBucket, 0, sizeof(aBucket));
  while( p->pEntry ){
    pEntry = p->pEntry;
    p->pEntry = pEntry->pRight;
    pEntry->pRight = 0;
    for(i=0; aBucket[i]; i++){
      pEntry = rowSetMerge(aBucket[i], pEntry);
      aBucket[i] = 0;
    }
    aBucket[i] = pEntry;

  }
  pEntry = 0;
  for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
    pEntry = rowSetMerge(pEntry, aBucket[i]);
  }
  p->pEntry = pEntry;
  p->pLast = 0;
  p->isSorted = 1;
}


/*
** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
** Convert this tree into a linked list connected by the pRight pointers
** and return pointers to the first and last elements of the new list.







|
>

|

|
<

<

|
<
|
|

|


|
>

|

|

|
<
<







38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204

38205

38206
38207

38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221


38222
38223
38224
38225
38226
38227
38228
    assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
    pTail->pRight = pB;
  }
  return head.pRight;
}

/*
** Sort all elements on the list of RowSetEntry objects into order of
** increasing v.
*/ 
static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
  unsigned int i;
  struct RowSetEntry *pNext, *aBucket[40];



  memset(aBucket, 0, sizeof(aBucket));
  while( pIn ){

    pNext = pIn->pRight;
    pIn->pRight = 0;
    for(i=0; aBucket[i]; i++){
      pIn = rowSetEntryMerge(aBucket[i], pIn);
      aBucket[i] = 0;
    }
    aBucket[i] = pIn;
    pIn = pNext;
  }
  pIn = 0;
  for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
    pIn = rowSetEntryMerge(pIn, aBucket[i]);
  }
  return pIn;


}


/*
** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
** Convert this tree into a linked list connected by the pRight pointers
** and return pointers to the first and last elements of the new list.
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287

38288
38289
38290


38291


38292









38293
38294
38295
38296
38297
38298




38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309



38310


38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325




38326
38327
38328






38329
38330


















38331



38332


38333
38334

38335
38336
38337




38338

38339
38340
38341
38342
38343
38344
38345

38346
38347
38348
38349
38350
38351
38352
    p->pLeft = pLeft;
    p->pRight = rowSetNDeepTree(&pList, iDepth);
  }
  return p;
}

/*
** Convert the list in p->pEntry into a sorted list if it is not
** sorted already.  If there is a binary tree on p->pTree, then
** convert it into a list too and merge it into the p->pEntry list.

*/
static void rowSetToList(RowSet *p){
  if( !p->isSorted ){


    rowSetSort(p);


  }









  if( p->pTree ){
    struct RowSetEntry *pHead, *pTail;
    rowSetTreeToList(p->pTree, &pHead, &pTail);
    p->pTree = 0;
    p->pEntry = rowSetMerge(p->pEntry, pHead);
  }




}

/*
** Extract the smallest element from the RowSet.
** Write the element into *pRowid.  Return 1 on success.  Return
** 0 if the RowSet is already empty.
**
** After this routine has been called, the sqlite3RowSetInsert()
** routine may not be called again.  
*/
SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){



  rowSetToList(p);


  if( p->pEntry ){
    *pRowid = p->pEntry->v;
    p->pEntry = p->pEntry->pRight;
    if( p->pEntry==0 ){
      sqlite3RowSetClear(p);
    }
    return 1;
  }else{
    return 0;
  }
}

/*
** Check to see if element iRowid was inserted into the the rowset as
** part of any insert batch prior to iBatch.  Return 1 or 0.




*/
SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
  struct RowSetEntry *p;






  if( iBatch!=pRowSet->iBatch ){
    if( pRowSet->pEntry ){


















      rowSetToList(pRowSet);



      pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);


      pRowSet->pEntry = 0;
      pRowSet->pLast = 0;

    }
    pRowSet->iBatch = iBatch;
  }




  p = pRowSet->pTree;

  while( p ){
    if( p->v<iRowid ){
      p = p->pRight;
    }else if( p->v>iRowid ){
      p = p->pLeft;
    }else{
      return 1;

    }
  }
  return 0;
}

/************** End of rowset.c **********************************************/
/************** Begin file pager.c *******************************************/







|
|
|
>


|
>
>
|
>
>

>
>
>
>
>
>
>
>
>
|
|
|
<
|
|
>
>
>
>











>
>
>
|
>
>















>
>
>
>


|
>
>
>
>
>
>

|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
>


>



>
>
>
>
|
>
|
|
|
|
|
|
|
>







38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339

38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
    p->pLeft = pLeft;
    p->pRight = rowSetNDeepTree(&pList, iDepth);
  }
  return p;
}

/*
** Take all the entries on p->pEntry and on the trees in p->pForest and
** sort them all together into one big ordered list on p->pEntry.
**
** This routine should only be called once in the life of a RowSet.
*/
static void rowSetToList(RowSet *p){

  /* This routine is called only once */
  assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );

  if( (p->rsFlags & ROWSET_SORTED)==0 ){
    p->pEntry = rowSetEntrySort(p->pEntry);
  }

  /* While this module could theoretically support it, sqlite3RowSetNext()
  ** is never called after sqlite3RowSetText() for the same RowSet.  So
  ** there is never a forest to deal with.  Should this change, simply
  ** remove the assert() and the #if 0. */
  assert( p->pForest==0 );
#if 0
  while( p->pForest ){
    struct RowSetEntry *pTree = p->pForest->pLeft;
    if( pTree ){
      struct RowSetEntry *pHead, *pTail;
      rowSetTreeToList(pTree, &pHead, &pTail);

      p->pEntry = rowSetEntryMerge(p->pEntry, pHead);
    }
    p->pForest = p->pForest->pRight;
  }
#endif
  p->rsFlags |= ROWSET_NEXT;  /* Verify this routine is never called again */
}

/*
** Extract the smallest element from the RowSet.
** Write the element into *pRowid.  Return 1 on success.  Return
** 0 if the RowSet is already empty.
**
** After this routine has been called, the sqlite3RowSetInsert()
** routine may not be called again.  
*/
SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
  assert( p!=0 );

  /* Merge the forest into a single sorted list on first call */
  if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p);

  /* Return the next entry on the list */
  if( p->pEntry ){
    *pRowid = p->pEntry->v;
    p->pEntry = p->pEntry->pRight;
    if( p->pEntry==0 ){
      sqlite3RowSetClear(p);
    }
    return 1;
  }else{
    return 0;
  }
}

/*
** Check to see if element iRowid was inserted into the the rowset as
** part of any insert batch prior to iBatch.  Return 1 or 0.
**
** If this is the first test of a new batch and if there exist entires
** on pRowSet->pEntry, then sort those entires into the forest at
** pRowSet->pForest so that they can be tested.
*/
SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
  struct RowSetEntry *p, *pTree;

  /* This routine is never called after sqlite3RowSetNext() */
  assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );

  /* Sort entries into the forest on the first test of a new batch 
  */
  if( iBatch!=pRowSet->iBatch ){
    p = pRowSet->pEntry;
    if( p ){
      struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
      if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){
        p = rowSetEntrySort(p);
      }
      for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
        ppPrevTree = &pTree->pRight;
        if( pTree->pLeft==0 ){
          pTree->pLeft = rowSetListToTree(p);
          break;
        }else{
          struct RowSetEntry *pAux, *pTail;
          rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
          pTree->pLeft = 0;
          p = rowSetEntryMerge(pAux, p);
        }
      }
      if( pTree==0 ){
        *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
        if( pTree ){
          pTree->v = 0;
          pTree->pRight = 0;
          pTree->pLeft = rowSetListToTree(p);
        }
      }
      pRowSet->pEntry = 0;
      pRowSet->pLast = 0;
      pRowSet->rsFlags |= ROWSET_SORTED;
    }
    pRowSet->iBatch = iBatch;
  }

  /* Test to see if the iRowid value appears anywhere in the forest.
  ** Return 1 if it does and 0 if not.
  */
  for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
    p = pTree->pLeft;
    while( p ){
      if( p->v<iRowid ){
        p = p->pRight;
      }else if( p->v>iRowid ){
        p = p->pLeft;
      }else{
        return 1;
      }
    }
  }
  return 0;
}

/************** End of rowset.c **********************************************/
/************** Begin file pager.c *******************************************/
49146
49147
49148
49149
49150
49151
49152






49153
49154
49155
49156
49157
49158
49159
49160
49161
49162
49163
49164
49165
#define ISAUTOVACUUM 0
#endif


/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.






*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  int *anRef;       /* Number of times each page is referenced */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  StrAccum errMsg;  /* Accumulate the error message text here */
};








>
>
>
>
>
>





|







49238
49239
49240
49241
49242
49243
49244
49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255
49256
49257
49258
49259
49260
49261
49262
49263
#define ISAUTOVACUUM 0
#endif


/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
**
** The aRef[] array is allocated so that there is 1 bit for each page in
** the database. As the integrity-check proceeds, for each page used in
** the database the corresponding bit is set. This allows integrity-check to 
** detect pages that are used twice and orphaned pages (both of which 
** indicate corruption).
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  u8 *aPgRef;       /* 1 bit per page in the db (see above) */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  StrAccum errMsg;  /* Accumulate the error message text here */
};

56996
56997
56998
56999
57000
57001
57002



















57003
57004
57005
57006
57007
57008
57009
57010
57011
57012
57013
57014
57015
57016
57017
57018
57019
57020

57021
57022
57023
57024
57025
57026
57027
57028
  if( pCheck->errMsg.mallocFailed ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK



















/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
    return 1;
  }
  if( pCheck->anRef[iPage]==1 ){
    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
    return 1;
  }

  return  (pCheck->anRef[iPage]++)>1;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to 
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














|



>
|







57094
57095
57096
57097
57098
57099
57100
57101
57102
57103
57104
57105
57106
57107
57108
57109
57110
57111
57112
57113
57114
57115
57116
57117
57118
57119
57120
57121
57122
57123
57124
57125
57126
57127
57128
57129
57130
57131
57132
57133
57134
57135
57136
57137
57138
57139
57140
57141
57142
57143
57144
57145
57146
  if( pCheck->errMsg.mallocFailed ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

/*
** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
** corresponds to page iPg is already set.
*/
static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
  assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
  return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
}

/*
** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
*/
static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
  assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
  pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
}


/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
    return 1;
  }
  if( getPageReferenced(pCheck, iPage) ){
    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
    return 1;
  }
  setPageReferenced(pCheck, iPage);
  return 0;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to 
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
57390
57391
57392
57393
57394
57395
57396
57397

57398
57399
57400
57401
57402
57403
57404
57405
57406
57407
57408
57409
57410
57411
57412
57413
57414
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  *pnErr = 0;
  if( sCheck.nPage==0 ){
    sqlite3BtreeLeave(p);
    return 0;
  }
  sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );

  if( !sCheck.anRef ){
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return 0;
  }
  for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ){
    sCheck.anRef[i] = 1;
  }
  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");







|
>
|




<

|
<
<







57508
57509
57510
57511
57512
57513
57514
57515
57516
57517
57518
57519
57520
57521

57522
57523


57524
57525
57526
57527
57528
57529
57530
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  *pnErr = 0;
  if( sCheck.nPage==0 ){
    sqlite3BtreeLeave(p);
    return 0;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
  if( !sCheck.aPgRef ){
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return 0;
  }

  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);


  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
57425
57426
57427
57428
57429
57430
57431
57432
57433
57434
57435
57436
57437
57438
57439
57440
57441
57442
57443
57444
57445
57446
57447
57448
57449
57450
57451
57452
57453
57454
57455
57456
57457
57458
57459
57460
57461
57462
57463
57464
57465
57466
57467
57468
57469
57470
57471
    checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( sCheck.anRef[i]==0 ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( sCheck.anRef[i]==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
    if( sCheck.anRef[i]!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages.
  ** This is an internal consistency check; an integrity check
  ** of the integrity check.
  */
  if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
    checkAppendMsg(&sCheck, 0, 
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite3PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */
  sqlite3BtreeLeave(p);
  sqlite3_free(sCheck.anRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    *pnErr = sCheck.nErr+1;
    return 0;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);







|






|



|




















|







57541
57542
57543
57544
57545
57546
57547
57548
57549
57550
57551
57552
57553
57554
57555
57556
57557
57558
57559
57560
57561
57562
57563
57564
57565
57566
57567
57568
57569
57570
57571
57572
57573
57574
57575
57576
57577
57578
57579
57580
57581
57582
57583
57584
57585
57586
57587
    checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( getPageReferenced(&sCheck, i)==0 ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( getPageReferenced(&sCheck, i)==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
    if( getPageReferenced(&sCheck, i)!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages.
  ** This is an internal consistency check; an integrity check
  ** of the integrity check.
  */
  if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
    checkAppendMsg(&sCheck, 0, 
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite3PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */
  sqlite3BtreeLeave(p);
  sqlite3_free(sCheck.aPgRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    *pnErr = sCheck.nErr+1;
    return 0;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
73805
73806
73807
73808
73809
73810
73811
73812
73813
73814
73815
73816
73817
73818
73819

      testcase( pExpr->op==TK_CONST_FUNC );
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;







|







73921
73922
73923
73924
73925
73926
73927
73928
73929
73930
73931
73932
73933
73934
73935

      testcase( pExpr->op==TK_CONST_FUNC );
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;
78275
78276
78277
78278
78279
78280
78281
78282
78283
78284
78285
78286
78287
78288
78289
  if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
  if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
  if( ExprHasProperty(pA, EP_IntValue) ){
    if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
      return 2;
    }
  }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
    if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
    if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return 2;
    }
  }
  if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
  if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;







|







78391
78392
78393
78394
78395
78396
78397
78398
78399
78400
78401
78402
78403
78404
78405
  if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
  if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
  if( ExprHasProperty(pA, EP_IntValue) ){
    if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
      return 2;
    }
  }else if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
    if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
    if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return 2;
    }
  }
  if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
  if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
78311
78312
78313
78314
78315
78316
78317



































78318
78319
78320
78321
78322
78323
78324
    Expr *pExprA = pA->a[i].pExpr;
    Expr *pExprB = pB->a[i].pExpr;
    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
  }
  return 0;
}




































/*
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
** the new element.  Return a negative number if malloc fails.
*/
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
  int i;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







78427
78428
78429
78430
78431
78432
78433
78434
78435
78436
78437
78438
78439
78440
78441
78442
78443
78444
78445
78446
78447
78448
78449
78450
78451
78452
78453
78454
78455
78456
78457
78458
78459
78460
78461
78462
78463
78464
78465
78466
78467
78468
78469
78470
78471
78472
78473
78474
78475
    Expr *pExprA = pA->a[i].pExpr;
    Expr *pExprB = pB->a[i].pExpr;
    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
  }
  return 0;
}

/*
** This is the expression callback for sqlite3FunctionUsesOtherSrc().
**
** Determine if an expression references any table other than one of the
** tables in pWalker->u.pSrcList and abort if it does.
*/
static int exprUsesOtherSrc(Walker *pWalker, Expr *pExpr){
  if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
    int i;
    SrcList *pSrc = pWalker->u.pSrcList;
    for(i=0; i<pSrc->nSrc; i++){
      if( pExpr->iTable==pSrc->a[i].iCursor ) return WRC_Continue;
    }
    return WRC_Abort;
  }else{
    return WRC_Continue;
  }
}

/*
** Determine if any of the arguments to the pExpr Function references
** any SrcList other than pSrcList.  Return true if they do.  Return
** false if pExpr has no argument or has only constant arguments or
** only references tables named in pSrcList.
*/
static int sqlite3FunctionUsesOtherSrc(Expr *pExpr, SrcList *pSrcList){
  Walker w;
  assert( pExpr->op==TK_AGG_FUNCTION );
  memset(&w, 0, sizeof(w));
  w.xExprCallback = exprUsesOtherSrc;
  w.u.pSrcList = pSrcList;
  if( sqlite3WalkExprList(&w, pExpr->x.pList)!=WRC_Continue ) return 1;
  return 0;
}

/*
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
** the new element.  Return a negative number if malloc fails.
*/
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
  int i;
78427
78428
78429
78430
78431
78432
78433
78434
78435
78436
78437
78438
78439
78440
78441
78442
78443
            break;
          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return WRC_Prune;
    }
    case TK_AGG_FUNCTION: {
      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
      ** to be ignored */
      if( pNC->nDepth==0 ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
            break;







|
<
<







78578
78579
78580
78581
78582
78583
78584
78585


78586
78587
78588
78589
78590
78591
78592
            break;
          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return WRC_Prune;
    }
    case TK_AGG_FUNCTION: {
      if( !sqlite3FunctionUsesOtherSrc(pExpr, pSrcList) ){


        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
            break;
78473
78474
78475
78476
78477
78478
78479
78480
78481
78482
78483
78484
78485
78486
78487
78488
78489
78490
78491
78492
78493
78494
78495
78496
78497
78498
78499
78500

78501
78502
78503
78504
78505
78506
78507
        return WRC_Prune;
      }
    }
  }
  return WRC_Continue;
}
static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
  NameContext *pNC = pWalker->u.pNC;
  if( pNC->nDepth==0 ){
    pNC->nDepth++;
    sqlite3WalkSelect(pWalker, pSelect);
    pNC->nDepth--;
    return WRC_Prune;
  }else{
    return WRC_Continue;
  }
}

/*
** Analyze the given expression looking for aggregate functions and
** for variables that need to be added to the pParse->aAgg[] array.
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
** analyzed by sqlite3ResolveExprNames().
*/
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
  Walker w;

  w.xExprCallback = analyzeAggregate;
  w.xSelectCallback = analyzeAggregatesInSelect;
  w.u.pNC = pNC;
  assert( pNC->pSrcList!=0 );
  sqlite3WalkExpr(&w, pExpr);
}








<
<
<
<
<
<
<
|
<












>







78622
78623
78624
78625
78626
78627
78628







78629

78630
78631
78632
78633
78634
78635
78636
78637
78638
78639
78640
78641
78642
78643
78644
78645
78646
78647
78648
78649
        return WRC_Prune;
      }
    }
  }
  return WRC_Continue;
}
static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){







  return WRC_Continue;

}

/*
** Analyze the given expression looking for aggregate functions and
** for variables that need to be added to the pParse->aAgg[] array.
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
** analyzed by sqlite3ResolveExprNames().
*/
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.xExprCallback = analyzeAggregate;
  w.xSelectCallback = analyzeAggregatesInSelect;
  w.u.pNC = pNC;
  assert( pNC->pSrcList!=0 );
  sqlite3WalkExpr(&w, pExpr);
}

85397
85398
85399
85400
85401
85402
85403
85404








85405
85406
85407
85408
85409
85410
85411
85412
85413
85414
85415
85416
85417
85418



85419

85420




85421
85422


85423


85424





85425
85426
85427
85428


85429
85430
85431
85432
85433
85434
85435
85436
85437
85438
85439
85440
85441
85442
85443
}

/* During the search for the best function definition, this procedure
** is called to test how well the function passed as the first argument
** matches the request for a function with nArg arguments in a system
** that uses encoding enc. The value returned indicates how well the
** request is matched. A higher value indicates a better match.
**








** The returned value is always between 0 and 6, as follows:
**
** 0: Not a match, or if nArg<0 and the function is has no implementation.
** 1: A variable arguments function that prefers UTF-8 when a UTF-16
**    encoding is requested, or vice versa.
** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
**    requested, or vice versa.
** 3: A variable arguments function using the same text encoding.
** 4: A function with the exact number of arguments requested that
**    prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
** 5: A function with the exact number of arguments requested that
**    prefers UTF-16LE when UTF-16BE is requested, or vice versa.
** 6: An exact match.
**



*/

static int matchQuality(FuncDef *p, int nArg, u8 enc){




  int match = 0;
  if( p->nArg==-1 || p->nArg==nArg 


   || (nArg==-1 && (p->xFunc!=0 || p->xStep!=0))


  ){





    match = 1;
    if( p->nArg==nArg || nArg==-1 ){
      match = 4;
    }


    if( enc==p->iPrefEnc ){
      match += 2;
    }
    else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
             (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
      match += 1;
    }
  }
  return match;
}

/*
** Search a FuncDefHash for a function with the given name.  Return
** a pointer to the matching FuncDef if found, or 0 if there is no match.
*/








>
>
>
>
>
>
>
>


|
|
<
|
<
|
|
<
|
<
|

>
>
>

>
|
>
>
>
>
|
|
>
>
|
>
>
|
>
>
>
>
>

<
<
|
>
>
|
|
<
<
|
|
|
|







85539
85540
85541
85542
85543
85544
85545
85546
85547
85548
85549
85550
85551
85552
85553
85554
85555
85556
85557
85558

85559

85560
85561

85562

85563
85564
85565
85566
85567
85568
85569
85570
85571
85572
85573
85574
85575
85576
85577
85578
85579
85580
85581
85582
85583
85584
85585
85586
85587
85588


85589
85590
85591
85592
85593


85594
85595
85596
85597
85598
85599
85600
85601
85602
85603
85604
}

/* During the search for the best function definition, this procedure
** is called to test how well the function passed as the first argument
** matches the request for a function with nArg arguments in a system
** that uses encoding enc. The value returned indicates how well the
** request is matched. A higher value indicates a better match.
**
** If nArg is -1 that means to only return a match (non-zero) if p->nArg
** is also -1.  In other words, we are searching for a function that
** takes a variable number of arguments.
**
** If nArg is -2 that means that we are searching for any function 
** regardless of the number of arguments it uses, so return a positive
** match score for any
**
** The returned value is always between 0 and 6, as follows:
**
** 0: Not a match.
** 1: UTF8/16 conversion required and function takes any number of arguments.

** 2: UTF16 byte order change required and function takes any number of args.

** 3: encoding matches and function takes any number of arguments
** 4: UTF8/16 conversion required - argument count matches exactly

** 5: UTF16 byte order conversion required - argument count matches exactly

** 6: Perfect match:  encoding and argument count match exactly.
**
** If nArg==(-2) then any function with a non-null xStep or xFunc is
** a perfect match and any function with both xStep and xFunc NULL is
** a non-match.
*/
#define FUNC_PERFECT_MATCH 6  /* The score for a perfect match */
static int matchQuality(
  FuncDef *p,     /* The function we are evaluating for match quality */
  int nArg,       /* Desired number of arguments.  (-1)==any */
  u8 enc          /* Desired text encoding */
){
  int match;

  /* nArg of -2 is a special case */
  if( nArg==(-2) ) return (p->xFunc==0 && p->xStep==0) ? 0 : FUNC_PERFECT_MATCH;

  /* Wrong number of arguments means "no match" */
  if( p->nArg!=nArg && p->nArg>=0 ) return 0;

  /* Give a better score to a function with a specific number of arguments
  ** than to function that accepts any number of arguments. */
  if( p->nArg==nArg ){
    match = 4;
  }else{
    match = 1;


  }

  /* Bonus points if the text encoding matches */
  if( enc==p->iPrefEnc ){
    match += 2;  /* Exact encoding match */


  }else if( (enc & p->iPrefEnc & 2)!=0 ){
    match += 1;  /* Both are UTF16, but with different byte orders */
  }

  return match;
}

/*
** Search a FuncDefHash for a function with the given name.  Return
** a pointer to the matching FuncDef if found, or 0 if there is no match.
*/
85485
85486
85487
85488
85489
85490
85491
85492
85493
85494
85495
85496
85497

85498
85499
85500
85501
85502
85503
85504
85505
85506
85507
85508
85509
85510
85511
85512
85513
85514
85515
85516
85517

85518
85519
85520
85521
85522
85523
85524
** Locate a user function given a name, a number of arguments and a flag
** indicating whether the function prefers UTF-16 over UTF-8.  Return a
** pointer to the FuncDef structure that defines that function, or return
** NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed.  When createFlag is true
** and the nArg parameter is -1, then only a function that accepts
** any number of arguments will be returned.
**
** If createFlag is false and nArg is -1, then the first valid
** function found is returned.  A function is valid if either xFunc

** or xStep is non-zero.
**
** If createFlag is false, then a function with the required name and
** number of arguments may be returned even if the eTextRep flag does not
** match that requested.
*/
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
  sqlite3 *db,       /* An open database */
  const char *zName, /* Name of the function.  Not null-terminated */
  int nName,         /* Number of characters in the name */
  int nArg,          /* Number of arguments.  -1 means any number */
  u8 enc,            /* Preferred text encoding */
  int createFlag     /* Create new entry if true and does not otherwise exist */
){
  FuncDef *p;         /* Iterator variable */
  FuncDef *pBest = 0; /* Best match found so far */
  int bestScore = 0;  /* Score of best match */
  int h;              /* Hash value */



  assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
  h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);

  /* First search for a match amongst the application-defined functions.
  */
  p = functionSearch(&db->aFunc, h, zName, nName);
  while( p ){







|
<
<

|
|
>
|











|






|
>







85646
85647
85648
85649
85650
85651
85652
85653


85654
85655
85656
85657
85658
85659
85660
85661
85662
85663
85664
85665
85666
85667
85668
85669
85670
85671
85672
85673
85674
85675
85676
85677
85678
85679
85680
85681
85682
85683
85684
85685
** Locate a user function given a name, a number of arguments and a flag
** indicating whether the function prefers UTF-16 over UTF-8.  Return a
** pointer to the FuncDef structure that defines that function, or return
** NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed.


**
** If nArg is -2, then the first valid function found is returned.  A
** function is valid if either xFunc or xStep is non-zero.  The nArg==(-2)
** case is used to see if zName is a valid function name for some number
** of arguments.  If nArg is -2, then createFlag must be 0.
**
** If createFlag is false, then a function with the required name and
** number of arguments may be returned even if the eTextRep flag does not
** match that requested.
*/
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
  sqlite3 *db,       /* An open database */
  const char *zName, /* Name of the function.  Not null-terminated */
  int nName,         /* Number of characters in the name */
  int nArg,          /* Number of arguments.  -1 means any number */
  u8 enc,            /* Preferred text encoding */
  u8 createFlag      /* Create new entry if true and does not otherwise exist */
){
  FuncDef *p;         /* Iterator variable */
  FuncDef *pBest = 0; /* Best match found so far */
  int bestScore = 0;  /* Score of best match */
  int h;              /* Hash value */

  assert( nArg>=(-2) );
  assert( nArg>=(-1) || createFlag==0 );
  assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
  h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);

  /* First search for a match amongst the application-defined functions.
  */
  p = functionSearch(&db->aFunc, h, zName, nName);
  while( p ){
85556
85557
85558
85559
85560
85561
85562
85563
85564
85565
85566
85567
85568
85569
85570
    }
  }

  /* If the createFlag parameter is true and the search did not reveal an
  ** exact match for the name, number of arguments and encoding, then add a
  ** new entry to the hash table and return it.
  */
  if( createFlag && (bestScore<6 || pBest->nArg!=nArg) && 
      (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
    pBest->zName = (char *)&pBest[1];
    pBest->nArg = (u16)nArg;
    pBest->iPrefEnc = enc;
    memcpy(pBest->zName, zName, nName);
    pBest->zName[nName] = 0;
    sqlite3FuncDefInsert(&db->aFunc, pBest);







|







85717
85718
85719
85720
85721
85722
85723
85724
85725
85726
85727
85728
85729
85730
85731
    }
  }

  /* If the createFlag parameter is true and the search did not reveal an
  ** exact match for the name, number of arguments and encoding, then add a
  ** new entry to the hash table and return it.
  */
  if( createFlag && bestScore<FUNC_PERFECT_MATCH && 
      (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
    pBest->zName = (char *)&pBest[1];
    pBest->nArg = (u16)nArg;
    pBest->iPrefEnc = enc;
    memcpy(pBest->zName, zName, nName);
    pBest->zName[nName] = 0;
    sqlite3FuncDefInsert(&db->aFunc, pBest);
97524
97525
97526
97527
97528
97529
97530
97531

97532
97533
97534
97535
97536
97537
97538
    }
  }

  /***** If we reach this point, flattening is permitted. *****/

  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);

  pParse->zAuthContext = zSavedAuthContext;

  /* If the sub-query is a compound SELECT statement, then (by restrictions
  ** 17 and 18 above) it must be a UNION ALL and the parent query must 
  ** be of the form:
  **
  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 







|
>







97685
97686
97687
97688
97689
97690
97691
97692
97693
97694
97695
97696
97697
97698
97699
97700
    }
  }

  /***** If we reach this point, flattening is permitted. *****/

  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  testcase( i==SQLITE_DENY );
  pParse->zAuthContext = zSavedAuthContext;

  /* If the sub-query is a compound SELECT statement, then (by restrictions
  ** 17 and 18 above) it must be a UNION ALL and the parent query must 
  ** be of the form:
  **
  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
129047
129048
129049
129050
129051
129052
129053
129054
129055
129056
129057
129058
129059
129060
129061
    }

    /* Advance to the next output block */
    pLeaf->iBlock++;
    pLeaf->key.n = 0;
    pLeaf->block.n = 0;

    nPrefix = 0;
    nSuffix = nTerm;
    nSpace  = 1;
    nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
    nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
  }

  blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);







<







129209
129210
129211
129212
129213
129214
129215

129216
129217
129218
129219
129220
129221
129222
    }

    /* Advance to the next output block */
    pLeaf->iBlock++;
    pLeaf->key.n = 0;
    pLeaf->block.n = 0;


    nSuffix = nTerm;
    nSpace  = 1;
    nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
    nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
  }

  blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
132382
132383
132384
132385
132386
132387
132388













132389
132390
132391
132392
132393
132394
132395
  int eCoordType;
};

/* Possible values for eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1














/*
** The minimum number of cells allowed for a node is a third of the 
** maximum. In Gutman's notation:
**
**     m = M/3
**
** If an R*-tree "Reinsert" operation is required, the same number of







>
>
>
>
>
>
>
>
>
>
>
>
>







132543
132544
132545
132546
132547
132548
132549
132550
132551
132552
132553
132554
132555
132556
132557
132558
132559
132560
132561
132562
132563
132564
132565
132566
132567
132568
132569
  int eCoordType;
};

/* Possible values for eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1

/*
** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
** only deal with integer coordinates.  No floating point operations
** will be done.
*/
#ifdef SQLITE_RTREE_INT_ONLY
  typedef sqlite3_int64 RtreeDValue;       /* High accuracy coordinate */
  typedef int RtreeValue;                  /* Low accuracy coordinate */
#else
  typedef double RtreeDValue;              /* High accuracy coordinate */
  typedef float RtreeValue;                /* Low accuracy coordinate */
#endif

/*
** The minimum number of cells allowed for a node is a third of the 
** maximum. In Gutman's notation:
**
**     m = M/3
**
** If an R*-tree "Reinsert" operation is required, the same number of
132417
132418
132419
132420
132421
132422
132423
132424
132425
132426
132427
132428
132429
132430
132431

132432



132433
132434
132435
132436
132437

132438
132439
132440
132441
132442
132443
132444
132445
132446
132447
132448
132449
132450
132451
132452
132453
  int iCell;                        /* Index of current cell in pNode */
  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
};

union RtreeCoord {
  float f;
  int i;
};

/*
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
** formatted as a double. This macro assumes that local variable pRtree points
** to the Rtree structure associated with the RtreeCoord.

*/



#define DCOORD(coord) (                           \
  (pRtree->eCoordType==RTREE_COORD_REAL32) ?      \
    ((double)coord.f) :                           \
    ((double)coord.i)                             \
)


/*
** A search constraint.
*/
struct RtreeConstraint {
  int iCoord;                     /* Index of constrained coordinate */
  int op;                         /* Constraining operation */
  double rValue;                  /* Constraint value. */
  int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
  sqlite3_rtree_geometry *pGeom;  /* Constraint callback argument for a MATCH */
};

/* Possible values for RtreeConstraint.op */
#define RTREE_EQ    0x41
#define RTREE_LE    0x42
#define RTREE_LT    0x43







|





|
|
>

>
>
>
|
|
|
|
|
>







|
|







132591
132592
132593
132594
132595
132596
132597
132598
132599
132600
132601
132602
132603
132604
132605
132606
132607
132608
132609
132610
132611
132612
132613
132614
132615
132616
132617
132618
132619
132620
132621
132622
132623
132624
132625
132626
132627
132628
132629
132630
132631
132632
  int iCell;                        /* Index of current cell in pNode */
  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
};

union RtreeCoord {
  RtreeValue f;
  int i;
};

/*
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
** formatted as a RtreeDValue (double or int64). This macro assumes that local
** variable pRtree points to the Rtree structure associated with the
** RtreeCoord.
*/
#ifdef SQLITE_RTREE_INT_ONLY
# define DCOORD(coord) ((RtreeDValue)coord.i)
#else
# define DCOORD(coord) (                           \
    (pRtree->eCoordType==RTREE_COORD_REAL32) ?      \
      ((double)coord.f) :                           \
      ((double)coord.i)                             \
  )
#endif

/*
** A search constraint.
*/
struct RtreeConstraint {
  int iCoord;                     /* Index of constrained coordinate */
  int op;                         /* Constraining operation */
  RtreeDValue rValue;             /* Constraint value. */
  int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
  sqlite3_rtree_geometry *pGeom;  /* Constraint callback argument for a MATCH */
};

/* Possible values for RtreeConstraint.op */
#define RTREE_EQ    0x41
#define RTREE_LE    0x42
#define RTREE_LT    0x43
132487
132488
132489
132490
132491
132492
132493
132494
132495
132496
132497
132498
132499
132500
132501
132502
132503
132504
132505
132506
132507
132508
132509
132510
132511
132512
132513
132514
132515
132516
/*
** An instance of this structure must be supplied as a blob argument to
** the right-hand-side of an SQL MATCH operator used to constrain an
** r-tree query.
*/
struct RtreeMatchArg {
  u32 magic;                      /* Always RTREE_GEOMETRY_MAGIC */
  int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
  void *pContext;
  int nParam;
  double aParam[1];
};

/*
** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
** a single instance of the following structure is allocated. It is used
** as the context for the user-function created by by s_r_g_c(). The object
** is eventually deleted by the destructor mechanism provided by
** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
** the geometry callback function).
*/
struct RtreeGeomCallback {
  int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
  void *pContext;
};

#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN







|


|











|







132666
132667
132668
132669
132670
132671
132672
132673
132674
132675
132676
132677
132678
132679
132680
132681
132682
132683
132684
132685
132686
132687
132688
132689
132690
132691
132692
132693
132694
132695
/*
** An instance of this structure must be supplied as a blob argument to
** the right-hand-side of an SQL MATCH operator used to constrain an
** r-tree query.
*/
struct RtreeMatchArg {
  u32 magic;                      /* Always RTREE_GEOMETRY_MAGIC */
  int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue*, int *);
  void *pContext;
  int nParam;
  RtreeDValue aParam[1];
};

/*
** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
** a single instance of the following structure is allocated. It is used
** as the context for the user-function created by by s_r_g_c(). The object
** is eventually deleted by the destructor mechanism provided by
** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
** the geometry callback function).
*/
struct RtreeGeomCallback {
  int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
  void *pContext;
};

#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN
133068
133069
133070
133071
133072
133073
133074
133075
133076
133077
133078
133079
133080
133081
133082
static int testRtreeGeom(
  Rtree *pRtree,                  /* R-Tree object */
  RtreeConstraint *pConstraint,   /* MATCH constraint to test */
  RtreeCell *pCell,               /* Cell to test */
  int *pbRes                      /* OUT: Test result */
){
  int i;
  double aCoord[RTREE_MAX_DIMENSIONS*2];
  int nCoord = pRtree->nDim*2;

  assert( pConstraint->op==RTREE_MATCH );
  assert( pConstraint->pGeom );

  for(i=0; i<nCoord; i++){
    aCoord[i] = DCOORD(pCell->aCoord[i]);







|







133247
133248
133249
133250
133251
133252
133253
133254
133255
133256
133257
133258
133259
133260
133261
static int testRtreeGeom(
  Rtree *pRtree,                  /* R-Tree object */
  RtreeConstraint *pConstraint,   /* MATCH constraint to test */
  RtreeCell *pCell,               /* Cell to test */
  int *pbRes                      /* OUT: Test result */
){
  int i;
  RtreeDValue aCoord[RTREE_MAX_DIMENSIONS*2];
  int nCoord = pRtree->nDim*2;

  assert( pConstraint->op==RTREE_MATCH );
  assert( pConstraint->pGeom );

  for(i=0; i<nCoord; i++){
    aCoord[i] = DCOORD(pCell->aCoord[i]);
133098
133099
133100
133101
133102
133103
133104
133105
133106
133107
133108
133109
133110
133111
133112
133113
  int ii;
  int bRes = 0;
  int rc = SQLITE_OK;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
    double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);

    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );

    switch( p->op ){
      case RTREE_LE: case RTREE_LT: 







|
|







133277
133278
133279
133280
133281
133282
133283
133284
133285
133286
133287
133288
133289
133290
133291
133292
  int ii;
  int bRes = 0;
  int rc = SQLITE_OK;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    RtreeDValue cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
    RtreeDValue cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);

    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );

    switch( p->op ){
      case RTREE_LE: case RTREE_LT: 
133151
133152
133153
133154
133155
133156
133157
133158
133159
133160
133161
133162
133163
133164
133165
  RtreeCell cell;
  int ii;
  *pbEof = 0;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    double coord = DCOORD(cell.aCoord[p->iCoord]);
    int res;
    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );
    switch( p->op ){
      case RTREE_LE: res = (coord<=p->rValue); break;
      case RTREE_LT: res = (coord<p->rValue);  break;







|







133330
133331
133332
133333
133334
133335
133336
133337
133338
133339
133340
133341
133342
133343
133344
  RtreeCell cell;
  int ii;
  *pbEof = 0;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    RtreeDValue coord = DCOORD(cell.aCoord[p->iCoord]);
    int res;
    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );
    switch( p->op ){
      case RTREE_LE: res = (coord<=p->rValue); break;
      case RTREE_LT: res = (coord<p->rValue);  break;
133349
133350
133351
133352
133353
133354
133355

133356
133357
133358


133359
133360
133361
133362
133363
133364
133365

  if( i==0 ){
    i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
    sqlite3_result_int64(ctx, iRowid);
  }else{
    RtreeCoord c;
    nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);

    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else{


      assert( pRtree->eCoordType==RTREE_COORD_INT32 );
      sqlite3_result_int(ctx, c.i);
    }
  }

  return SQLITE_OK;
}







>


|
>
>







133528
133529
133530
133531
133532
133533
133534
133535
133536
133537
133538
133539
133540
133541
133542
133543
133544
133545
133546
133547

  if( i==0 ){
    i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
    sqlite3_result_int64(ctx, iRowid);
  }else{
    RtreeCoord c;
    nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else
#endif
    {
      assert( pRtree->eCoordType==RTREE_COORD_INT32 );
      sqlite3_result_int(ctx, c.i);
    }
  }

  return SQLITE_OK;
}
133398
133399
133400
133401
133402
133403
133404
133405
133406
133407
133408
133409
133410
133411
133412
133413
133414
133415
133416
133417
133418
133419
133420
133421
133422
133423
133424
133425
133426

  /* Check that value is actually a blob. */
  if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR;

  /* Check that the blob is roughly the right size. */
  nBlob = sqlite3_value_bytes(pValue);
  if( nBlob<(int)sizeof(RtreeMatchArg) 
   || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0
  ){
    return SQLITE_ERROR;
  }

  pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
      sizeof(sqlite3_rtree_geometry) + nBlob
  );
  if( !pGeom ) return SQLITE_NOMEM;
  memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
  p = (RtreeMatchArg *)&pGeom[1];

  memcpy(p, sqlite3_value_blob(pValue), nBlob);
  if( p->magic!=RTREE_GEOMETRY_MAGIC 
   || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double))
  ){
    sqlite3_free(pGeom);
    return SQLITE_ERROR;
  }

  pGeom->pContext = p->pContext;
  pGeom->nParam = p->nParam;







|













|







133580
133581
133582
133583
133584
133585
133586
133587
133588
133589
133590
133591
133592
133593
133594
133595
133596
133597
133598
133599
133600
133601
133602
133603
133604
133605
133606
133607
133608

  /* Check that value is actually a blob. */
  if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR;

  /* Check that the blob is roughly the right size. */
  nBlob = sqlite3_value_bytes(pValue);
  if( nBlob<(int)sizeof(RtreeMatchArg) 
   || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0
  ){
    return SQLITE_ERROR;
  }

  pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
      sizeof(sqlite3_rtree_geometry) + nBlob
  );
  if( !pGeom ) return SQLITE_NOMEM;
  memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
  p = (RtreeMatchArg *)&pGeom[1];

  memcpy(p, sqlite3_value_blob(pValue), nBlob);
  if( p->magic!=RTREE_GEOMETRY_MAGIC 
   || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(RtreeDValue))
  ){
    sqlite3_free(pGeom);
    return SQLITE_ERROR;
  }

  pGeom->pContext = p->pContext;
  pGeom->nParam = p->nParam;
133484
133485
133486
133487
133488
133489
133490



133491

133492
133493
133494
133495
133496
133497
133498
            ** an sqlite3_rtree_geometry_callback() SQL user function.
            */
            rc = deserializeGeometry(argv[ii], p);
            if( rc!=SQLITE_OK ){
              break;
            }
          }else{



            p->rValue = sqlite3_value_double(argv[ii]);

          }
        }
      }
    }
  
    if( rc==SQLITE_OK ){
      pCsr->pNode = 0;







>
>
>

>







133666
133667
133668
133669
133670
133671
133672
133673
133674
133675
133676
133677
133678
133679
133680
133681
133682
133683
133684
            ** an sqlite3_rtree_geometry_callback() SQL user function.
            */
            rc = deserializeGeometry(argv[ii], p);
            if( rc!=SQLITE_OK ){
              break;
            }
          }else{
#ifdef SQLITE_RTREE_INT_ONLY
            p->rValue = sqlite3_value_int64(argv[ii]);
#else
            p->rValue = sqlite3_value_double(argv[ii]);
#endif
          }
        }
      }
    }
  
    if( rc==SQLITE_OK ){
      pCsr->pNode = 0;
133618
133619
133620
133621
133622
133623
133624
133625
133626
133627
133628
133629
133630
133631
133632
133633
133634
133635
133636
133637
133638
133639
133640
133641
133642
133643
133644
133645
133646
133647
133648
133649
  pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
  return rc;
}

/*
** Return the N-dimensional volumn of the cell stored in *p.
*/
static float cellArea(Rtree *pRtree, RtreeCell *p){
  float area = 1.0;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    area = (float)(area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
  }
  return area;
}

/*
** Return the margin length of cell p. The margin length is the sum
** of the objects size in each dimension.
*/
static float cellMargin(Rtree *pRtree, RtreeCell *p){
  float margin = 0.0;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    margin += (float)(DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
  }
  return margin;
}

/*
** Store the union of cells p1 and p2 in p1.
*/







|
|


|








|
|


|







133804
133805
133806
133807
133808
133809
133810
133811
133812
133813
133814
133815
133816
133817
133818
133819
133820
133821
133822
133823
133824
133825
133826
133827
133828
133829
133830
133831
133832
133833
133834
133835
  pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
  return rc;
}

/*
** Return the N-dimensional volumn of the cell stored in *p.
*/
static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
  RtreeDValue area = (RtreeDValue)1;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
  }
  return area;
}

/*
** Return the margin length of cell p. The margin length is the sum
** of the objects size in each dimension.
*/
static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
  RtreeDValue margin = (RtreeDValue)0;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
  }
  return margin;
}

/*
** Store the union of cells p1 and p2 in p1.
*/
133680
133681
133682
133683
133684
133685
133686
133687
133688
133689
133690
133691
133692
133693
133694
133695
133696
133697
133698
133699
133700
133701
133702
133703
133704
133705
133706
133707
133708
133709
133710
133711
133712
133713
133714
133715
133716
133717
133718
133719
133720
133721
133722
133723
133724
133725
133726
133727
133728
133729
133730
133731
133732
133733
133734
133735
133736
133737
133738
133739
133740
133741
133742
133743
133744
133745
133746
133747
133748
133749
133750
133751
133752
133753
133754
133755
133756
133757
133758
  }
  return 1;
}

/*
** Return the amount cell p would grow by if it were unioned with pCell.
*/
static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
  float area;
  RtreeCell cell;
  memcpy(&cell, p, sizeof(RtreeCell));
  area = cellArea(pRtree, &cell);
  cellUnion(pRtree, &cell, pCell);
  return (cellArea(pRtree, &cell)-area);
}

#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
static float cellOverlap(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  int ii;
  float overlap = 0.0;
  for(ii=0; ii<nCell; ii++){
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    if( ii!=iExclude )
#else
    assert( iExclude==-1 );
    UNUSED_PARAMETER(iExclude);
#endif
    {
      int jj;
      float o = 1.0;
      for(jj=0; jj<(pRtree->nDim*2); jj+=2){
        double x1;
        double x2;

        x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
        x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));

        if( x2<x1 ){
          o = 0.0;
          break;
        }else{
          o = o * (float)(x2-x1);
        }
      }
      overlap += o;
    }
  }
  return overlap;
}
#endif

#if VARIANT_RSTARTREE_CHOOSESUBTREE
static float cellOverlapEnlargement(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *pInsert, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  double before;
  double after;
  before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  cellUnion(pRtree, p, pInsert);
  after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  return (float)(after-before);
}
#endif


/*
** This function implements the ChooseLeaf algorithm from Gutman[84].
** ChooseSubTree in r*tree terminology.







|
|








|







|









|

|
<








|










|







|
<



|







133866
133867
133868
133869
133870
133871
133872
133873
133874
133875
133876
133877
133878
133879
133880
133881
133882
133883
133884
133885
133886
133887
133888
133889
133890
133891
133892
133893
133894
133895
133896
133897
133898
133899
133900
133901
133902
133903

133904
133905
133906
133907
133908
133909
133910
133911
133912
133913
133914
133915
133916
133917
133918
133919
133920
133921
133922
133923
133924
133925
133926
133927
133928
133929
133930
133931

133932
133933
133934
133935
133936
133937
133938
133939
133940
133941
133942
  }
  return 1;
}

/*
** Return the amount cell p would grow by if it were unioned with pCell.
*/
static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
  RtreeDValue area;
  RtreeCell cell;
  memcpy(&cell, p, sizeof(RtreeCell));
  area = cellArea(pRtree, &cell);
  cellUnion(pRtree, &cell, pCell);
  return (cellArea(pRtree, &cell)-area);
}

#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
static RtreeDValue cellOverlap(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  int ii;
  RtreeDValue overlap = 0.0;
  for(ii=0; ii<nCell; ii++){
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    if( ii!=iExclude )
#else
    assert( iExclude==-1 );
    UNUSED_PARAMETER(iExclude);
#endif
    {
      int jj;
      RtreeDValue o = (RtreeDValue)1;
      for(jj=0; jj<(pRtree->nDim*2); jj+=2){
        RtreeDValue x1, x2;


        x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
        x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));

        if( x2<x1 ){
          o = 0.0;
          break;
        }else{
          o = o * (x2-x1);
        }
      }
      overlap += o;
    }
  }
  return overlap;
}
#endif

#if VARIANT_RSTARTREE_CHOOSESUBTREE
static RtreeDValue cellOverlapEnlargement(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *pInsert, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  RtreeDValue before, after;

  before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  cellUnion(pRtree, p, pInsert);
  after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  return (after-before);
}
#endif


/*
** This function implements the ChooseLeaf algorithm from Gutman[84].
** ChooseSubTree in r*tree terminology.
133768
133769
133770
133771
133772
133773
133774
133775
133776
133777
133778
133779
133780
133781
133782
133783
133784
133785
133786
  RtreeNode *pNode;
  rc = nodeAcquire(pRtree, 1, 0, &pNode);

  for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
    int iCell;
    sqlite3_int64 iBest = 0;

    float fMinGrowth = 0.0;
    float fMinArea = 0.0;
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    float fMinOverlap = 0.0;
    float overlap;
#endif

    int nCell = NCELL(pNode);
    RtreeCell cell;
    RtreeNode *pChild;

    RtreeCell *aCell = 0;







|
|

|
|







133952
133953
133954
133955
133956
133957
133958
133959
133960
133961
133962
133963
133964
133965
133966
133967
133968
133969
133970
  RtreeNode *pNode;
  rc = nodeAcquire(pRtree, 1, 0, &pNode);

  for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
    int iCell;
    sqlite3_int64 iBest = 0;

    RtreeDValue fMinGrowth = 0.0;
    RtreeDValue fMinArea = 0.0;
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    RtreeDValue fMinOverlap = 0.0;
    RtreeDValue overlap;
#endif

    int nCell = NCELL(pNode);
    RtreeCell cell;
    RtreeNode *pChild;

    RtreeCell *aCell = 0;
133803
133804
133805
133806
133807
133808
133809
133810
133811
133812
133813
133814
133815
133816
133817
133818

    /* Select the child node which will be enlarged the least if pCell
    ** is inserted into it. Resolve ties by choosing the entry with
    ** the smallest area.
    */
    for(iCell=0; iCell<nCell; iCell++){
      int bBest = 0;
      float growth;
      float area;
      nodeGetCell(pRtree, pNode, iCell, &cell);
      growth = cellGrowth(pRtree, &cell, pCell);
      area = cellArea(pRtree, &cell);

#if VARIANT_RSTARTREE_CHOOSESUBTREE
      if( ii==(pRtree->iDepth-1) ){
        overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);







|
|







133987
133988
133989
133990
133991
133992
133993
133994
133995
133996
133997
133998
133999
134000
134001
134002

    /* Select the child node which will be enlarged the least if pCell
    ** is inserted into it. Resolve ties by choosing the entry with
    ** the smallest area.
    */
    for(iCell=0; iCell<nCell; iCell++){
      int bBest = 0;
      RtreeDValue growth;
      RtreeDValue area;
      nodeGetCell(pRtree, pNode, iCell, &cell);
      growth = cellGrowth(pRtree, &cell, pCell);
      area = cellArea(pRtree, &cell);

#if VARIANT_RSTARTREE_CHOOSESUBTREE
      if( ii==(pRtree->iDepth-1) ){
        overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
133931
133932
133933
133934
133935
133936
133937
133938
133939
133940
133941
133942
133943
133944
133945
133946
133947
133948
133949
133950
133951
133952
133953
133954
133955
133956
133957
133958
133959
133960
133961
133962
133963
133964
133965
133966
133967
133968
133969
133970
133971
133972
133973
133974
133975
133976
133977
133978
133979
  int nCell, 
  int *piLeftSeed, 
  int *piRightSeed
){
  int i;
  int iLeftSeed = 0;
  int iRightSeed = 1;
  float maxNormalInnerWidth = 0.0;

  /* Pick two "seed" cells from the array of cells. The algorithm used
  ** here is the LinearPickSeeds algorithm from Gutman[1984]. The 
  ** indices of the two seed cells in the array are stored in local
  ** variables iLeftSeek and iRightSeed.
  */
  for(i=0; i<pRtree->nDim; i++){
    float x1 = DCOORD(aCell[0].aCoord[i*2]);
    float x2 = DCOORD(aCell[0].aCoord[i*2+1]);
    float x3 = x1;
    float x4 = x2;
    int jj;

    int iCellLeft = 0;
    int iCellRight = 0;

    for(jj=1; jj<nCell; jj++){
      float left = DCOORD(aCell[jj].aCoord[i*2]);
      float right = DCOORD(aCell[jj].aCoord[i*2+1]);

      if( left<x1 ) x1 = left;
      if( right>x4 ) x4 = right;
      if( left>x3 ){
        x3 = left;
        iCellRight = jj;
      }
      if( right<x2 ){
        x2 = right;
        iCellLeft = jj;
      }
    }

    if( x4!=x1 ){
      float normalwidth = (x3 - x2) / (x4 - x1);
      if( normalwidth>maxNormalInnerWidth ){
        iLeftSeed = iCellLeft;
        iRightSeed = iCellRight;
      }
    }
  }








|







|
|
|
|






|
|














|







134115
134116
134117
134118
134119
134120
134121
134122
134123
134124
134125
134126
134127
134128
134129
134130
134131
134132
134133
134134
134135
134136
134137
134138
134139
134140
134141
134142
134143
134144
134145
134146
134147
134148
134149
134150
134151
134152
134153
134154
134155
134156
134157
134158
134159
134160
134161
134162
134163
  int nCell, 
  int *piLeftSeed, 
  int *piRightSeed
){
  int i;
  int iLeftSeed = 0;
  int iRightSeed = 1;
  RtreeDValue maxNormalInnerWidth = (RtreeDValue)0;

  /* Pick two "seed" cells from the array of cells. The algorithm used
  ** here is the LinearPickSeeds algorithm from Gutman[1984]. The 
  ** indices of the two seed cells in the array are stored in local
  ** variables iLeftSeek and iRightSeed.
  */
  for(i=0; i<pRtree->nDim; i++){
    RtreeDValue x1 = DCOORD(aCell[0].aCoord[i*2]);
    RtreeDValue x2 = DCOORD(aCell[0].aCoord[i*2+1]);
    RtreeDValue x3 = x1;
    RtreeDValue x4 = x2;
    int jj;

    int iCellLeft = 0;
    int iCellRight = 0;

    for(jj=1; jj<nCell; jj++){
      RtreeDValue left = DCOORD(aCell[jj].aCoord[i*2]);
      RtreeDValue right = DCOORD(aCell[jj].aCoord[i*2+1]);

      if( left<x1 ) x1 = left;
      if( right>x4 ) x4 = right;
      if( left>x3 ){
        x3 = left;
        iCellRight = jj;
      }
      if( right<x2 ){
        x2 = right;
        iCellLeft = jj;
      }
    }

    if( x4!=x1 ){
      RtreeDValue normalwidth = (x3 - x2) / (x4 - x1);
      if( normalwidth>maxNormalInnerWidth ){
        iLeftSeed = iCellLeft;
        iRightSeed = iCellRight;
      }
    }
  }

133994
133995
133996
133997
133998
133999
134000
134001
134002
134003
134004
134005
134006
134007
134008
134009
134010
134011
134012
134013
134014
  RtreeCell *pLeftBox, 
  RtreeCell *pRightBox,
  int *aiUsed
){
  #define FABS(a) ((a)<0.0?-1.0*(a):(a))

  int iSelect = -1;
  float fDiff;
  int ii;
  for(ii=0; ii<nCell; ii++){
    if( aiUsed[ii]==0 ){
      float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      float diff = FABS(right-left);
      if( iSelect<0 || diff>fDiff ){
        fDiff = diff;
        iSelect = ii;
      }
    }
  }
  aiUsed[iSelect] = 1;







|



|
|
|







134178
134179
134180
134181
134182
134183
134184
134185
134186
134187
134188
134189
134190
134191
134192
134193
134194
134195
134196
134197
134198
  RtreeCell *pLeftBox, 
  RtreeCell *pRightBox,
  int *aiUsed
){
  #define FABS(a) ((a)<0.0?-1.0*(a):(a))

  int iSelect = -1;
  RtreeDValue fDiff;
  int ii;
  for(ii=0; ii<nCell; ii++){
    if( aiUsed[ii]==0 ){
      RtreeDValue left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      RtreeDValue right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      RtreeDValue diff = FABS(right-left);
      if( iSelect<0 || diff>fDiff ){
        fDiff = diff;
        iSelect = ii;
      }
    }
  }
  aiUsed[iSelect] = 1;
134027
134028
134029
134030
134031
134032
134033
134034
134035
134036
134037
134038
134039
134040
134041
134042
134043
134044
134045
134046
134047
  int *piRightSeed
){
  int ii;
  int jj;

  int iLeftSeed = 0;
  int iRightSeed = 1;
  float fWaste = 0.0;

  for(ii=0; ii<nCell; ii++){
    for(jj=ii+1; jj<nCell; jj++){
      float right = cellArea(pRtree, &aCell[jj]);
      float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
      float waste = growth - right;

      if( waste>fWaste ){
        iLeftSeed = ii;
        iRightSeed = jj;
        fWaste = waste;
      }
    }







|



|
|
|







134211
134212
134213
134214
134215
134216
134217
134218
134219
134220
134221
134222
134223
134224
134225
134226
134227
134228
134229
134230
134231
  int *piRightSeed
){
  int ii;
  int jj;

  int iLeftSeed = 0;
  int iRightSeed = 1;
  RtreeDValue fWaste = 0.0;

  for(ii=0; ii<nCell; ii++){
    for(jj=ii+1; jj<nCell; jj++){
      RtreeDValue right = cellArea(pRtree, &aCell[jj]);
      RtreeDValue growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
      RtreeDValue waste = growth - right;

      if( waste>fWaste ){
        iLeftSeed = ii;
        iRightSeed = jj;
        fWaste = waste;
      }
    }
134068
134069
134070
134071
134072
134073
134074
134075
134076
134077
134078
134079
134080
134081
134082
**
** The aSpare array is used as temporary working space by the
** sorting algorithm.
*/
static void SortByDistance(
  int *aIdx, 
  int nIdx, 
  float *aDistance, 
  int *aSpare
){
  if( nIdx>1 ){
    int iLeft = 0;
    int iRight = 0;

    int nLeft = nIdx/2;







|







134252
134253
134254
134255
134256
134257
134258
134259
134260
134261
134262
134263
134264
134265
134266
**
** The aSpare array is used as temporary working space by the
** sorting algorithm.
*/
static void SortByDistance(
  int *aIdx, 
  int nIdx, 
  RtreeDValue *aDistance, 
  int *aSpare
){
  if( nIdx>1 ){
    int iLeft = 0;
    int iRight = 0;

    int nLeft = nIdx/2;
134094
134095
134096
134097
134098
134099
134100
134101
134102
134103
134104
134105
134106
134107
134108
134109
134110
134111
134112
134113
134114
134115
134116
134117
134118
134119
134120
134121
134122
134123
134124
134125
134126
      if( iLeft==nLeft ){
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }else if( iRight==nRight ){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        float fLeft = aDistance[aLeft[iLeft]];
        float fRight = aDistance[aRight[iRight]];
        if( fLeft<fRight ){
          aIdx[iLeft+iRight] = aLeft[iLeft];
          iLeft++;
        }else{
          aIdx[iLeft+iRight] = aRight[iRight];
          iRight++;
        }
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        float left = aDistance[aIdx[jj-1]];
        float right = aDistance[aIdx[jj]];
        assert( left<=right );
      }
    }
#endif
  }
}








|
|















|
|







134278
134279
134280
134281
134282
134283
134284
134285
134286
134287
134288
134289
134290
134291
134292
134293
134294
134295
134296
134297
134298
134299
134300
134301
134302
134303
134304
134305
134306
134307
134308
134309
134310
      if( iLeft==nLeft ){
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }else if( iRight==nRight ){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        RtreeDValue fLeft = aDistance[aLeft[iLeft]];
        RtreeDValue fRight = aDistance[aRight[iRight]];
        if( fLeft<fRight ){
          aIdx[iLeft+iRight] = aLeft[iLeft];
          iLeft++;
        }else{
          aIdx[iLeft+iRight] = aRight[iRight];
          iRight++;
        }
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        RtreeDValue left = aDistance[aIdx[jj-1]];
        RtreeDValue right = aDistance[aIdx[jj]];
        assert( left<=right );
      }
    }
#endif
  }
}

134155
134156
134157
134158
134159
134160
134161
134162
134163
134164
134165
134166
134167
134168
134169
134170
134171
134172
134173
134174
134175
134176
134177
134178
134179
134180
134181
134182
134183
134184
134185
134186
134187
134188
134189
134190
134191
134192
134193

    SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
    SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);

    memcpy(aSpare, aLeft, sizeof(int)*nLeft);
    aLeft = aSpare;
    while( iLeft<nLeft || iRight<nRight ){
      double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
      double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
      double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
      double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
      if( (iLeft!=nLeft) && ((iRight==nRight)
       || (xleft1<xright1)
       || (xleft1==xright1 && xleft2<xright2)
      )){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
        float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
        float xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
        float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
        assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
      }
    }
#endif
  }
}








|
|
|
|

















|
|
|
|







134339
134340
134341
134342
134343
134344
134345
134346
134347
134348
134349
134350
134351
134352
134353
134354
134355
134356
134357
134358
134359
134360
134361
134362
134363
134364
134365
134366
134367
134368
134369
134370
134371
134372
134373
134374
134375
134376
134377

    SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
    SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);

    memcpy(aSpare, aLeft, sizeof(int)*nLeft);
    aLeft = aSpare;
    while( iLeft<nLeft || iRight<nRight ){
      RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
      RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
      RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
      RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
      if( (iLeft!=nLeft) && ((iRight==nRight)
       || (xleft1<xright1)
       || (xleft1==xright1 && xleft2<xright2)
      )){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
        RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
        RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
        RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
        assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
      }
    }
#endif
  }
}

134206
134207
134208
134209
134210
134211
134212
134213
134214
134215
134216
134217
134218
134219
134220
134221
134222
134223
134224
134225
134226
134227
134228
134229
134230
134231
134232
134233
134234
134235
134236
134237
134238
134239
134240
134241
134242
134243
134244
134245
134246
134247
134248
134249
134250
134251
134252
134253
134254
134255
134256
){
  int **aaSorted;
  int *aSpare;
  int ii;

  int iBestDim = 0;
  int iBestSplit = 0;
  float fBestMargin = 0.0;

  int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));

  aaSorted = (int **)sqlite3_malloc(nByte);
  if( !aaSorted ){
    return SQLITE_NOMEM;
  }

  aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
  memset(aaSorted, 0, nByte);
  for(ii=0; ii<pRtree->nDim; ii++){
    int jj;
    aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
    for(jj=0; jj<nCell; jj++){
      aaSorted[ii][jj] = jj;
    }
    SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
  }

  for(ii=0; ii<pRtree->nDim; ii++){
    float margin = 0.0;
    float fBestOverlap = 0.0;
    float fBestArea = 0.0;
    int iBestLeft = 0;
    int nLeft;

    for(
      nLeft=RTREE_MINCELLS(pRtree); 
      nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 
      nLeft++
    ){
      RtreeCell left;
      RtreeCell right;
      int kk;
      float overlap;
      float area;

      memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
      memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
      for(kk=1; kk<(nCell-1); kk++){
        if( kk<nLeft ){
          cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
        }else{







|




















|
|
|











|
|







134390
134391
134392
134393
134394
134395
134396
134397
134398
134399
134400
134401
134402
134403
134404
134405
134406
134407
134408
134409
134410
134411
134412
134413
134414
134415
134416
134417
134418
134419
134420
134421
134422
134423
134424
134425
134426
134427
134428
134429
134430
134431
134432
134433
134434
134435
134436
134437
134438
134439
134440
){
  int **aaSorted;
  int *aSpare;
  int ii;

  int iBestDim = 0;
  int iBestSplit = 0;
  RtreeDValue fBestMargin = 0.0;

  int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));

  aaSorted = (int **)sqlite3_malloc(nByte);
  if( !aaSorted ){
    return SQLITE_NOMEM;
  }

  aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
  memset(aaSorted, 0, nByte);
  for(ii=0; ii<pRtree->nDim; ii++){
    int jj;
    aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
    for(jj=0; jj<nCell; jj++){
      aaSorted[ii][jj] = jj;
    }
    SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
  }

  for(ii=0; ii<pRtree->nDim; ii++){
    RtreeDValue margin = 0.0;
    RtreeDValue fBestOverlap = 0.0;
    RtreeDValue fBestArea = 0.0;
    int iBestLeft = 0;
    int nLeft;

    for(
      nLeft=RTREE_MINCELLS(pRtree); 
      nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 
      nLeft++
    ){
      RtreeCell left;
      RtreeCell right;
      int kk;
      RtreeDValue overlap;
      RtreeDValue area;

      memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
      memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
      for(kk=1; kk<(nCell-1); kk++){
        if( kk<nLeft ){
          cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
        }else{
134325
134326
134327
134328
134329
134330
134331
134332
134333
134334
134335
134336
134337
134338
134339
  nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
  aiUsed[iLeftSeed] = 1;
  aiUsed[iRightSeed] = 1;

  for(i=nCell-2; i>0; i--){
    RtreeCell *pNext;
    pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
    float diff =  
      cellGrowth(pRtree, pBboxLeft, pNext) - 
      cellGrowth(pRtree, pBboxRight, pNext)
    ;
    if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
     || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
    ){
      nodeInsertCell(pRtree, pRight, pNext);







|







134509
134510
134511
134512
134513
134514
134515
134516
134517
134518
134519
134520
134521
134522
134523
  nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
  aiUsed[iLeftSeed] = 1;
  aiUsed[iRightSeed] = 1;

  for(i=nCell-2; i>0; i--){
    RtreeCell *pNext;
    pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
    RtreeDValue diff =  
      cellGrowth(pRtree, pBboxLeft, pNext) - 
      cellGrowth(pRtree, pBboxRight, pNext)
    ;
    if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
     || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
    ){
      nodeInsertCell(pRtree, pRight, pNext);
134658
134659
134660
134661
134662
134663
134664
134665
134666
134667
134668
134669
134670

134671
134672
134673
134674

134675
134676
134677
134678
134679
134680
134681
134682
134683
134684
134685
134686
134687
134688
134689
134690
134691
134692
134693
134694
134695
134696
134697
134698
134699
134700
134701
134702
134703
134704
134705
134706
134707
134708
134709
134710
134711
134712
134713
134714
134715
134716
134717
134718
134719
  RtreeNode *pNode, 
  RtreeCell *pCell, 
  int iHeight
){
  int *aOrder;
  int *aSpare;
  RtreeCell *aCell;
  float *aDistance;
  int nCell;
  float aCenterCoord[RTREE_MAX_DIMENSIONS];
  int iDim;
  int ii;
  int rc = SQLITE_OK;


  memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS);

  nCell = NCELL(pNode)+1;


  /* Allocate the buffers used by this operation. The allocation is
  ** relinquished before this function returns.
  */
  aCell = (RtreeCell *)sqlite3_malloc(nCell * (
    sizeof(RtreeCell) +         /* aCell array */
    sizeof(int)       +         /* aOrder array */
    sizeof(int)       +         /* aSpare array */
    sizeof(float)               /* aDistance array */
  ));
  if( !aCell ){
    return SQLITE_NOMEM;
  }
  aOrder    = (int *)&aCell[nCell];
  aSpare    = (int *)&aOrder[nCell];
  aDistance = (float *)&aSpare[nCell];

  for(ii=0; ii<nCell; ii++){
    if( ii==(nCell-1) ){
      memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
    }else{
      nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
    }
    aOrder[ii] = ii;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      aCenterCoord[iDim] += (float)DCOORD(aCell[ii].aCoord[iDim*2]);
      aCenterCoord[iDim] += (float)DCOORD(aCell[ii].aCoord[iDim*2+1]);
    }
  }
  for(iDim=0; iDim<pRtree->nDim; iDim++){
    aCenterCoord[iDim] = (float)(aCenterCoord[iDim]/((float)nCell*2.0));
  }

  for(ii=0; ii<nCell; ii++){
    aDistance[ii] = 0.0;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      float coord = (float)(DCOORD(aCell[ii].aCoord[iDim*2+1]) - 
          DCOORD(aCell[ii].aCoord[iDim*2]));
      aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
    }
  }

  SortByDistance(aOrder, nCell, aDistance, aSpare);
  nodeZero(pRtree, pNode);








|

|



>

|


>




|
|
|
|
|




|
|
|









|
|



|





|
|







134842
134843
134844
134845
134846
134847
134848
134849
134850
134851
134852
134853
134854
134855
134856
134857
134858
134859
134860
134861
134862
134863
134864
134865
134866
134867
134868
134869
134870
134871
134872
134873
134874
134875
134876
134877
134878
134879
134880
134881
134882
134883
134884
134885
134886
134887
134888
134889
134890
134891
134892
134893
134894
134895
134896
134897
134898
134899
134900
134901
134902
134903
134904
134905
  RtreeNode *pNode, 
  RtreeCell *pCell, 
  int iHeight
){
  int *aOrder;
  int *aSpare;
  RtreeCell *aCell;
  RtreeDValue *aDistance;
  int nCell;
  RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
  int iDim;
  int ii;
  int rc = SQLITE_OK;
  int n;

  memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);

  nCell = NCELL(pNode)+1;
  n = (nCell+1)&(~1);

  /* Allocate the buffers used by this operation. The allocation is
  ** relinquished before this function returns.
  */
  aCell = (RtreeCell *)sqlite3_malloc(n * (
    sizeof(RtreeCell)     +         /* aCell array */
    sizeof(int)           +         /* aOrder array */
    sizeof(int)           +         /* aSpare array */
    sizeof(RtreeDValue)             /* aDistance array */
  ));
  if( !aCell ){
    return SQLITE_NOMEM;
  }
  aOrder    = (int *)&aCell[n];
  aSpare    = (int *)&aOrder[n];
  aDistance = (RtreeDValue *)&aSpare[n];

  for(ii=0; ii<nCell; ii++){
    if( ii==(nCell-1) ){
      memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
    }else{
      nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
    }
    aOrder[ii] = ii;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
      aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
    }
  }
  for(iDim=0; iDim<pRtree->nDim; iDim++){
    aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
  }

  for(ii=0; ii<nCell; ii++){
    aDistance[ii] = 0.0;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - 
                               DCOORD(aCell[ii].aCoord[iDim*2]));
      aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
    }
  }

  SortByDistance(aOrder, nCell, aDistance, aSpare);
  nodeZero(pRtree, pNode);

134947
134948
134949
134950
134951
134952
134953

134954
134955
134956
134957
134958
134959
134960
134961
134962
134963


134964
134965
134966
134967
134968
134969
134970
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 ){
    int ii;

    /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
    assert( nData==(pRtree->nDim*2 + 3) );

    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
        cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
      }
    }else{


      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
        cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }







>


|
|





|
>
>







135133
135134
135135
135136
135137
135138
135139
135140
135141
135142
135143
135144
135145
135146
135147
135148
135149
135150
135151
135152
135153
135154
135155
135156
135157
135158
135159
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 ){
    int ii;

    /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
    assert( nData==(pRtree->nDim*2 + 3) );
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].f = (RtreeValue)sqlite3_value_double(azData[ii+3]);
        cell.aCoord[ii+1].f = (RtreeValue)sqlite3_value_double(azData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
      }
    }else
#endif
    {
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
        cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
135354
135355
135356
135357
135358
135359
135360

135361





135362
135363
135364
135365
135366
135367
135368
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = (int)strlen(zCell);
    for(jj=0; jj<tree.nDim*2; jj++){

      sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);





      nCell = (int)strlen(zCell);
    }

    if( zText ){
      char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
      sqlite3_free(zText);
      zText = zTextNew;







>
|
>
>
>
>
>







135543
135544
135545
135546
135547
135548
135549
135550
135551
135552
135553
135554
135555
135556
135557
135558
135559
135560
135561
135562
135563
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = (int)strlen(zCell);
    for(jj=0; jj<tree.nDim*2; jj++){
#ifndef SQLITE_RTREE_INT_ONLY
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %f",
                       (double)cell.aCoord[jj].f);
#else
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
                       cell.aCoord[jj].i);
#endif
      nCell = (int)strlen(zCell);
    }

    if( zText ){
      char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
      sqlite3_free(zText);
      zText = zTextNew;
135396
135397
135398
135399
135400
135401
135402



135403

135404
135405
135406
135407
135408
135409
135410
  int rc;

  rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
  }
  if( rc==SQLITE_OK ){



    void *c = (void *)RTREE_COORD_REAL32;

    rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
  }
  if( rc==SQLITE_OK ){
    void *c = (void *)RTREE_COORD_INT32;
    rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
  }








>
>
>

>







135591
135592
135593
135594
135595
135596
135597
135598
135599
135600
135601
135602
135603
135604
135605
135606
135607
135608
135609
  int rc;

  rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
  }
  if( rc==SQLITE_OK ){
#ifdef SQLITE_RTREE_INT_ONLY
    void *c = (void *)RTREE_COORD_INT32;
#else
    void *c = (void *)RTREE_COORD_REAL32;
#endif
    rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
  }
  if( rc==SQLITE_OK ){
    void *c = (void *)RTREE_COORD_INT32;
    rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
  }

135430
135431
135432
135433
135434
135435
135436
135437
135438
135439
135440
135441
135442
135443
135444
135445
135446
135447



135448

135449
135450
135451
135452
135453
135454
135455
135456
135457
135458
135459
135460
135461
135462
135463
135464
135465
135466
135467
** table MATCH operators.
*/
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
  RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
  RtreeMatchArg *pBlob;
  int nBlob;

  nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double);
  pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
  if( !pBlob ){
    sqlite3_result_error_nomem(ctx);
  }else{
    int i;
    pBlob->magic = RTREE_GEOMETRY_MAGIC;
    pBlob->xGeom = pGeomCtx->xGeom;
    pBlob->pContext = pGeomCtx->pContext;
    pBlob->nParam = nArg;
    for(i=0; i<nArg; i++){



      pBlob->aParam[i] = sqlite3_value_double(aArg[i]);

    }
    sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *),
  void *pContext
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */

  /* Allocate and populate the context object. */
  pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
  if( !pGeomCtx ) return SQLITE_NOMEM;







|










>
>
>

>











|







135629
135630
135631
135632
135633
135634
135635
135636
135637
135638
135639
135640
135641
135642
135643
135644
135645
135646
135647
135648
135649
135650
135651
135652
135653
135654
135655
135656
135657
135658
135659
135660
135661
135662
135663
135664
135665
135666
135667
135668
135669
135670
** table MATCH operators.
*/
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
  RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
  RtreeMatchArg *pBlob;
  int nBlob;

  nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue);
  pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
  if( !pBlob ){
    sqlite3_result_error_nomem(ctx);
  }else{
    int i;
    pBlob->magic = RTREE_GEOMETRY_MAGIC;
    pBlob->xGeom = pGeomCtx->xGeom;
    pBlob->pContext = pGeomCtx->pContext;
    pBlob->nParam = nArg;
    for(i=0; i<nArg; i++){
#ifdef SQLITE_RTREE_INT_ONLY
      pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
#else
      pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
#endif
    }
    sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue *, int *),
  void *pContext
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */

  /* Allocate and populate the context object. */
  pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
  if( !pGeomCtx ) return SQLITE_NOMEM;
Changes to src/sqlite3.h.
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.12"
#define SQLITE_VERSION_NUMBER 3007012
#define SQLITE_SOURCE_ID      "2012-03-31 19:12:23 af602d87736b52802a4e760ffeeaa28112b99d9a"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.12"
#define SQLITE_VERSION_NUMBER 3007012
#define SQLITE_SOURCE_ID      "2012-04-17 09:09:33 8e2363ad76446e863d03ead91fd621e59d5cb495"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
** connection is opened. If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.
**
** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFNIG_GETPCACHE
** <dd> These options are obsolete and should not be used by new code.
** They are retained for backwards compatibility but are now no-ops.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */







|







1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
** connection is opened. If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.
**
** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
** <dd> These options are obsolete and should not be used by new code.
** They are retained for backwards compatibility but are now no-ops.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
6981
6982
6983
6984
6985
6986
6987



6988

6989
6990
6991
6992
6993
6994
6995
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,



  int (*xGeom)(sqlite3_rtree_geometry *, int nCoord, double *aCoord, int *pRes),

  void *pContext
);


/*
** A pointer to a structure of the following type is passed as the first
** argument to callbacks registered using rtree_geometry_callback().







>
>
>
|
>







6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
#ifdef SQLITE_RTREE_INT_ONLY
  int (*xGeom)(sqlite3_rtree_geometry*, int n, sqlite3_int64 *a, int *pRes),
#else
  int (*xGeom)(sqlite3_rtree_geometry*, int n, double *a, int *pRes),
#endif
  void *pContext
);


/*
** A pointer to a structure of the following type is passed as the first
** argument to callbacks registered using rtree_geometry_callback().
Changes to src/tar.c.
541
542
543
544
545
546
547





548
549
550
551
552
553
554
  const char *zName;
  zName = find_option("name", 0, 1);
  db_find_and_open_repository(0, 0);
  if( g.argc!=4 ){
    usage("VERSION OUTPUTFILE");
  }
  rid = name_to_typed_rid(g.argv[2], "ci");





  if( zName==0 ){
    zName = db_text("default-name",
       "SELECT replace(%Q,' ','_') "
          " || strftime('_%%Y-%%m-%%d_%%H%%M%%S_', event.mtime) "
          " || substr(blob.uuid, 1, 10)"
       "  FROM event, blob"
       " WHERE event.objid=%d"







>
>
>
>
>







541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
  const char *zName;
  zName = find_option("name", 0, 1);
  db_find_and_open_repository(0, 0);
  if( g.argc!=4 ){
    usage("VERSION OUTPUTFILE");
  }
  rid = name_to_typed_rid(g.argv[2], "ci");
  if( rid==0 ){
    fossil_fatal("Checkin not found: %s", g.argv[2]);
    return;
  }

  if( zName==0 ){
    zName = db_text("default-name",
       "SELECT replace(%Q,' ','_') "
          " || strftime('_%%Y-%%m-%%d_%%H%%M%%S_', event.mtime) "
          " || substr(blob.uuid, 1, 10)"
       "  FROM event, blob"
       " WHERE event.objid=%d"
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    for(nName=strlen(zName)-1; nName>5; nName--){
      if( zName[nName]=='.' ){
        zName[nName] = 0;
        break;
      }
    }
  }
  rid = name_to_rid(nRid?zRid:zName);
  if( rid==0 ){
    @ Not found
    return;
  }
  if( nRid==0 && nName>10 ) zName[10] = 0;
  tarball_of_checkin(rid, &tarball, zName);
  free( zName );
  free( zRid );
  cgi_set_content(&tarball);
  cgi_set_content_type("application/x-compressed");
}







|











595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    for(nName=strlen(zName)-1; nName>5; nName--){
      if( zName[nName]=='.' ){
        zName[nName] = 0;
        break;
      }
    }
  }
  rid = name_to_typed_rid(nRid?zRid:zName, "ci");
  if( rid==0 ){
    @ Not found
    return;
  }
  if( nRid==0 && nName>10 ) zName[10] = 0;
  tarball_of_checkin(rid, &tarball, zName);
  free( zName );
  free( zRid );
  cgi_set_content(&tarball);
  cgi_set_content_type("application/x-compressed");
}
Changes to src/update.c.
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
  verboseFlag = find_option("verbose","v",0)!=0;
  debugFlag = find_option("debug",0,0)!=0;
  db_must_be_within_tree();
  vid = db_lget_int("checkout", 0);
  if( vid==0 ){
    fossil_fatal("cannot find current version");
  }
  if( !nochangeFlag && db_exists("SELECT 1 FROM vmerge") ){
    fossil_fatal("cannot update an uncommitted merge");
  }
  if( !nochangeFlag && !internalUpdate ) autosync(AUTOSYNC_PULL);
  
  /* Create any empty directories now, as well as after the update, so changes in settings are reflected now */

  ensure_empty_dirs_created();

  if( internalUpdate ){
    tid = internalUpdate;
  }else if( g.argc>=3 ){
    if( fossil_strcmp(g.argv[2], "current")==0 ){
      /* If VERSION is "current", then use the same algorithm to find the
      ** target as if VERSION were omitted. */







<
<
<


|
>
|







118
119
120
121
122
123
124



125
126
127
128
129
130
131
132
133
134
135
136
  verboseFlag = find_option("verbose","v",0)!=0;
  debugFlag = find_option("debug",0,0)!=0;
  db_must_be_within_tree();
  vid = db_lget_int("checkout", 0);
  if( vid==0 ){
    fossil_fatal("cannot find current version");
  }



  if( !nochangeFlag && !internalUpdate ) autosync(AUTOSYNC_PULL);
  
  /* Create any empty directories now, as well as after the update,
  ** so changes in settings are reflected now */
  if( !nochangeFlag ) ensure_empty_dirs_created();

  if( internalUpdate ){
    tid = internalUpdate;
  }else if( g.argc>=3 ){
    if( fossil_strcmp(g.argv[2], "current")==0 ){
      /* If VERSION is "current", then use the same algorithm to find the
      ** target as if VERSION were omitted. */
467
468
469
470
471
472
473
















474
475
476
477
478
479
480
481
482
483
484
485



486
487
488
489
490
491
492
  db_finalize(&mtimeXfer);
  fossil_print("--------------\n");
  show_common_info(tid, "updated-to:", 1, 0);

  /* Report on conflicts
  */
  if( !nochangeFlag ){
















    if( nConflict ){
      if( internalUpdate ){
        internalConflictCnt = nConflict;
        nConflict = 0;
      }else{
        fossil_warning("WARNING: %d merge conflicts", nConflict);
      }
    }
    if( nOverwrite ){
      fossil_warning("WARNING: %d unmanaged files were overwritten",
                     nOverwrite);
    }



  }
  
  /*
  ** Clean up the mid and pid VFILE entries.  Then commit the changes.
  */
  if( nochangeFlag ){
    db_end_transaction(1);  /* With --nochange, rollback changes */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












>
>
>







465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
  db_finalize(&mtimeXfer);
  fossil_print("--------------\n");
  show_common_info(tid, "updated-to:", 1, 0);

  /* Report on conflicts
  */
  if( !nochangeFlag ){
    Stmt q;
    int nMerge = 0;
    db_prepare(&q, "SELECT uuid, id FROM vmerge JOIN blob ON merge=rid"
                   " WHERE id<=0");
    while( db_step(&q)==SQLITE_ROW ){
      const char *zLabel = "merge";
      switch( db_column_int(&q, 1) ){
        case -1:  zLabel = "cherrypick merge"; break;
        case -2:  zLabel = "backout merge";    break;
      }
      fossil_warning("uncommitted %s against %S.",
                     zLabel, db_column_text(&q, 0));
      nMerge++;
    }
    db_finalize(&q);
    
    if( nConflict ){
      if( internalUpdate ){
        internalConflictCnt = nConflict;
        nConflict = 0;
      }else{
        fossil_warning("WARNING: %d merge conflicts", nConflict);
      }
    }
    if( nOverwrite ){
      fossil_warning("WARNING: %d unmanaged files were overwritten",
                     nOverwrite);
    }
    if( nMerge ){
      fossil_warning("WARNING: %d uncommitted prior merges", nMerge);
    }
  }
  
  /*
  ** Clean up the mid and pid VFILE entries.  Then commit the changes.
  */
  if( nochangeFlag ){
    db_end_transaction(1);  /* With --nochange, rollback changes */
Changes to win/Makefile.mingw.
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
ZLIBDIR = $(SRCDIR)/../zlib-1.2.6

#### The directories where the OpenSSL include and library files are located.
#    The recommended usage here is to use the Sysinternals junction tool
#    to create a hard link between an "openssl-1.x" sub-directory of the
#    Fossil source code directory and the target OpenSSL source directory.
#
OPENSSLINCDIR = $(SRCDIR)/../openssl-1.0.0g/include
OPENSSLLIBDIR = $(SRCDIR)/../openssl-1.0.0g

#### Either the directory where the Tcl library is installed or the Tcl
#    source code directory resides (depending on the value of the macro
#    FOSSIL_TCL_SOURCE).  If this points to the Tcl install directory,
#    this directory must have "include" and "lib" sub-directories.  If
#    this points to the Tcl source code directory, this directory must
#    have "generic" and "win" sub-directories.  The recommended usage







|
|







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
ZLIBDIR = $(SRCDIR)/../zlib-1.2.6

#### The directories where the OpenSSL include and library files are located.
#    The recommended usage here is to use the Sysinternals junction tool
#    to create a hard link between an "openssl-1.x" sub-directory of the
#    Fossil source code directory and the target OpenSSL source directory.
#
OPENSSLINCDIR = $(SRCDIR)/../openssl-1.0.1a/include
OPENSSLLIBDIR = $(SRCDIR)/../openssl-1.0.1a

#### Either the directory where the Tcl library is installed or the Tcl
#    source code directory resides (depending on the value of the macro
#    FOSSIL_TCL_SOURCE).  If this points to the Tcl install directory,
#    this directory must have "include" and "lib" sub-directories.  If
#    this points to the Tcl source code directory, this directory must
#    have "generic" and "win" sub-directories.  The recommended usage
Changes to win/Makefile.mingw.mistachkin.
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
ZLIBDIR = $(SRCDIR)/../zlib-1.2.6

#### The directories where the OpenSSL include and library files are located.
#    The recommended usage here is to use the Sysinternals junction tool
#    to create a hard link between an "openssl-1.x" sub-directory of the
#    Fossil source code directory and the target OpenSSL source directory.
#
OPENSSLINCDIR = $(SRCDIR)/../openssl-1.0.0g/include
OPENSSLLIBDIR = $(SRCDIR)/../openssl-1.0.0g

#### Either the directory where the Tcl library is installed or the Tcl
#    source code directory resides (depending on the value of the macro
#    FOSSIL_TCL_SOURCE).  If this points to the Tcl install directory,
#    this directory must have "include" and "lib" sub-directories.  If
#    this points to the Tcl source code directory, this directory must
#    have "generic" and "win" sub-directories.  The recommended usage







|
|







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
ZLIBDIR = $(SRCDIR)/../zlib-1.2.6

#### The directories where the OpenSSL include and library files are located.
#    The recommended usage here is to use the Sysinternals junction tool
#    to create a hard link between an "openssl-1.x" sub-directory of the
#    Fossil source code directory and the target OpenSSL source directory.
#
OPENSSLINCDIR = $(SRCDIR)/../openssl-1.0.1a/include
OPENSSLLIBDIR = $(SRCDIR)/../openssl-1.0.1a

#### Either the directory where the Tcl library is installed or the Tcl
#    source code directory resides (depending on the value of the macro
#    FOSSIL_TCL_SOURCE).  If this points to the Tcl install directory,
#    this directory must have "include" and "lib" sub-directories.  If
#    this points to the Tcl source code directory, this directory must
#    have "generic" and "win" sub-directories.  The recommended usage