Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update the built-in SQLite and SQLite shell to the latest 3.24.0 alpha version. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA3-256: |
a09b33d51e23fecb016460d9d1731eb5 |
User & Date: | drh 2018-05-14 00:41:57.537 |
Context
2018-05-18
| ||
18:24 | If launched with no command-line arguments, check for a repo appended to the end of the executable and open "ui" on that repo. ... (check-in: 37b2eb99 user: drh tags: trunk) | |
2018-05-14
| ||
00:55 | If the fossil binary is launched with no command-line arguments, check to see if there is an appended repository and if there is, run "ui" against that repository. ... (check-in: 517fe076 user: drh tags: use-appendvfs) | |
00:41 | Update the built-in SQLite and SQLite shell to the latest 3.24.0 alpha version. ... (check-in: a09b33d5 user: drh tags: trunk) | |
2018-05-11
| ||
15:02 | Honor the If-Modified-Since header even if the Fossil executable is more recent. Assume that any changes in the Fossil executable will make minimal difference in the output. ... (check-in: 04190488 user: drh tags: trunk) | |
Changes
Changes to src/shell.c.
︙ | ︙ | |||
9218 9219 9220 9221 9222 9223 9224 | EQPGraphRow *pRow, *pNext; int n = strlen30(p->sGraph.zPrefix); char *z; for(pRow = eqp_next_row(p, iEqpId, 0); pRow; pRow = pNext){ pNext = eqp_next_row(p, iEqpId, pRow); z = pRow->zText; utf8_printf(p->out, "%s%s%s\n", p->sGraph.zPrefix, pNext ? "|--" : "`--", z); | | | 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 | EQPGraphRow *pRow, *pNext; int n = strlen30(p->sGraph.zPrefix); char *z; for(pRow = eqp_next_row(p, iEqpId, 0); pRow; pRow = pNext){ pNext = eqp_next_row(p, iEqpId, pRow); z = pRow->zText; utf8_printf(p->out, "%s%s%s\n", p->sGraph.zPrefix, pNext ? "|--" : "`--", z); if( n<(int)sizeof(p->sGraph.zPrefix)-7 ){ memcpy(&p->sGraph.zPrefix[n], pNext ? "| " : " ", 4); eqp_render_level(p, pRow->iEqpId); p->sGraph.zPrefix[n] = 0; } } } |
︙ | ︙ | |||
10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 | #if defined(SQLITE_HAVE_ZLIB) && !defined(SQLITE_OMIT_VIRTUALTABLE) ".archive ... Manage SQL archives: \".archive --help\" for details\n" #endif #ifndef SQLITE_OMIT_AUTHORIZATION ".auth ON|OFF Show authorizer callbacks\n" #endif ".backup ?DB? FILE Backup DB (default \"main\") to FILE\n" ".bail on|off Stop after hitting an error. Default OFF\n" ".binary on|off Turn binary output on or off. Default OFF\n" ".cd DIRECTORY Change the working directory to DIRECTORY\n" ".changes on|off Show number of rows changed by SQL\n" ".check GLOB Fail if output since .testcase does not match\n" ".clone NEWDB Clone data into NEWDB from the existing database\n" ".databases List names and files of attached databases\n" | > | 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 | #if defined(SQLITE_HAVE_ZLIB) && !defined(SQLITE_OMIT_VIRTUALTABLE) ".archive ... Manage SQL archives: \".archive --help\" for details\n" #endif #ifndef SQLITE_OMIT_AUTHORIZATION ".auth ON|OFF Show authorizer callbacks\n" #endif ".backup ?DB? FILE Backup DB (default \"main\") to FILE\n" " Add \"--append\" to open using appendvfs.\n" ".bail on|off Stop after hitting an error. Default OFF\n" ".binary on|off Turn binary output on or off. Default OFF\n" ".cd DIRECTORY Change the working directory to DIRECTORY\n" ".changes on|off Show number of rows changed by SQL\n" ".check GLOB Fail if output since .testcase does not match\n" ".clone NEWDB Clone data into NEWDB from the existing database\n" ".databases List names and files of attached databases\n" |
︙ | ︙ | |||
11036 11037 11038 11039 11040 11041 11042 | ** one of the SHELL_OPEN_* constants. ** ** If the file does not exist or is empty but its name looks like a ZIP ** archive and the dfltZip flag is true, then assume it is a ZIP archive. ** Otherwise, assume an ordinary database regardless of the filename if ** the type cannot be determined from content. */ | | | 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 | ** one of the SHELL_OPEN_* constants. ** ** If the file does not exist or is empty but its name looks like a ZIP ** archive and the dfltZip flag is true, then assume it is a ZIP archive. ** Otherwise, assume an ordinary database regardless of the filename if ** the type cannot be determined from content. */ int deduceDatabaseType(const char *zName, int dfltZip){ FILE *f = fopen(zName, "rb"); size_t n; int rc = SHELL_OPEN_UNSPEC; char zBuf[100]; if( f==0 ){ if( dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ) return SHELL_OPEN_ZIPFILE; return SHELL_OPEN_NORMAL; |
︙ | ︙ | |||
11069 11070 11071 11072 11073 11074 11075 | /* ** Make sure the database is open. If it is not, then open it. If ** the database fails to open, print an error message and exit. */ static void open_db(ShellState *p, int keepAlive){ if( p->db==0 ){ | | > > > | > | 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 | /* ** Make sure the database is open. If it is not, then open it. If ** the database fails to open, print an error message and exit. */ static void open_db(ShellState *p, int keepAlive){ if( p->db==0 ){ if( p->openMode==SHELL_OPEN_UNSPEC ){ if( p->zDbFilename==0 || p->zDbFilename[0]==0 ){ p->openMode = SHELL_OPEN_NORMAL; }else if( access(p->zDbFilename,0)==0 ){ p->openMode = (u8)deduceDatabaseType(p->zDbFilename, 0); } } switch( p->openMode ){ case SHELL_OPEN_APPENDVFS: { sqlite3_open_v2(p->zDbFilename, &p->db, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, "apndvfs"); break; } |
︙ | ︙ | |||
11171 11172 11173 11174 11175 11176 11177 | int nLine = strlen30(zLine); int i, iStart; sqlite3_stmt *pStmt = 0; char *zSql; char zBuf[1000]; if( nLine>sizeof(zBuf)-30 ) return; | | | 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 | int nLine = strlen30(zLine); int i, iStart; sqlite3_stmt *pStmt = 0; char *zSql; char zBuf[1000]; if( nLine>sizeof(zBuf)-30 ) return; if( zLine[0]=='.' || zLine[0]=='#') return; for(i=nLine-1; i>=0 && (isalnum(zLine[i]) || zLine[i]=='_'); i--){} if( i==nLine-1 ) return; iStart = i+1; memcpy(zBuf, zLine, iStart); zSql = sqlite3_mprintf("SELECT DISTINCT candidate COLLATE nocase" " FROM completion(%Q,%Q) ORDER BY 1", &zLine[iStart], zLine); |
︙ | ︙ | |||
13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 | || (c=='s' && n>=3 && strncmp(azArg[0], "save", n)==0) ){ const char *zDestFile = 0; const char *zDb = 0; sqlite3 *pDest; sqlite3_backup *pBackup; int j; for(j=1; j<nArg; j++){ const char *z = azArg[j]; if( z[0]=='-' ){ | > | | > > | | > | 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 | || (c=='s' && n>=3 && strncmp(azArg[0], "save", n)==0) ){ const char *zDestFile = 0; const char *zDb = 0; sqlite3 *pDest; sqlite3_backup *pBackup; int j; const char *zVfs = 0; for(j=1; j<nArg; j++){ const char *z = azArg[j]; if( z[0]=='-' ){ if( z[1]=='-' ) z++; if( strcmp(z, "-append")==0 ){ zVfs = "apndvfs"; }else { utf8_printf(stderr, "unknown option: %s\n", azArg[j]); return 1; } }else if( zDestFile==0 ){ zDestFile = azArg[j]; }else if( zDb==0 ){ zDb = zDestFile; zDestFile = azArg[j]; }else{ raw_printf(stderr, "Usage: .backup ?DB? ?--append? FILENAME\n"); return 1; } } if( zDestFile==0 ){ raw_printf(stderr, "missing FILENAME argument on .backup\n"); return 1; } if( zDb==0 ) zDb = "main"; rc = sqlite3_open_v2(zDestFile, &pDest, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, zVfs); if( rc!=SQLITE_OK ){ utf8_printf(stderr, "Error: cannot open \"%s\"\n", zDestFile); sqlite3_close(pDest); return 1; } open_db(p, 0); pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb); |
︙ | ︙ | |||
13496 13497 13498 13499 13500 13501 13502 | raw_printf(p->out, "/* No STAT tables available */\n"); }else{ raw_printf(p->out, "ANALYZE sqlite_master;\n"); sqlite3_exec(p->db, "SELECT 'ANALYZE sqlite_master'", callback, &data, &zErrMsg); data.cMode = data.mode = MODE_Insert; data.zDestTable = "sqlite_stat1"; | | | | | 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 | raw_printf(p->out, "/* No STAT tables available */\n"); }else{ raw_printf(p->out, "ANALYZE sqlite_master;\n"); sqlite3_exec(p->db, "SELECT 'ANALYZE sqlite_master'", callback, &data, &zErrMsg); data.cMode = data.mode = MODE_Insert; data.zDestTable = "sqlite_stat1"; shell_exec(&data, "SELECT * FROM sqlite_stat1", &zErrMsg); data.zDestTable = "sqlite_stat3"; shell_exec(&data, "SELECT * FROM sqlite_stat3", &zErrMsg); data.zDestTable = "sqlite_stat4"; shell_exec(&data, "SELECT * FROM sqlite_stat4", &zErrMsg); raw_printf(p->out, "ANALYZE sqlite_master;\n"); } }else if( c=='h' && strncmp(azArg[0], "headers", n)==0 ){ if( nArg==2 ){ p->showHeader = booleanValue(azArg[1]); |
︙ | ︙ | |||
14700 14701 14702 14703 14704 14705 14706 | if( strcmp(z,"debug")==0 ){ bDebug = 1; }else { utf8_printf(stderr, "Unknown option \"%s\" on \"%s\"\n", azArg[i], azArg[0]); raw_printf(stderr, "Should be one of: --schema" | | | 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 | if( strcmp(z,"debug")==0 ){ bDebug = 1; }else { utf8_printf(stderr, "Unknown option \"%s\" on \"%s\"\n", azArg[i], azArg[0]); raw_printf(stderr, "Should be one of: --schema" " --sha3-224 --sha3-256 --sha3-384 --sha3-512\n"); rc = 1; goto meta_command_exit; } }else if( zLike ){ raw_printf(stderr, "Usage: .sha3sum ?OPTIONS? ?LIKE-PATTERN?\n"); rc = 1; goto meta_command_exit; |
︙ | ︙ | |||
15388 15389 15390 15391 15392 15393 15394 | zSql[nSql+1] = 0; rc = sqlite3_complete(zSql); zSql[nSql] = 0; return rc; } /* | | | 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 | zSql[nSql+1] = 0; rc = sqlite3_complete(zSql); zSql[nSql] = 0; return rc; } /* ** Run a single line of SQL. Return the number of errors. */ static int runOneSqlLine(ShellState *p, char *zSql, FILE *in, int startline){ int rc; char *zErrMsg = 0; open_db(p, 0); if( ShellHasFlag(p,SHFLG_Backslash) ) resolve_backslashes(zSql); |
︙ | ︙ | |||
15461 15462 15463 15464 15465 15466 15467 | seenInterrupt = 0; } lineno++; if( nSql==0 && _all_whitespace(zLine) ){ if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zLine); continue; } | | > | | | | | > | 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 | seenInterrupt = 0; } lineno++; if( nSql==0 && _all_whitespace(zLine) ){ if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zLine); continue; } if( zLine && (zLine[0]=='.' || zLine[0]=='#') && nSql==0 ){ if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zLine); if( zLine[0]=='.' ){ rc = do_meta_command(zLine, p); if( rc==2 ){ /* exit requested */ break; }else if( rc ){ errCnt++; } } continue; } if( line_is_command_terminator(zLine) && line_is_complete(zSql, nSql) ){ memcpy(zLine,";",2); } nLine = strlen30(zLine); |
︙ | ︙ | |||
15509 15510 15511 15512 15513 15514 15515 | } }else if( nSql && _all_whitespace(zSql) ){ if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zSql); nSql = 0; } } if( nSql && !_all_whitespace(zSql) ){ | | | 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 | } }else if( nSql && _all_whitespace(zSql) ){ if( ShellHasFlag(p, SHFLG_Echo) ) printf("%s\n", zSql); nSql = 0; } } if( nSql && !_all_whitespace(zSql) ){ errCnt += runOneSqlLine(p, zSql, in, startline); } free(zSql); free(zLine); return errCnt>0; } /* |
︙ | ︙ |
Changes to src/sqlite3.c.
︙ | ︙ | |||
1148 1149 1150 1151 1152 1153 1154 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.24.0" #define SQLITE_VERSION_NUMBER 3024000 | | | 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.24.0" #define SQLITE_VERSION_NUMBER 3024000 #define SQLITE_SOURCE_ID "2018-05-14 00:41:12 d0f35739af3b226c8eef39676407293650cde551acef06fe8628fdd5b59bd66a" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
8136 8137 8138 8139 8140 8141 8142 | ** parsing ambiguity. For example, the statement ** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and ** creates a new table named "BEGIN" with three columns named ** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid ** using keywords as identifiers. Common techniques used to avoid keyword ** name collisions include: ** <ul> | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 | ** parsing ambiguity. For example, the statement ** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and ** creates a new table named "BEGIN" with three columns named ** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid ** using keywords as identifiers. Common techniques used to avoid keyword ** name collisions include: ** <ul> ** <li> Put all identifier names inside double-quotes. This is the official ** SQL way to escape identifier names. ** <li> Put identifier names inside [...]. This is not standard SQL, ** but it is what SQL Server does and so lots of programmers use this ** technique. ** <li> Begin every identifier with the letter "Z" as no SQL keywords start ** with "Z". ** <li> Include a digit somewhere in every identifier name. ** </ul> ** ** Note that the number of keywords understood by SQLite can depend on ** compile-time options. For example, "VACUUM" is not a keyword if ** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also, ** new keywords may be added to future releases of SQLite. */ SQLITE_API int sqlite3_keyword_count(void); SQLITE_API int sqlite3_keyword_name(int,const char**,int*); SQLITE_API int sqlite3_keyword_check(const char*,int); /* ** CAPI3REF: Dynamic String Object ** KEYWORDS: {dynamic string} ** ** An instance of the sqlite3_str object contains a dynamically-sized ** string under construction. ** ** The lifecycle of an sqlite3_str object is as follows: ** <ol> ** <li> ^The sqlite3_str object is created using [sqlite3_str_new()]. ** <li> ^Text is appended to the sqlite3_str object using various ** methods, such as [sqlite3_str_appendf()]. ** <li> ^The sqlite3_str object is destroyed and the string it created ** is returned using the [sqlite3_str_finish()] interface. ** </ol> */ typedef struct sqlite3_str sqlite3_str; /* ** CAPI3REF: Create A New Dynamic String Object ** CONSTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_new(D)] interface allocates and initializes ** a new [sqlite3_str] ** object. ^The [sqlite3_str_new()] interface returns NULL on an out-of-memory ** condition. To avoid memory leaks, the object returned by ** [sqlite3_str_new()] must be freed by a subsequent call to ** [sqlite3_str_finish(X)]. ** ** The D parameter to [sqlite3_str_new(D)] may be NULL. If the ** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum ** length of the string contained in the [sqlite3_str] object will be ** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead ** of [SQLITE_MAX_LENGTH]. */ SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*); /* ** CAPI3REF: Finalize A Dynamic String ** DESTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X ** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()] ** that contains the constructed string. The calling application should ** pass the returned value to [sqlite3_free()] to avoid a memory leak. ** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any ** errors were encountered during construction of the string. ^The ** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the ** string in [sqlite3_str] object X is zero bytes long. */ SQLITE_API char *sqlite3_str_finish(sqlite3_str*); /* ** CAPI3REF: Add Content To A Dynamic String ** METHOD: sqlite3_str ** ** These interfaces add content to an sqlite3_str object previously obtained ** from [sqlite3_str_new()]. ** ** ^The [sqlite3_str_appendf(X,F,...)] and ** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf] ** functionality of SQLite to append formatted text onto the end of ** [sqlite3_str] object X. ** ** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S ** onto the end of the [sqlite3_str] object X. N must be non-negative. ** S must contain at least N non-zero bytes of content. To append a ** zero-terminated string in its entirety, use the [sqlite3_str_appendall()] ** method instead. ** ** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of ** zero-terminated string S onto the end of [sqlite3_str] object X. ** ** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the ** single-byte character C onto the end of [sqlite3_str] object X. ** ^This method can be used, for example, to add whitespace indentation. ** ** ^The [sqlite3_str_reset(X)] method resets the string under construction ** inside [sqlite3_str] object X back to zero bytes in length. ** ** These methods do not return a result code. ^If an error occurs, that fact ** is recorded in the [sqlite3_str] object and can be recovered by a ** subsequent call to [sqlite3_str_errcode(X)]. */ SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...); SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list); SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N); SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn); SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C); SQLITE_API void sqlite3_str_reset(sqlite3_str*); /* ** CAPI3REF: Status Of A Dynamic String ** METHOD: sqlite3_str ** ** These interfaces return the current status of an [sqlite3_str] object. ** ** ^If any prior errors have occurred while constructing the dynamic string ** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return ** an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns ** [SQLITE_NOMEM] following any out-of-memory error, or ** [SQLITE_TOOBIG] if the size of the dynamic string exceeds ** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors. ** ** ^The [sqlite3_str_length(X)] method returns the current length, in bytes, ** of the dynamic string under construction in [sqlite3_str] object X. ** ^The length returned by [sqlite3_str_length(X)] does not include the ** zero-termination byte. ** ** ^The [sqlite3_str_value(X)] method returns a pointer to the current ** content of the dynamic string under construction in X. The value ** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X ** and might be freed or altered by any subsequent method on the same ** [sqlite3_str] object. Applications must not used the pointer returned ** [sqlite3_str_value(X)] after any subsequent method call on the same ** object. ^Applications may change the content of the string returned ** by [sqlite3_str_value(X)] as long as they do not write into any bytes ** outside the range of 0 to [sqlite3_str_length(X)] and do not read or ** write any byte after any subsequent sqlite3_str method call. */ SQLITE_API int sqlite3_str_errcode(sqlite3_str*); SQLITE_API int sqlite3_str_length(sqlite3_str*); SQLITE_API char *sqlite3_str_value(sqlite3_str*); /* ** CAPI3REF: SQLite Runtime Status ** ** ^These interfaces are used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for ** the specific parameter to measure. ^(Recognized integer codes |
︙ | ︙ | |||
13737 13738 13739 13740 13741 13742 13743 | typedef struct PrintfArguments PrintfArguments; typedef struct RowSet RowSet; typedef struct Savepoint Savepoint; typedef struct Select Select; typedef struct SQLiteThread SQLiteThread; typedef struct SelectDest SelectDest; typedef struct SrcList SrcList; | | | 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 | typedef struct PrintfArguments PrintfArguments; typedef struct RowSet RowSet; typedef struct Savepoint Savepoint; typedef struct Select Select; typedef struct SQLiteThread SQLiteThread; typedef struct SelectDest SelectDest; typedef struct SrcList SrcList; typedef struct sqlite3_str StrAccum; /* Internal alias for sqlite3_str */ typedef struct Table Table; typedef struct TableLock TableLock; typedef struct Token Token; typedef struct TreeView TreeView; typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; |
︙ | ︙ | |||
14029 14030 14031 14032 14033 14034 14035 | #define BTREE_AUXDELETE 0x04 /* not the primary delete operation */ #define BTREE_APPEND 0x08 /* Insert is likely an append */ /* An instance of the BtreePayload object describes the content of a single ** entry in either an index or table btree. ** ** Index btrees (used for indexes and also WITHOUT ROWID tables) contain | | | > > > > > > > > > > > > > > > | | 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 | #define BTREE_AUXDELETE 0x04 /* not the primary delete operation */ #define BTREE_APPEND 0x08 /* Insert is likely an append */ /* An instance of the BtreePayload object describes the content of a single ** entry in either an index or table btree. ** ** Index btrees (used for indexes and also WITHOUT ROWID tables) contain ** an arbitrary key and no data. These btrees have pKey,nKey set to the ** key and the pData,nData,nZero fields are uninitialized. The aMem,nMem ** fields give an array of Mem objects that are a decomposition of the key. ** The nMem field might be zero, indicating that no decomposition is available. ** ** Table btrees (used for rowid tables) contain an integer rowid used as ** the key and passed in the nKey field. The pKey field is zero. ** pData,nData hold the content of the new entry. nZero extra zero bytes ** are appended to the end of the content when constructing the entry. ** The aMem,nMem fields are uninitialized for table btrees. ** ** Field usage summary: ** ** Table BTrees Index Btrees ** ** pKey always NULL encoded key ** nKey the ROWID length of pKey ** pData data not used ** aMem not used decomposed key value ** nMem not used entries in aMem ** nData length of pData not used ** nZero extra zeros after pData not used ** ** This object is used to pass information into sqlite3BtreeInsert(). The ** same information used to be passed as five separate parameters. But placing ** the information into this object helps to keep the interface more ** organized and understandable, and it also helps the resulting code to ** run a little faster by using fewer registers for parameter passing. */ struct BtreePayload { const void *pKey; /* Key content for indexes. NULL for tables */ sqlite3_int64 nKey; /* Size of pKey for indexes. PRIMARY KEY for tabs */ const void *pData; /* Data for tables. */ sqlite3_value *aMem; /* First of nMem value in the unpacked pKey */ u16 nMem; /* Number of aMem[] value. Might be zero */ int nData; /* Size of pData. 0 if none. */ int nZero; /* Extra zero data appended after pData,nData */ }; SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload, |
︙ | ︙ | |||
17649 17650 17651 17652 17653 17654 17655 | const Token *pName; /* Name of the container - used for error messages */ }; /* ** An objected used to accumulate the text of a string where we ** do not necessarily know how big the string will be in the end. */ | | | < < | 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 | const Token *pName; /* Name of the container - used for error messages */ }; /* ** An objected used to accumulate the text of a string where we ** do not necessarily know how big the string will be in the end. */ struct sqlite3_str { sqlite3 *db; /* Optional database for lookaside. Can be NULL */ char *zText; /* The string collected so far */ u32 nAlloc; /* Amount of space allocated in zText */ u32 mxAlloc; /* Maximum allowed allocation. 0 for no malloc usage */ u32 nChar; /* Length of the string so far */ u8 accError; /* SQLITE_NOMEM or SQLITE_TOOBIG */ u8 printfFlags; /* SQLITE_PRINTF flags below */ }; #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) |
︙ | ︙ | |||
18028 18029 18030 18031 18032 18033 18034 | */ struct PrintfArguments { int nArg; /* Total number of arguments */ int nUsed; /* Number of arguments used so far */ sqlite3_value **apArg; /* The argument values */ }; | < < | 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 | */ struct PrintfArguments { int nArg; /* Total number of arguments */ int nUsed; /* Number of arguments used so far */ sqlite3_value **apArg; /* The argument values */ }; SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...); SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list); #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); |
︙ | ︙ | |||
18552 18553 18554 18555 18556 18557 18558 | ); SQLITE_PRIVATE void sqlite3OomFault(sqlite3*); SQLITE_PRIVATE void sqlite3OomClear(sqlite3*); SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *); SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); | < < < < | 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 | ); SQLITE_PRIVATE void sqlite3OomFault(sqlite3*); SQLITE_PRIVATE void sqlite3OomClear(sqlite3*); SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *); SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*); SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int); SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *); SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); #ifndef SQLITE_OMIT_SUBQUERY |
︙ | ︙ | |||
24409 24410 24411 24412 24413 24414 24415 | assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld ); return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p); } #endif #endif /* !defined(SQLITE_MUTEX_OMIT) */ | < | 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 | assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld ); return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p); } #endif #endif /* !defined(SQLITE_MUTEX_OMIT) */ /************** End of mutex.c ***********************************************/ /************** Begin file mutex_noop.c **************************************/ /* ** 2008 October 07 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: |
︙ | ︙ | |||
26573 26574 26575 26576 26577 26578 26579 | } #endif /* SQLITE_OMIT_FLOATING_POINT */ /* ** Set the StrAccum object to an error mode. */ static void setStrAccumError(StrAccum *p, u8 eError){ | | | 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 | } #endif /* SQLITE_OMIT_FLOATING_POINT */ /* ** Set the StrAccum object to an error mode. */ static void setStrAccumError(StrAccum *p, u8 eError){ assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG ); p->accError = eError; p->nAlloc = 0; } /* ** Extra argument values from a PrintfArguments object */ |
︙ | ︙ | |||
26607 26608 26609 26610 26611 26612 26613 | # define SQLITE_PRINT_BUF_SIZE 70 #endif #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ /* ** Render a string given by "fmt" into the StrAccum object. */ | | | | 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 | # define SQLITE_PRINT_BUF_SIZE 70 #endif #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ /* ** Render a string given by "fmt" into the StrAccum object. */ SQLITE_API void sqlite3_str_vappendf( sqlite3_str *pAccum, /* Accumulate results here */ const char *fmt, /* Format string */ va_list ap /* arguments */ ){ int c; /* Next character in the format string */ char *bufpt; /* Pointer to the conversion buffer */ int precision; /* Precision of the current field */ int length; /* Length of the field */ |
︙ | ︙ | |||
26665 26666 26667 26668 26669 26670 26671 | if( c!='%' ){ bufpt = (char *)fmt; #if HAVE_STRCHRNUL fmt = strchrnul(fmt, '%'); #else do{ fmt++; }while( *fmt && *fmt != '%' ); #endif | | | | 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 | if( c!='%' ){ bufpt = (char *)fmt; #if HAVE_STRCHRNUL fmt = strchrnul(fmt, '%'); #else do{ fmt++; }while( *fmt && *fmt != '%' ); #endif sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt)); if( *fmt==0 ) break; } if( (c=(*++fmt))==0 ){ sqlite3_str_append(pAccum, "%", 1); break; } /* Find out what flags are present */ flag_leftjustify = flag_prefix = cThousand = flag_alternateform = flag_altform2 = flag_zeropad = 0; done = 0; do{ |
︙ | ︙ | |||
26847 26848 26849 26850 26851 26852 26853 | if( precision<etBUFSIZE-10-etBUFSIZE/3 ){ nOut = etBUFSIZE; zOut = buf; }else{ u64 n = (u64)precision + 10 + precision/3; zOut = zExtra = sqlite3Malloc( n ); if( zOut==0 ){ | | | 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 | if( precision<etBUFSIZE-10-etBUFSIZE/3 ){ nOut = etBUFSIZE; zOut = buf; }else{ u64 n = (u64)precision + 10 + precision/3; zOut = zExtra = sqlite3Malloc( n ); if( zOut==0 ){ setStrAccumError(pAccum, SQLITE_NOMEM); return; } nOut = (int)n; } bufpt = &zOut[nOut-1]; if( xtype==etORDINAL ){ static const char zOrd[] = "thstndrd"; |
︙ | ︙ | |||
26972 26973 26974 26975 26976 26977 26978 | }else{ e2 = exp; } if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){ bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 ); if( bufpt==0 ){ | | | 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 | }else{ e2 = exp; } if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){ bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 ); if( bufpt==0 ){ setStrAccumError(pAccum, SQLITE_NOMEM); return; } } zOut = bufpt; nsd = 16 + flag_altform2*10; flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; /* The sign in front of the number */ |
︙ | ︙ | |||
27104 27105 27106 27107 27108 27109 27110 | buf[3] = 0x80 + (u8)(ch & 0x3f); length = 4; } } if( precision>1 ){ width -= precision-1; if( width>1 && !flag_leftjustify ){ | | | | 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 | buf[3] = 0x80 + (u8)(ch & 0x3f); length = 4; } } if( precision>1 ){ width -= precision-1; if( width>1 && !flag_leftjustify ){ sqlite3_str_appendchar(pAccum, width-1, ' '); width = 0; } while( precision-- > 1 ){ sqlite3_str_append(pAccum, buf, length); } } bufpt = buf; flag_altform2 = 1; goto adjust_width_for_utf8; case etSTRING: case etDYNSTRING: |
︙ | ︙ | |||
27194 27195 27196 27197 27198 27199 27200 | } } needQuote = !isnull && xtype==etSQLESCAPE2; n += i + 3; if( n>etBUFSIZE ){ bufpt = zExtra = sqlite3Malloc( n ); if( bufpt==0 ){ | | | 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 | } } needQuote = !isnull && xtype==etSQLESCAPE2; n += i + 3; if( n>etBUFSIZE ){ bufpt = zExtra = sqlite3Malloc( n ); if( bufpt==0 ){ setStrAccumError(pAccum, SQLITE_NOMEM); return; } }else{ bufpt = buf; } j = 0; if( needQuote ) bufpt[j++] = q; |
︙ | ︙ | |||
27218 27219 27220 27221 27222 27223 27224 | } case etTOKEN: { Token *pToken; if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; pToken = va_arg(ap, Token*); assert( bArgList==0 ); if( pToken && pToken->n ){ | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 | } case etTOKEN: { Token *pToken; if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; pToken = va_arg(ap, Token*); assert( bArgList==0 ); if( pToken && pToken->n ){ sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n); } length = width = 0; break; } case etSRCLIST: { SrcList *pSrc; int k; struct SrcList_item *pItem; if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return; pSrc = va_arg(ap, SrcList*); k = va_arg(ap, int); pItem = &pSrc->a[k]; assert( bArgList==0 ); assert( k>=0 && k<pSrc->nSrc ); if( pItem->zDatabase ){ sqlite3_str_appendall(pAccum, pItem->zDatabase); sqlite3_str_append(pAccum, ".", 1); } sqlite3_str_appendall(pAccum, pItem->zName); length = width = 0; break; } default: { assert( xtype==etINVALID ); return; } }/* End switch over the format type */ /* ** The text of the conversion is pointed to by "bufpt" and is ** "length" characters long. The field width is "width". Do ** the output. Both length and width are in bytes, not characters, ** at this point. If the "!" flag was present on string conversions ** indicating that width and precision should be expressed in characters, ** then the values have been translated prior to reaching this point. */ width -= length; if( width>0 ){ if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); sqlite3_str_append(pAccum, bufpt, length); if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' '); }else{ sqlite3_str_append(pAccum, bufpt, length); } if( zExtra ){ sqlite3DbFree(pAccum->db, zExtra); zExtra = 0; } }/* End for loop over the format string */ } /* End of function */ /* ** Enlarge the memory allocation on a StrAccum object so that it is ** able to accept at least N more bytes of text. ** ** Return the number of bytes of text that StrAccum is able to accept ** after the attempted enlargement. The value returned might be zero. */ static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ char *zNew; assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ if( p->accError ){ testcase(p->accError==SQLITE_TOOBIG); testcase(p->accError==SQLITE_NOMEM); return 0; } if( p->mxAlloc==0 ){ N = p->nAlloc - p->nChar - 1; setStrAccumError(p, SQLITE_TOOBIG); return N; }else{ char *zOld = isMalloced(p) ? p->zText : 0; i64 szNew = p->nChar; szNew += N + 1; if( szNew+p->nChar<=p->mxAlloc ){ /* Force exponential buffer size growth as long as it does not overflow, ** to avoid having to call this routine too often */ szNew += p->nChar; } if( szNew > p->mxAlloc ){ sqlite3_str_reset(p); setStrAccumError(p, SQLITE_TOOBIG); return 0; }else{ p->nAlloc = (int)szNew; } if( p->db ){ zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); }else{ zNew = sqlite3_realloc64(zOld, p->nAlloc); } if( zNew ){ assert( p->zText!=0 || p->nChar==0 ); if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); p->zText = zNew; p->nAlloc = sqlite3DbMallocSize(p->db, zNew); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ sqlite3_str_reset(p); setStrAccumError(p, SQLITE_NOMEM); return 0; } } return N; } /* ** Append N copies of character c to the given string buffer. */ SQLITE_API void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){ testcase( p->nChar + (i64)N > 0x7fffffff ); if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ return; } while( (N--)>0 ) p->zText[p->nChar++] = c; } /* ** The StrAccum "p" is not large enough to accept N new bytes of z[]. ** So enlarge if first, then do the append. ** ** This is a helper routine to sqlite3_str_append() that does special-case ** work (enlarging the buffer) using tail recursion, so that the ** sqlite3_str_append() routine can use fast calling semantics. */ static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){ N = sqlite3StrAccumEnlarge(p, N); if( N>0 ){ memcpy(&p->zText[p->nChar], z, N); p->nChar += N; } } /* ** Append N bytes of text from z to the StrAccum object. Increase the ** size of the memory allocation for StrAccum if necessary. */ SQLITE_API void sqlite3_str_append(sqlite3_str *p, const char *z, int N){ assert( z!=0 || N==0 ); assert( p->zText!=0 || p->nChar==0 || p->accError ); assert( N>=0 ); assert( p->accError==0 || p->nAlloc==0 ); if( p->nChar+N >= p->nAlloc ){ enlargeAndAppend(p,z,N); }else if( N ){ assert( p->zText ); p->nChar += N; memcpy(&p->zText[p->nChar-N], z, N); } } /* ** Append the complete text of zero-terminated string z[] to the p string. */ SQLITE_API void sqlite3_str_appendall(sqlite3_str *p, const char *z){ sqlite3_str_append(p, z, sqlite3Strlen30(z)); } /* ** Finish off a string by making sure it is zero-terminated. ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){ char *zText; assert( p->mxAlloc>0 && !isMalloced(p) ); zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); if( zText ){ memcpy(zText, p->zText, p->nChar+1); p->printfFlags |= SQLITE_PRINTF_MALLOCED; }else{ setStrAccumError(p, SQLITE_NOMEM); } p->zText = zText; return zText; } SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ p->zText[p->nChar] = 0; if( p->mxAlloc>0 && !isMalloced(p) ){ return strAccumFinishRealloc(p); } } return p->zText; } /* Finalize a string created using sqlite3_str_new(). */ SQLITE_API char *sqlite3_str_finish(sqlite3_str *p){ char *z; if( p ){ z = sqlite3StrAccumFinish(p); sqlite3_free(p); }else{ z = 0; } return z; } /* Return any error code associated with p */ SQLITE_API int sqlite3_str_errcode(sqlite3_str *p){ return p ? p->accError : SQLITE_NOMEM; } /* Return the current length of p in bytes */ SQLITE_API int sqlite3_str_length(sqlite3_str *p){ return p ? p->nChar : 0; } /* Return the current value for p */ SQLITE_API char *sqlite3_str_value(sqlite3_str *p){ if( p==0 || p->nChar==0 ) return 0; p->zText[p->nChar] = 0; return p->zText; } /* ** Reset an StrAccum string. Reclaim all malloced memory. */ SQLITE_API void sqlite3_str_reset(StrAccum *p){ if( isMalloced(p) ){ sqlite3DbFree(p->db, p->zText); p->printfFlags &= ~SQLITE_PRINTF_MALLOCED; } p->nAlloc = 0; p->nChar = 0; p->zText = 0; } /* ** Initialize a string accumulator. ** ** p: The accumulator to be initialized. |
︙ | ︙ | |||
27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 | p->db = db; p->nAlloc = n; p->mxAlloc = mx; p->nChar = 0; p->accError = 0; p->printfFlags = 0; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; assert( db!=0 ); sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); acc.printfFlags = SQLITE_PRINTF_INTERNAL; | > > > > > > > > > > | | | 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 | p->db = db; p->nAlloc = n; p->mxAlloc = mx; p->nChar = 0; p->accError = 0; p->printfFlags = 0; } /* Allocate and initialize a new dynamic string object */ SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3 *db){ sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); if( p ){ sqlite3StrAccumInit(p, 0, 0, 0, db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); } return p; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; assert( db!=0 ); sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); acc.printfFlags = SQLITE_PRINTF_INTERNAL; sqlite3_str_vappendf(&acc, zFormat, ap); z = sqlite3StrAccumFinish(&acc); if( acc.accError==SQLITE_NOMEM ){ sqlite3OomFault(db); } return z; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal |
︙ | ︙ | |||
27493 27494 27495 27496 27497 27498 27499 | return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); | | | 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 | return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); sqlite3_str_vappendf(&acc, zFormat, ap); z = sqlite3StrAccumFinish(&acc); return z; } /* ** Print into memory obtained from sqlite3_malloc()(). Omit the internal ** %-conversion extensions. |
︙ | ︙ | |||
27538 27539 27540 27541 27542 27543 27544 | if( zBuf==0 || zFormat==0 ) { (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); | | | 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 | if( zBuf==0 || zFormat==0 ) { (void)SQLITE_MISUSE_BKPT; if( zBuf ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, 0, zBuf, n, 0); sqlite3_str_vappendf(&acc, zFormat, ap); zBuf[acc.nChar] = 0; return zBuf; } SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ char *z; va_list ap; va_start(ap,zFormat); |
︙ | ︙ | |||
27560 27561 27562 27563 27564 27565 27566 | ** We house it in a separate routine from sqlite3_log() to avoid using ** stack space on small-stack systems when logging is disabled. ** ** sqlite3_log() must render into a static buffer. It cannot dynamically ** allocate memory because it might be called while the memory allocator ** mutex is held. ** | | | | 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 | ** We house it in a separate routine from sqlite3_log() to avoid using ** stack space on small-stack systems when logging is disabled. ** ** sqlite3_log() must render into a static buffer. It cannot dynamically ** allocate memory because it might be called while the memory allocator ** mutex is held. ** ** sqlite3_str_vappendf() might ask for *temporary* memory allocations for ** certain format characters (%q) or for very large precisions or widths. ** Care must be taken that any sqlite3_log() calls that occur while the ** memory mutex is held do not use these mechanisms. */ static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){ StrAccum acc; /* String accumulator */ char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */ sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0); sqlite3_str_vappendf(&acc, zFormat, ap); sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode, sqlite3StrAccumFinish(&acc)); } /* ** Format and write a message to the log if logging is enabled. */ |
︙ | ︙ | |||
27599 27600 27601 27602 27603 27604 27605 | */ SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){ va_list ap; StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); va_start(ap,zFormat); | | | | | | 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 | */ SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){ va_list ap; StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); va_start(ap,zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); sqlite3StrAccumFinish(&acc); #ifdef SQLITE_OS_TRACE_PROC { extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); } #else fprintf(stdout,"%s", zBuf); fflush(stdout); #endif } #endif /* ** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. */ SQLITE_API void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ va_list ap; va_start(ap,zFormat); sqlite3_str_vappendf(p, zFormat, ap); va_end(ap); } /************** End of printf.c **********************************************/ /************** Begin file treeview.c ****************************************/ /* ** 2015-06-08 |
︙ | ︙ | |||
27688 27689 27690 27691 27692 27693 27694 | va_list ap; int i; StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); if( p ){ for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){ | | | | | | 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 | va_list ap; int i; StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); if( p ){ for(i=0; i<p->iLevel && i<sizeof(p->bLine)-1; i++){ sqlite3_str_append(&acc, p->bLine[i] ? "| " : " ", 4); } sqlite3_str_append(&acc, p->bLine[i] ? "|-- " : "'-- ", 4); } if( zFormat!=0 ){ va_start(ap, zFormat); sqlite3_str_vappendf(&acc, zFormat, ap); va_end(ap); assert( acc.nChar>0 ); sqlite3_str_append(&acc, "\n", 1); } sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } /* |
︙ | ︙ | |||
27731 27732 27733 27734 27735 27736 27737 | if( pWith->nCte>0 ){ pView = sqlite3TreeViewPush(pView, 1); for(i=0; i<pWith->nCte; i++){ StrAccum x; char zLine[1000]; const struct Cte *pCte = &pWith->a[i]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); | | | | | | 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 | if( pWith->nCte>0 ){ pView = sqlite3TreeViewPush(pView, 1); for(i=0; i<pWith->nCte; i++){ StrAccum x; char zLine[1000]; const struct Cte *pCte = &pWith->a[i]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); sqlite3_str_appendf(&x, "%s", pCte->zName); if( pCte->pCols && pCte->pCols->nExpr>0 ){ char cSep = '('; int j; for(j=0; j<pCte->pCols->nExpr; j++){ sqlite3_str_appendf(&x, "%c%s", cSep, pCte->pCols->a[j].zName); cSep = ','; } sqlite3_str_appendf(&x, ")"); } sqlite3_str_appendf(&x, " AS"); sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, i<pWith->nCte-1); sqlite3TreeViewSelect(pView, pCte->pSelect, 0); sqlite3TreeViewPop(pView); } sqlite3TreeViewPop(pView); } |
︙ | ︙ | |||
27806 27807 27808 27809 27810 27811 27812 | pView = sqlite3TreeViewPush(pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; StrAccum x; char zLine[100]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); | | | | | | | | 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 | pView = sqlite3TreeViewPush(pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; StrAccum x; char zLine[100]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); sqlite3_str_appendf(&x, "{%d,*}", pItem->iCursor); if( pItem->zDatabase ){ sqlite3_str_appendf(&x, " %s.%s", pItem->zDatabase, pItem->zName); }else if( pItem->zName ){ sqlite3_str_appendf(&x, " %s", pItem->zName); } if( pItem->pTab ){ sqlite3_str_appendf(&x, " tabname=%Q", pItem->pTab->zName); } if( pItem->zAlias ){ sqlite3_str_appendf(&x, " (AS %s)", pItem->zAlias); } if( pItem->fg.jointype & JT_LEFT ){ sqlite3_str_appendf(&x, " LEFT-JOIN"); } sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); if( pItem->pSelect ){ sqlite3TreeViewSelect(pView, pItem->pSelect, 0); } if( pItem->fg.isTabFunc ){ |
︙ | ︙ | |||
69967 69968 69969 69970 69971 69972 69973 69974 69975 69976 69977 69978 69979 69980 | if( pFree ){ sqlite3PageFree(pFree); } return rc; } /* ** Insert a new record into the BTree. The content of the new record ** is described by the pX object. The pCur cursor is used only to ** define what table the record should be inserted into, and is left ** pointing at a random location. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 70139 70140 70141 70142 70143 70144 70145 70146 70147 70148 70149 70150 70151 70152 70153 70154 70155 70156 70157 70158 70159 70160 70161 70162 70163 70164 70165 70166 70167 70168 70169 70170 70171 70172 70173 70174 70175 70176 70177 70178 70179 70180 70181 70182 70183 70184 70185 70186 70187 70188 70189 70190 70191 70192 70193 70194 70195 70196 70197 70198 70199 70200 70201 70202 70203 70204 70205 70206 70207 70208 70209 70210 70211 70212 70213 70214 70215 70216 70217 70218 70219 70220 70221 70222 70223 70224 70225 70226 70227 70228 70229 70230 70231 70232 70233 70234 70235 70236 70237 70238 70239 70240 | if( pFree ){ sqlite3PageFree(pFree); } return rc; } /* Overwrite content from pX into pDest. Only do the write if the ** content is different from what is already there. */ static int btreeOverwriteContent( MemPage *pPage, /* MemPage on which writing will occur */ u8 *pDest, /* Pointer to the place to start writing */ const BtreePayload *pX, /* Source of data to write */ int iOffset, /* Offset of first byte to write */ int iAmt /* Number of bytes to be written */ ){ int nData = pX->nData - iOffset; if( nData<=0 ){ /* Overwritting with zeros */ int i; for(i=0; i<iAmt && pDest[i]==0; i++){} if( i<iAmt ){ int rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ) return rc; memset(pDest + i, 0, iAmt - i); } }else{ if( nData<iAmt ){ /* Mixed read data and zeros at the end. Make a recursive call ** to write the zeros then fall through to write the real data */ int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, iAmt-nData); if( rc ) return rc; iAmt = nData; } if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ int rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ) return rc; memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt); } } return SQLITE_OK; } /* ** Overwrite the cell that cursor pCur is pointing to with fresh content ** contained in pX. */ static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ int iOffset; /* Next byte of pX->pData to write */ int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ int rc; /* Return code */ MemPage *pPage = pCur->pPage; /* Page being written */ BtShared *pBt; /* Btree */ Pgno ovflPgno; /* Next overflow page to write */ u32 ovflPageSize; /* Size to write on overflow page */ if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){ return SQLITE_CORRUPT_BKPT; } /* Overwrite the local portion first */ rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 0, pCur->info.nLocal); if( rc ) return rc; if( pCur->info.nLocal==nTotal ) return SQLITE_OK; /* Now overwrite the overflow pages */ iOffset = pCur->info.nLocal; assert( nTotal>=0 ); assert( iOffset>=0 ); ovflPgno = get4byte(pCur->info.pPayload + iOffset); pBt = pPage->pBt; ovflPageSize = pBt->usableSize - 4; do{ rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); if( rc ) return rc; if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){ rc = SQLITE_CORRUPT_BKPT; }else{ if( iOffset+ovflPageSize<(u32)nTotal ){ ovflPgno = get4byte(pPage->aData); }else{ ovflPageSize = nTotal - iOffset; } rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, iOffset, ovflPageSize); } sqlite3PagerUnref(pPage->pDbPage); if( rc ) return rc; iOffset += ovflPageSize; }while( iOffset<nTotal ); return SQLITE_OK; } /* ** Insert a new record into the BTree. The content of the new record ** is described by the pX object. The pCur cursor is used only to ** define what table the record should be inserted into, and is left ** pointing at a random location. ** |
︙ | ︙ | |||
70057 70058 70059 70060 70061 70062 70063 | if( pCur->pKeyInfo==0 ){ assert( pX->pKey==0 ); /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing | | > > | > | > > | | | > > | > > > > > > > > > > | > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > | 70317 70318 70319 70320 70321 70322 70323 70324 70325 70326 70327 70328 70329 70330 70331 70332 70333 70334 70335 70336 70337 70338 70339 70340 70341 70342 70343 70344 70345 70346 70347 70348 70349 70350 70351 70352 70353 70354 70355 70356 70357 70358 70359 70360 70361 70362 70363 70364 70365 70366 70367 70368 70369 70370 70371 70372 70373 70374 70375 70376 70377 70378 70379 70380 70381 70382 70383 70384 70385 70386 70387 70388 70389 70390 70391 70392 70393 70394 70395 70396 70397 70398 70399 70400 70401 70402 70403 70404 70405 70406 70407 70408 70409 70410 | if( pCur->pKeyInfo==0 ){ assert( pX->pKey==0 ); /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing ** to a row with the same key as the new entry being inserted. */ #ifdef SQLITE_DEBUG if( flags & BTREE_SAVEPOSITION ){ assert( pCur->curFlags & BTCF_ValidNKey ); assert( pX->nKey==pCur->info.nKey ); assert( pCur->info.nSize!=0 ); assert( loc==0 ); } #endif /* On the other hand, BTREE_SAVEPOSITION==0 does not imply ** that the cursor is not pointing to a row to be overwritten. ** So do a complete check. */ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ /* The cursor is pointing to the entry that is to be ** overwritten */ assert( pX->nData>=0 && pX->nZero>=0 ); if( pCur->info.nSize!=0 && pCur->info.nPayload==(u32)pX->nData+pX->nZero ){ /* New entry is the same size as the old. Do an overwrite */ return btreeOverwriteCell(pCur, pX); } assert( loc==0 ); }else if( loc==0 ){ /* The cursor is *not* pointing to the cell to be overwritten, nor ** to an adjacent cell. Move the cursor so that it is pointing either ** to the cell to be overwritten or an adjacent cell. */ rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); if( rc ) return rc; } }else{ /* This is an index or a WITHOUT ROWID table */ /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing ** to a row with the same key as the new entry being inserted. */ assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); /* If the cursor is not already pointing either to the cell to be ** overwritten, or if a new cell is being inserted, if the cursor is ** not pointing to an immediately adjacent cell, then move the cursor ** so that it does. */ if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ if( pX->nMem ){ UnpackedRecord r; r.pKeyInfo = pCur->pKeyInfo; r.aMem = pX->aMem; r.nField = pX->nMem; r.default_rc = 0; r.errCode = 0; r.r1 = 0; r.r2 = 0; r.eqSeen = 0; rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); }else{ rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); } if( rc ) return rc; } /* If the cursor is currently pointing to an entry to be overwritten ** and the new content is the same as as the old, then use the ** overwrite optimization. */ if( loc==0 ){ getCellInfo(pCur); if( pCur->info.nKey==pX->nKey ){ BtreePayload x2; x2.pData = pX->pKey; x2.nData = pX->nKey; x2.nZero = 0; return btreeOverwriteCell(pCur, &x2); } } } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); pPage = pCur->pPage; assert( pPage->intKey || pX->nKey>=0 ); assert( pPage->leaf || !pPage->intKey ); |
︙ | ︙ | |||
70924 70925 70926 70927 70928 70929 70930 | ){ va_list ap; if( !pCheck->mxErr ) return; pCheck->mxErr--; pCheck->nErr++; va_start(ap, zFormat); if( pCheck->errMsg.nChar ){ | | | | | | 71235 71236 71237 71238 71239 71240 71241 71242 71243 71244 71245 71246 71247 71248 71249 71250 71251 71252 71253 71254 71255 71256 | ){ va_list ap; if( !pCheck->mxErr ) return; pCheck->mxErr--; pCheck->nErr++; va_start(ap, zFormat); if( pCheck->errMsg.nChar ){ sqlite3_str_append(&pCheck->errMsg, "\n", 1); } if( pCheck->zPfx ){ sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); } sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); va_end(ap); if( pCheck->errMsg.accError==SQLITE_NOMEM ){ pCheck->mallocFailed = 1; } } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
︙ | ︙ | |||
71515 71516 71517 71518 71519 71520 71521 | /* Clean up and report errors. */ integrity_ck_cleanup: sqlite3PageFree(sCheck.heap); sqlite3_free(sCheck.aPgRef); if( sCheck.mallocFailed ){ | | | | 71826 71827 71828 71829 71830 71831 71832 71833 71834 71835 71836 71837 71838 71839 71840 71841 71842 71843 71844 | /* Clean up and report errors. */ integrity_ck_cleanup: sqlite3PageFree(sCheck.heap); sqlite3_free(sCheck.aPgRef); if( sCheck.mallocFailed ){ sqlite3_str_reset(&sCheck.errMsg); sCheck.nErr++; } *pnErr = sCheck.nErr; if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); /* Make sure this analysis did not leave any unref() pages. */ assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); sqlite3BtreeLeave(p); return sqlite3StrAccumFinish(&sCheck.errMsg); } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
︙ | ︙ | |||
75768 75769 75770 75771 75772 75773 75774 | ** Translate the P4.pExpr value for an OP_CursorHint opcode into text ** that can be displayed in the P4 column of EXPLAIN output. */ static void displayP4Expr(StrAccum *p, Expr *pExpr){ const char *zOp = 0; switch( pExpr->op ){ case TK_STRING: | | | | | | | | 76079 76080 76081 76082 76083 76084 76085 76086 76087 76088 76089 76090 76091 76092 76093 76094 76095 76096 76097 76098 76099 76100 76101 76102 76103 76104 76105 76106 76107 76108 76109 | ** Translate the P4.pExpr value for an OP_CursorHint opcode into text ** that can be displayed in the P4 column of EXPLAIN output. */ static void displayP4Expr(StrAccum *p, Expr *pExpr){ const char *zOp = 0; switch( pExpr->op ){ case TK_STRING: sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); break; case TK_INTEGER: sqlite3_str_appendf(p, "%d", pExpr->u.iValue); break; case TK_NULL: sqlite3_str_appendf(p, "NULL"); break; case TK_REGISTER: { sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); break; } case TK_COLUMN: { if( pExpr->iColumn<0 ){ sqlite3_str_appendf(p, "rowid"); }else{ sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); } break; } case TK_LT: zOp = "LT"; break; case TK_LE: zOp = "LE"; break; case TK_GT: zOp = "GT"; break; case TK_GE: zOp = "GE"; break; |
︙ | ︙ | |||
75816 75817 75818 75819 75820 75821 75822 | case TK_UPLUS: zOp = "PLUS"; break; case TK_BITNOT: zOp = "BITNOT"; break; case TK_NOT: zOp = "NOT"; break; case TK_ISNULL: zOp = "ISNULL"; break; case TK_NOTNULL: zOp = "NOTNULL"; break; default: | | | | | | > | | | | | | | | | | | | | | | | 76127 76128 76129 76130 76131 76132 76133 76134 76135 76136 76137 76138 76139 76140 76141 76142 76143 76144 76145 76146 76147 76148 76149 76150 76151 76152 76153 76154 76155 76156 76157 76158 76159 76160 76161 76162 76163 76164 76165 76166 76167 76168 76169 76170 76171 76172 76173 76174 76175 76176 76177 76178 76179 76180 76181 76182 76183 76184 76185 76186 76187 76188 76189 76190 76191 76192 76193 76194 76195 76196 76197 76198 76199 76200 76201 76202 76203 76204 76205 76206 76207 76208 76209 76210 76211 76212 76213 76214 76215 76216 76217 76218 76219 76220 76221 76222 76223 76224 76225 76226 76227 76228 76229 76230 76231 76232 76233 76234 76235 76236 76237 76238 76239 76240 76241 76242 76243 76244 76245 76246 76247 76248 76249 76250 76251 76252 76253 76254 76255 76256 76257 76258 76259 76260 76261 76262 76263 76264 | case TK_UPLUS: zOp = "PLUS"; break; case TK_BITNOT: zOp = "BITNOT"; break; case TK_NOT: zOp = "NOT"; break; case TK_ISNULL: zOp = "ISNULL"; break; case TK_NOTNULL: zOp = "NOTNULL"; break; default: sqlite3_str_appendf(p, "%s", "expr"); break; } if( zOp ){ sqlite3_str_appendf(p, "%s(", zOp); displayP4Expr(p, pExpr->pLeft); if( pExpr->pRight ){ sqlite3_str_append(p, ",", 1); displayP4Expr(p, pExpr->pRight); } sqlite3_str_append(p, ")", 1); } } #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ #if VDBE_DISPLAY_P4 /* ** Compute a string that describes the P4 parameter for an opcode. ** Use zTemp for any required temporary buffer space. */ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ char *zP4 = zTemp; StrAccum x; assert( nTemp>=20 ); sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); switch( pOp->p4type ){ case P4_KEYINFO: { int j; KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->aSortOrder!=0 ); sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); for(j=0; j<pKeyInfo->nKeyField; j++){ CollSeq *pColl = pKeyInfo->aColl[j]; const char *zColl = pColl ? pColl->zName : ""; if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; sqlite3_str_appendf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); } sqlite3_str_append(&x, ")", 1); break; } #ifdef SQLITE_ENABLE_CURSOR_HINTS case P4_EXPR: { displayP4Expr(&x, pOp->p4.pExpr); break; } #endif case P4_COLLSEQ: { CollSeq *pColl = pOp->p4.pColl; sqlite3_str_appendf(&x, "(%.20s)", pColl->zName); break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) case P4_FUNCCTX: { FuncDef *pDef = pOp->p4.pCtx->pFunc; sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); break; } #endif case P4_INT64: { sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_str_appendf(&x, "%d", pOp->p4.i); break; } case P4_REAL: { sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & MEM_Int ){ sqlite3_str_appendf(&x, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_str_appendf(&x, "%.16g", pMem->u.r); }else if( pMem->flags & MEM_Null ){ zP4 = "NULL"; }else{ assert( pMem->flags & MEM_Blob ); zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; sqlite3_str_appendf(&x, "vtab:%p", pVtab); break; } #endif case P4_INTARRAY: { int i; int *ai = pOp->p4.ai; int n = ai[0]; /* The first element of an INTARRAY is always the ** count of the number of elements to follow */ for(i=1; i<=n; i++){ sqlite3_str_appendf(&x, ",%d", ai[i]); } zTemp[0] = '['; sqlite3_str_append(&x, "]", 1); break; } case P4_SUBPROGRAM: { sqlite3_str_appendf(&x, "program"); break; } case P4_DYNBLOB: case P4_ADVANCE: { zTemp[0] = 0; break; } case P4_TABLE: { sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName); break; } default: { zP4 = pOp->p4.z; if( zP4==0 ){ zP4 = zTemp; zTemp[0] = 0; |
︙ | ︙ | |||
81351 81352 81353 81354 81355 81356 81357 | db = p->db; sqlite3StrAccumInit(&out, 0, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); if( db->nVdbeExec>1 ){ while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); | | | | | | 81663 81664 81665 81666 81667 81668 81669 81670 81671 81672 81673 81674 81675 81676 81677 81678 81679 81680 81681 81682 81683 81684 81685 81686 81687 | db = p->db; sqlite3StrAccumInit(&out, 0, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); if( db->nVdbeExec>1 ){ while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); sqlite3_str_append(&out, "-- ", 3); assert( (zRawSql - zStart) > 0 ); sqlite3_str_append(&out, zStart, (int)(zRawSql-zStart)); } }else if( p->nVar==0 ){ sqlite3_str_append(&out, zRawSql, sqlite3Strlen30(zRawSql)); }else{ while( zRawSql[0] ){ n = findNextHostParameter(zRawSql, &nToken); assert( n>0 ); sqlite3_str_append(&out, zRawSql, n); zRawSql += n; assert( zRawSql[0] || nToken==0 ); if( nToken==0 ) break; if( zRawSql[0]=='?' ){ if( nToken>1 ){ assert( sqlite3Isdigit(zRawSql[1]) ); sqlite3GetInt32(&zRawSql[1], &idx); |
︙ | ︙ | |||
81387 81388 81389 81390 81391 81392 81393 | assert( idx>0 ); } zRawSql += nToken; nextIndex = idx + 1; assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; if( pVar->flags & MEM_Null ){ | | | | | | | | | | | | | | 81699 81700 81701 81702 81703 81704 81705 81706 81707 81708 81709 81710 81711 81712 81713 81714 81715 81716 81717 81718 81719 81720 81721 81722 81723 81724 81725 81726 81727 81728 81729 81730 81731 81732 81733 81734 81735 81736 81737 81738 81739 81740 81741 81742 81743 81744 81745 81746 81747 81748 81749 81750 81751 81752 81753 81754 81755 81756 81757 81758 81759 81760 81761 81762 81763 81764 81765 81766 81767 81768 81769 81770 81771 | assert( idx>0 ); } zRawSql += nToken; nextIndex = idx + 1; assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; if( pVar->flags & MEM_Null ){ sqlite3_str_append(&out, "NULL", 4); }else if( pVar->flags & MEM_Int ){ sqlite3_str_appendf(&out, "%lld", pVar->u.i); }else if( pVar->flags & MEM_Real ){ sqlite3_str_appendf(&out, "%!.15g", pVar->u.r); }else if( pVar->flags & MEM_Str ){ int nOut; /* Number of bytes of the string text to include in output */ #ifndef SQLITE_OMIT_UTF16 u8 enc = ENC(db); if( enc!=SQLITE_UTF8 ){ memset(&utf8, 0, sizeof(utf8)); utf8.db = db; sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC); if( SQLITE_NOMEM==sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8) ){ out.accError = SQLITE_NOMEM; out.nAlloc = 0; } pVar = &utf8; } #endif nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut>SQLITE_TRACE_SIZE_LIMIT ){ nOut = SQLITE_TRACE_SIZE_LIMIT; while( nOut<pVar->n && (pVar->z[nOut]&0xc0)==0x80 ){ nOut++; } } #endif sqlite3_str_appendf(&out, "'%.*q'", nOut, pVar->z); #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut<pVar->n ){ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut); } #endif #ifndef SQLITE_OMIT_UTF16 if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8); #endif }else if( pVar->flags & MEM_Zero ){ sqlite3_str_appendf(&out, "zeroblob(%d)", pVar->u.nZero); }else{ int nOut; /* Number of bytes of the blob to include in output */ assert( pVar->flags & MEM_Blob ); sqlite3_str_append(&out, "x'", 2); nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT; #endif for(i=0; i<nOut; i++){ sqlite3_str_appendf(&out, "%02x", pVar->z[i]&0xff); } sqlite3_str_append(&out, "'", 1); #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut<pVar->n ){ sqlite3_str_appendf(&out, "/*+%d bytes*/", pVar->n-nOut); } #endif } } } if( out.accError ) sqlite3_str_reset(&out); return sqlite3StrAccumFinish(&out); } #endif /* #ifndef SQLITE_OMIT_TRACE */ /************** End of vdbetrace.c *******************************************/ /************** Begin file vdbe.c ********************************************/ |
︙ | ︙ | |||
107714 107715 107716 107717 107718 107719 107720 | char *zErr; int j; StrAccum errMsg; Table *pTab = pIdx->pTable; sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); if( pIdx->aColExpr ){ | | | | | | | 108026 108027 108028 108029 108030 108031 108032 108033 108034 108035 108036 108037 108038 108039 108040 108041 108042 108043 108044 108045 108046 108047 108048 108049 | char *zErr; int j; StrAccum errMsg; Table *pTab = pIdx->pTable; sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); if( pIdx->aColExpr ){ sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); }else{ for(j=0; j<pIdx->nKeyCol; j++){ char *zCol; assert( pIdx->aiColumn[j]>=0 ); zCol = pTab->aCol[pIdx->aiColumn[j]].zName; if( j ) sqlite3_str_append(&errMsg, ", ", 2); sqlite3_str_appendall(&errMsg, pTab->zName); sqlite3_str_append(&errMsg, ".", 1); sqlite3_str_appendall(&errMsg, zCol); } } zErr = sqlite3StrAccumFinish(&errMsg); sqlite3HaltConstraint(pParse, IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY : SQLITE_CONSTRAINT_UNIQUE, onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); |
︙ | ︙ | |||
109693 109694 109695 109696 109697 109698 109699 | if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){ x.nArg = argc-1; x.nUsed = 0; x.apArg = argv+1; sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); str.printfFlags = SQLITE_PRINTF_SQLFUNC; | | | 110005 110006 110007 110008 110009 110010 110011 110012 110013 110014 110015 110016 110017 110018 110019 | if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){ x.nArg = argc-1; x.nUsed = 0; x.apArg = argv+1; sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); str.printfFlags = SQLITE_PRINTF_SQLFUNC; sqlite3_str_appendf(&str, zFormat, &x); n = str.nChar; sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n, SQLITE_DYNAMIC); } } /* |
︙ | ︙ | |||
111096 111097 111098 111099 111100 111101 111102 | if( argc==2 ){ zSep = (char*)sqlite3_value_text(argv[1]); nSep = sqlite3_value_bytes(argv[1]); }else{ zSep = ","; nSep = 1; } | | | | | | 111408 111409 111410 111411 111412 111413 111414 111415 111416 111417 111418 111419 111420 111421 111422 111423 111424 111425 111426 111427 111428 111429 111430 111431 111432 111433 111434 111435 | if( argc==2 ){ zSep = (char*)sqlite3_value_text(argv[1]); nSep = sqlite3_value_bytes(argv[1]); }else{ zSep = ","; nSep = 1; } if( zSep ) sqlite3_str_append(pAccum, zSep, nSep); } zVal = (char*)sqlite3_value_text(argv[0]); nVal = sqlite3_value_bytes(argv[0]); if( zVal ) sqlite3_str_append(pAccum, zVal, nVal); } } static void groupConcatFinalize(sqlite3_context *context){ StrAccum *pAccum; pAccum = sqlite3_aggregate_context(context, 0); if( pAccum ){ if( pAccum->accError==SQLITE_TOOBIG ){ sqlite3_result_error_toobig(context); }else if( pAccum->accError==SQLITE_NOMEM ){ sqlite3_result_error_nomem(context); }else{ sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, sqlite3_free); } } } |
︙ | ︙ | |||
115671 115672 115673 115674 115675 115676 115677 115678 115679 115680 115681 115682 115683 115684 | sqlite3_stmt**,const void**); int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*)); void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*)); void *(*value_pointer)(sqlite3_value*,const char*); int (*vtab_nochange)(sqlite3_context*); int (*value_nochange)(sqlite3_value*); const char *(*vtab_collation)(sqlite3_index_info*,int); }; /* ** This is the function signature used for all extension entry points. It ** is also defined in the file "loadext.c". */ typedef int (*sqlite3_loadext_entry)( | > > > > > > > > > > > > > > > | 115983 115984 115985 115986 115987 115988 115989 115990 115991 115992 115993 115994 115995 115996 115997 115998 115999 116000 116001 116002 116003 116004 116005 116006 116007 116008 116009 116010 116011 | sqlite3_stmt**,const void**); int (*bind_pointer)(sqlite3_stmt*,int,void*,const char*,void(*)(void*)); void (*result_pointer)(sqlite3_context*,void*,const char*,void(*)(void*)); void *(*value_pointer)(sqlite3_value*,const char*); int (*vtab_nochange)(sqlite3_context*); int (*value_nochange)(sqlite3_value*); const char *(*vtab_collation)(sqlite3_index_info*,int); /* Version 3.24.0 and later */ int (*keyword_count)(void); int (*keyword_name)(int,const char**,int*); int (*keyword_check)(const char*,int); sqlite3_str *(*str_new)(sqlite3*); char *(*str_finish)(sqlite3_str*); void (*str_appendf)(sqlite3_str*, const char *zFormat, ...); void (*str_vappendf)(sqlite3_str*, const char *zFormat, va_list); void (*str_append)(sqlite3_str*, const char *zIn, int N); void (*str_appendall)(sqlite3_str*, const char *zIn); void (*str_appendchar)(sqlite3_str*, int N, char C); void (*str_reset)(sqlite3_str*); int (*str_errcode)(sqlite3_str*); int (*str_length)(sqlite3_str*); char *(*str_value)(sqlite3_str*); }; /* ** This is the function signature used for all extension entry points. It ** is also defined in the file "loadext.c". */ typedef int (*sqlite3_loadext_entry)( |
︙ | ︙ | |||
115941 115942 115943 115944 115945 115946 115947 115948 115949 115950 115951 115952 115953 115954 | #define sqlite3_bind_pointer sqlite3_api->bind_pointer #define sqlite3_result_pointer sqlite3_api->result_pointer #define sqlite3_value_pointer sqlite3_api->value_pointer /* Version 3.22.0 and later */ #define sqlite3_vtab_nochange sqlite3_api->vtab_nochange #define sqlite3_value_nochange sqlite3_api->value_nochange #define sqlite3_vtab_collation sqlite3_api->vtab_collation #endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; | > > > > > > > > > > > > > > > | 116268 116269 116270 116271 116272 116273 116274 116275 116276 116277 116278 116279 116280 116281 116282 116283 116284 116285 116286 116287 116288 116289 116290 116291 116292 116293 116294 116295 116296 | #define sqlite3_bind_pointer sqlite3_api->bind_pointer #define sqlite3_result_pointer sqlite3_api->result_pointer #define sqlite3_value_pointer sqlite3_api->value_pointer /* Version 3.22.0 and later */ #define sqlite3_vtab_nochange sqlite3_api->vtab_nochange #define sqlite3_value_nochange sqlite3_api->value_nochange #define sqlite3_vtab_collation sqlite3_api->vtab_collation /* Version 3.24.0 and later */ #define sqlite3_keyword_count sqlite3_api->keyword_count #define sqlite3_keyword_name sqlite3_api->keyword_name #define sqlite3_keyword_check sqlite3_api->keyword_check #define sqlite3_str_new sqlite3_api->str_new #define sqlite3_str_finish sqlite3_api->str_finish #define sqlite3_str_appendf sqlite3_api->str_appendf #define sqlite3_str_vappendf sqlite3_api->str_vappendf #define sqlite3_str_append sqlite3_api->str_append #define sqlite3_str_appendall sqlite3_api->str_appendall #define sqlite3_str_appendchar sqlite3_api->str_appendchar #define sqlite3_str_reset sqlite3_api->str_reset #define sqlite3_str_errcode sqlite3_api->str_errcode #define sqlite3_str_length sqlite3_api->str_length #define sqlite3_str_value sqlite3_api->str_value #endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; |
︙ | ︙ | |||
116379 116380 116381 116382 116383 116384 116385 | sqlite3_prepare16_v3, sqlite3_bind_pointer, sqlite3_result_pointer, sqlite3_value_pointer, /* Version 3.22.0 and later */ sqlite3_vtab_nochange, sqlite3_value_nochange, | | > > > > > > > > > > > > > > > | 116721 116722 116723 116724 116725 116726 116727 116728 116729 116730 116731 116732 116733 116734 116735 116736 116737 116738 116739 116740 116741 116742 116743 116744 116745 116746 116747 116748 116749 116750 | sqlite3_prepare16_v3, sqlite3_bind_pointer, sqlite3_result_pointer, sqlite3_value_pointer, /* Version 3.22.0 and later */ sqlite3_vtab_nochange, sqlite3_value_nochange, sqlite3_vtab_collation, /* Version 3.24.0 and later */ sqlite3_keyword_count, sqlite3_keyword_name, sqlite3_keyword_check, sqlite3_str_new, sqlite3_str_finish, sqlite3_str_appendf, sqlite3_str_vappendf, sqlite3_str_append, sqlite3_str_appendall, sqlite3_str_appendchar, sqlite3_str_reset, sqlite3_str_errcode, sqlite3_str_length, sqlite3_str_value }; /* ** Attempt to load an SQLite extension library contained in the file ** zFile. The entry point is zProc. zProc may be 0 in which case a ** default entry point name (sqlite3_extension_init) is used. Use ** of the default name is recommended. |
︙ | ︙ | |||
116445 116446 116447 116448 116449 116450 116451 | zEntry = zProc ? zProc : "sqlite3_extension_init"; handle = sqlite3OsDlOpen(pVfs, zFile); #if SQLITE_OS_UNIX || SQLITE_OS_WIN for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){ char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]); | < < | | 116802 116803 116804 116805 116806 116807 116808 116809 116810 116811 116812 116813 116814 116815 116816 116817 | zEntry = zProc ? zProc : "sqlite3_extension_init"; handle = sqlite3OsDlOpen(pVfs, zFile); #if SQLITE_OS_UNIX || SQLITE_OS_WIN for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){ char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]); if( zAltFile==0 ) return SQLITE_NOMEM_BKPT; handle = sqlite3OsDlOpen(pVfs, zAltFile); sqlite3_free(zAltFile); } #endif if( handle==0 ){ if( pzErrMsg ){ *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg); if( zErrmsg ){ |
︙ | ︙ | |||
119620 119621 119622 119623 119624 119625 119626 | char cSep = '('; StrAccum acc; char zBuf[200]; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); | | | | | | | | 119975 119976 119977 119978 119979 119980 119981 119982 119983 119984 119985 119986 119987 119988 119989 119990 119991 119992 119993 119994 119995 119996 119997 119998 119999 120000 120001 120002 120003 120004 120005 120006 120007 120008 | char cSep = '('; StrAccum acc; char zBuf[200]; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); sqlite3_str_appendall(&acc, "CREATE TABLE x"); for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){ sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]); cSep = ','; } if( i==0 ){ sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName); cSep = ','; i++; } j = 0; if( pPragma->mPragFlg & PragFlg_Result1 ){ sqlite3_str_appendall(&acc, ",arg HIDDEN"); j++; } if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ sqlite3_str_appendall(&acc, ",schema HIDDEN"); j++; } sqlite3_str_append(&acc, ")", 1); sqlite3StrAccumFinish(&acc); assert( strlen(zBuf) < sizeof(zBuf)-1 ); rc = sqlite3_declare_vtab(db, zBuf); if( rc==SQLITE_OK ){ pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); if( pTab==0 ){ rc = SQLITE_NOMEM; |
︙ | ︙ | |||
119791 119792 119793 119794 119795 119796 119797 | pCsr->azArg[j] = sqlite3_mprintf("%s", zText); if( pCsr->azArg[j]==0 ){ return SQLITE_NOMEM; } } } sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); | | | | | | 120146 120147 120148 120149 120150 120151 120152 120153 120154 120155 120156 120157 120158 120159 120160 120161 120162 120163 120164 120165 120166 | pCsr->azArg[j] = sqlite3_mprintf("%s", zText); if( pCsr->azArg[j]==0 ){ return SQLITE_NOMEM; } } } sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); sqlite3_str_appendall(&acc, "PRAGMA "); if( pCsr->azArg[1] ){ sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]); } sqlite3_str_appendall(&acc, pTab->pName->zName); if( pCsr->azArg[0] ){ sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]); } zSql = sqlite3StrAccumFinish(&acc); if( zSql==0 ) return SQLITE_NOMEM; rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ){ pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); |
︙ | ︙ | |||
121431 121432 121433 121434 121435 121436 121437 | ** (1) The data to be sorted has already been packed into a Record ** by a prior OP_MakeRecord. In this case nData==1 and regData ** will be completely unrelated to regOrigData. ** (2) All output columns are included in the sort record. In that ** case regData==regOrigData. ** (3) Some output columns are omitted from the sort record due to ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the | | > | | | 121786 121787 121788 121789 121790 121791 121792 121793 121794 121795 121796 121797 121798 121799 121800 121801 121802 121803 | ** (1) The data to be sorted has already been packed into a Record ** by a prior OP_MakeRecord. In this case nData==1 and regData ** will be completely unrelated to regOrigData. ** (2) All output columns are included in the sort record. In that ** case regData==regOrigData. ** (3) Some output columns are omitted from the sort record due to ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the ** SQLITE_ECEL_OMITREF optimization, or due to the ** SortCtx.pDeferredRowLoad optimiation. In any of these cases ** regOrigData is 0 to prevent this routine from trying to copy ** values that might not yet exist. */ assert( nData==1 || regData==regOrigData || regOrigData==0 ); if( nPrefixReg ){ assert( nPrefixReg==nExpr+bSeq ); regBase = regData - nPrefixReg; }else{ |
︙ | ︙ | |||
121814 121815 121816 121817 121818 121819 121820 121821 121822 121823 121824 121825 121826 121827 | if( p->iLimit && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 && nPrefixReg>0 ){ assert( pSort!=0 ); assert( hasDistinct==0 ); pSort->pDeferredRowLoad = &sRowLoadInfo; }else{ innerLoopLoadRow(pParse, p, &sRowLoadInfo); } } /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row | > | 122170 122171 122172 122173 122174 122175 122176 122177 122178 122179 122180 122181 122182 122183 122184 | if( p->iLimit && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 && nPrefixReg>0 ){ assert( pSort!=0 ); assert( hasDistinct==0 ); pSort->pDeferredRowLoad = &sRowLoadInfo; regOrig = 0; }else{ innerLoopLoadRow(pParse, p, &sRowLoadInfo); } } /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row |
︙ | ︙ | |||
131817 131818 131819 131820 131821 131822 131823 | /* wherecode.c: */ #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ | < < | | 132174 132175 132176 132177 132178 132179 132180 132181 132182 132183 132184 132185 132186 132187 132188 132189 132190 132191 | /* wherecode.c: */ #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ); #else # define sqlite3WhereExplainOneScan(u,v,w,x) 0 #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS SQLITE_PRIVATE void sqlite3WhereAddScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ |
︙ | ︙ | |||
131942 131943 131944 131945 131946 131947 131948 | int iTerm, /* Zero-based index of first term. */ int bAnd, /* Non-zero to append " AND " */ const char *zOp /* Name of the operator */ ){ int i; assert( nTerm>=1 ); | | | | | | | | | | | | 132297 132298 132299 132300 132301 132302 132303 132304 132305 132306 132307 132308 132309 132310 132311 132312 132313 132314 132315 132316 132317 132318 132319 132320 132321 132322 132323 132324 132325 132326 132327 | int iTerm, /* Zero-based index of first term. */ int bAnd, /* Non-zero to append " AND " */ const char *zOp /* Name of the operator */ ){ int i; assert( nTerm>=1 ); if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); for(i=0; i<nTerm; i++){ if( i ) sqlite3_str_append(pStr, ",", 1); sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); } if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); sqlite3_str_append(pStr, zOp, 1); if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); for(i=0; i<nTerm; i++){ if( i ) sqlite3_str_append(pStr, ",", 1); sqlite3_str_append(pStr, "?", 1); } if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); } /* ** Argument pLevel describes a strategy for scanning table pTab. This ** function appends text to pStr that describes the subset of table ** rows scanned by the strategy in the form of an SQL expression. ** |
︙ | ︙ | |||
131982 131983 131984 131985 131986 131987 131988 | static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->nSkip; int i, j; if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; | | | | | < < | 132337 132338 132339 132340 132341 132342 132343 132344 132345 132346 132347 132348 132349 132350 132351 132352 132353 132354 132355 132356 132357 132358 132359 132360 132361 132362 132363 132364 132365 132366 132367 132368 132369 132370 132371 132372 132373 132374 132375 132376 132377 132378 132379 132380 132381 | static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->nSkip; int i, j; if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; sqlite3_str_append(pStr, " (", 2); for(i=0; i<nEq; i++){ const char *z = explainIndexColumnName(pIndex, i); if( i ) sqlite3_str_append(pStr, " AND ", 5); sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); } j = i; if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); i = 1; } if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); } sqlite3_str_append(pStr, ")", 1); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode ** is added to the output to describe the table scan strategy in pLevel. ** ** If an OP_Explain opcode is added to the VM, its address is returned. ** Otherwise, if no OP_Explain is coded, zero is returned. */ SQLITE_PRIVATE int sqlite3WhereExplainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ){ int ret = 0; #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( sqlite3ParseToplevel(pParse)->explain==2 ) #endif { |
︙ | ︙ | |||
132041 132042 132043 132044 132045 132046 132047 | if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); | | | | | | 132394 132395 132396 132397 132398 132399 132400 132401 132402 132403 132404 132405 132406 132407 132408 132409 132410 132411 132412 132413 132414 132415 132416 | if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN"); if( pItem->pSelect ){ sqlite3_str_appendf(&str, " SUBQUERY 0x%p", pItem->pSelect); }else{ sqlite3_str_appendf(&str, " TABLE %s", pItem->zName); } if( pItem->zAlias ){ sqlite3_str_appendf(&str, " AS %s", pItem->zAlias); } if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ const char *zFmt = 0; Index *pIdx; assert( pLoop->u.btree.pIndex!=0 ); pIdx = pLoop->u.btree.pIndex; |
︙ | ︙ | |||
132072 132073 132074 132075 132076 132077 132078 | zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } if( zFmt ){ | | | > | | > | | | 132425 132426 132427 132428 132429 132430 132431 132432 132433 132434 132435 132436 132437 132438 132439 132440 132441 132442 132443 132444 132445 132446 132447 132448 132449 132450 132451 132452 132453 132454 132455 132456 132457 132458 132459 132460 132461 132462 132463 132464 132465 132466 132467 132468 132469 | zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } if( zFmt ){ sqlite3_str_append(&str, " USING ", 7); sqlite3_str_appendf(&str, zFmt, pIdx->zName); explainIndexRange(&str, pLoop); } }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ const char *zRangeOp; if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ zRangeOp = "="; }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ zRangeOp = ">? AND rowid<"; }else if( flags&WHERE_BTM_LIMIT ){ zRangeOp = ">"; }else{ assert( flags&WHERE_TOP_LIMIT); zRangeOp = "<"; } sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); } #endif #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS if( pLoop->nOut>=10 ){ sqlite3_str_appendf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3_str_append(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), pParse->addrExplain, 0, zMsg,P4_DYNAMIC); } return ret; |
︙ | ︙ | |||
133847 133848 133849 133850 133851 133852 133853 | WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, wctrlFlags, iCovCur); assert( pSubWInfo || pParse->nErr || db->mallocFailed ); if( pSubWInfo ){ WhereLoop *pSubLoop; int addrExplain = sqlite3WhereExplainOneScan( | | | 134202 134203 134204 134205 134206 134207 134208 134209 134210 134211 134212 134213 134214 134215 134216 | WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, wctrlFlags, iCovCur); assert( pSubWInfo || pParse->nErr || db->mallocFailed ); if( pSubWInfo ){ WhereLoop *pSubLoop; int addrExplain = sqlite3WhereExplainOneScan( pParse, pOrTab, &pSubWInfo->a[0], 0 ); sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); /* This is the sub-WHERE clause body. First skip over ** duplicate rows from prior sub-WHERE clauses, and record the ** rowid (or PRIMARY KEY) for the current row so that the same ** row will be skipped in subsequent sub-WHERE clauses. |
︙ | ︙ | |||
140650 140651 140652 140653 140654 140655 140656 | if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if( db->mallocFailed ) goto whereBeginError; } #endif addrExplain = sqlite3WhereExplainOneScan( | | | 141005 141006 141007 141008 141009 141010 141011 141012 141013 141014 141015 141016 141017 141018 141019 | if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if( db->mallocFailed ) goto whereBeginError; } #endif addrExplain = sqlite3WhereExplainOneScan( pParse, pTabList, pLevel, wctrlFlags ); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); pWInfo->iContinue = pLevel->addrCont; if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); } |
︙ | ︙ | |||
206899 206900 206901 206902 206903 206904 206905 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); | | | 207254 207255 207256 207257 207258 207259 207260 207261 207262 207263 207264 207265 207266 207267 207268 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); sqlite3_result_text(pCtx, "fts5: 2018-05-14 00:41:12 d0f35739af3b226c8eef39676407293650cde551acef06fe8628fdd5b59bd66a", -1, SQLITE_TRANSIENT); } static int fts5Init(sqlite3 *db){ static const sqlite3_module fts5Mod = { /* iVersion */ 2, /* xCreate */ fts5CreateMethod, /* xConnect */ fts5ConnectMethod, |
︙ | ︙ | |||
211169 211170 211171 211172 211173 211174 211175 | #endif return rc; } #endif /* SQLITE_CORE */ #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */ /************** End of stmt.c ************************************************/ | | | | 211524 211525 211526 211527 211528 211529 211530 211531 211532 211533 211534 211535 211536 211537 | #endif return rc; } #endif /* SQLITE_CORE */ #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */ /************** End of stmt.c ************************************************/ #if __LINE__!=211531 #undef SQLITE_SOURCE_ID #define SQLITE_SOURCE_ID "2018-05-14 00:41:12 d0f35739af3b226c8eef39676407293650cde551acef06fe8628fdd5b59balt2" #endif /* Return the source-id for this library */ SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } /************************** End of sqlite3.c ******************************/ |
Changes to src/sqlite3.h.
︙ | ︙ | |||
121 122 123 124 125 126 127 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.24.0" #define SQLITE_VERSION_NUMBER 3024000 | | | 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.24.0" #define SQLITE_VERSION_NUMBER 3024000 #define SQLITE_SOURCE_ID "2018-05-14 00:41:12 d0f35739af3b226c8eef39676407293650cde551acef06fe8628fdd5b59bd66a" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
7109 7110 7111 7112 7113 7114 7115 | ** parsing ambiguity. For example, the statement ** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and ** creates a new table named "BEGIN" with three columns named ** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid ** using keywords as identifiers. Common techniques used to avoid keyword ** name collisions include: ** <ul> | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 | ** parsing ambiguity. For example, the statement ** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and ** creates a new table named "BEGIN" with three columns named ** "REPLACE", "PRAGMA", and "END". Nevertheless, best practice is to avoid ** using keywords as identifiers. Common techniques used to avoid keyword ** name collisions include: ** <ul> ** <li> Put all identifier names inside double-quotes. This is the official ** SQL way to escape identifier names. ** <li> Put identifier names inside [...]. This is not standard SQL, ** but it is what SQL Server does and so lots of programmers use this ** technique. ** <li> Begin every identifier with the letter "Z" as no SQL keywords start ** with "Z". ** <li> Include a digit somewhere in every identifier name. ** </ul> ** ** Note that the number of keywords understood by SQLite can depend on ** compile-time options. For example, "VACUUM" is not a keyword if ** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option. Also, ** new keywords may be added to future releases of SQLite. */ SQLITE_API int sqlite3_keyword_count(void); SQLITE_API int sqlite3_keyword_name(int,const char**,int*); SQLITE_API int sqlite3_keyword_check(const char*,int); /* ** CAPI3REF: Dynamic String Object ** KEYWORDS: {dynamic string} ** ** An instance of the sqlite3_str object contains a dynamically-sized ** string under construction. ** ** The lifecycle of an sqlite3_str object is as follows: ** <ol> ** <li> ^The sqlite3_str object is created using [sqlite3_str_new()]. ** <li> ^Text is appended to the sqlite3_str object using various ** methods, such as [sqlite3_str_appendf()]. ** <li> ^The sqlite3_str object is destroyed and the string it created ** is returned using the [sqlite3_str_finish()] interface. ** </ol> */ typedef struct sqlite3_str sqlite3_str; /* ** CAPI3REF: Create A New Dynamic String Object ** CONSTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_new(D)] interface allocates and initializes ** a new [sqlite3_str] ** object. ^The [sqlite3_str_new()] interface returns NULL on an out-of-memory ** condition. To avoid memory leaks, the object returned by ** [sqlite3_str_new()] must be freed by a subsequent call to ** [sqlite3_str_finish(X)]. ** ** The D parameter to [sqlite3_str_new(D)] may be NULL. If the ** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum ** length of the string contained in the [sqlite3_str] object will be ** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead ** of [SQLITE_MAX_LENGTH]. */ SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*); /* ** CAPI3REF: Finalize A Dynamic String ** DESTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X ** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()] ** that contains the constructed string. The calling application should ** pass the returned value to [sqlite3_free()] to avoid a memory leak. ** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any ** errors were encountered during construction of the string. ^The ** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the ** string in [sqlite3_str] object X is zero bytes long. */ SQLITE_API char *sqlite3_str_finish(sqlite3_str*); /* ** CAPI3REF: Add Content To A Dynamic String ** METHOD: sqlite3_str ** ** These interfaces add content to an sqlite3_str object previously obtained ** from [sqlite3_str_new()]. ** ** ^The [sqlite3_str_appendf(X,F,...)] and ** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf] ** functionality of SQLite to append formatted text onto the end of ** [sqlite3_str] object X. ** ** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S ** onto the end of the [sqlite3_str] object X. N must be non-negative. ** S must contain at least N non-zero bytes of content. To append a ** zero-terminated string in its entirety, use the [sqlite3_str_appendall()] ** method instead. ** ** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of ** zero-terminated string S onto the end of [sqlite3_str] object X. ** ** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the ** single-byte character C onto the end of [sqlite3_str] object X. ** ^This method can be used, for example, to add whitespace indentation. ** ** ^The [sqlite3_str_reset(X)] method resets the string under construction ** inside [sqlite3_str] object X back to zero bytes in length. ** ** These methods do not return a result code. ^If an error occurs, that fact ** is recorded in the [sqlite3_str] object and can be recovered by a ** subsequent call to [sqlite3_str_errcode(X)]. */ SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...); SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list); SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N); SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn); SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C); SQLITE_API void sqlite3_str_reset(sqlite3_str*); /* ** CAPI3REF: Status Of A Dynamic String ** METHOD: sqlite3_str ** ** These interfaces return the current status of an [sqlite3_str] object. ** ** ^If any prior errors have occurred while constructing the dynamic string ** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return ** an appropriate error code. ^The [sqlite3_str_errcode(X)] method returns ** [SQLITE_NOMEM] following any out-of-memory error, or ** [SQLITE_TOOBIG] if the size of the dynamic string exceeds ** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors. ** ** ^The [sqlite3_str_length(X)] method returns the current length, in bytes, ** of the dynamic string under construction in [sqlite3_str] object X. ** ^The length returned by [sqlite3_str_length(X)] does not include the ** zero-termination byte. ** ** ^The [sqlite3_str_value(X)] method returns a pointer to the current ** content of the dynamic string under construction in X. The value ** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X ** and might be freed or altered by any subsequent method on the same ** [sqlite3_str] object. Applications must not used the pointer returned ** [sqlite3_str_value(X)] after any subsequent method call on the same ** object. ^Applications may change the content of the string returned ** by [sqlite3_str_value(X)] as long as they do not write into any bytes ** outside the range of 0 to [sqlite3_str_length(X)] and do not read or ** write any byte after any subsequent sqlite3_str method call. */ SQLITE_API int sqlite3_str_errcode(sqlite3_str*); SQLITE_API int sqlite3_str_length(sqlite3_str*); SQLITE_API char *sqlite3_str_value(sqlite3_str*); /* ** CAPI3REF: SQLite Runtime Status ** ** ^These interfaces are used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for ** the specific parameter to measure. ^(Recognized integer codes |
︙ | ︙ |