/* -*- Mode: C; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/*
The code is modified for use in fossil (then libfossil). The
original header comment follows:
*/
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
#include <string.h>
#include <stdio.h>
#include "libfossil.h"
#include <errno.h>
#if defined(__i386__) || defined(__x86_64__) || defined(_WIN32)
# define byteReverse(A,B)
#else
/*
* Convert an array of integers to little-endian.
* Note: this code is a no-op on little-endian machines.
*/
static void byteReverse (unsigned char *buf, unsigned longs){
uint32_t t;
do {
t = (uint32_t)((unsigned)buf[3]<<8 | buf[2]) << 16 |
((unsigned)buf[1]<<8 | buf[0]);
*(uint32_t *)buf = t;
buf += 4;
} while (--longs);
}
#endif
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(uint32_t buf[4], const uint32_t in[16]){
register uint32_t a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
const fsl_md5_cx fsl_md5_cx_empty = fsl_md5_cx_empty_m;
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
void fsl_md5_init(fsl_md5_cx *ctx){
*ctx = fsl_md5_cx_empty;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void fsl_md5_update(fsl_md5_cx *ctx, void const * buf_, fsl_size_t len){
const unsigned char * buf = (const unsigned char *)buf_;
uint32_t t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32_t)len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if ( t ) {
unsigned char *p = (unsigned char *)ctx->in + t;
t = 64-t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32_t *)ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32_t *)ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void fsl_md5_final(fsl_md5_cx * ctx, unsigned char * digest){
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32_t *)ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count-8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
memcpy(&ctx->in[14*sizeof(uint32_t)], ctx->bits, 2*sizeof(uint32_t));
MD5Transform(ctx->buf, (uint32_t *)ctx->in);
byteReverse((unsigned char *)ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
}
void fsl_md5_digest_to_base16(unsigned char *digest, char *zBuf){
static char const zEncode[] = "0123456789abcdef";
int i, j;
for(j=i=0; i<16; i++){
int a = digest[i];
zBuf[j++] = zEncode[(a>>4)&0xf];
zBuf[j++] = zEncode[a & 0xf];
}
zBuf[j] = 0;
}
#if 0
/* The symlink-hashing code here may be needed at some point... */
int fsl_md5sum_file(const char *zFilename, fsl_buffer *pCksum){
if(!zFilename || !pCksum) return FSL_RC_MISUSE;
else{
/* Requires v1 code which has not yet been ported in. */
FILE *in;
fsl_md5_cx ctx;
unsigned char zResult[20];
char zBuf[10240];
if( fsl_wd_islink(zFilename) ){
/* Instead of file content, return md5 of link destination path */
Blob destinationPath;
int rc;
blob_read_link(&destinationPath, zFilename);
rc = sha1sum_blob(&destinationPath, pCksum);
blob_reset(&destinationPath);
return rc;
}
in = fossil_fopen(zFilename,"rb");
if( in==0 ){
return 1;
}
fsl_sha1_init(&ctx);
for(;;){
int n;
n = fread(zBuf, 1, sizeof(zBuf), in);
if( n<=0 ) break;
fsl_sha1_update(&ctx, (unsigned char*)zBuf, (unsigned)n);
}
fsl_fclose(in);
blob_zero(pCksum);
blob_resize(pCksum, 40);
fsl_sha1_final(&ctx, zResult);
fsl_sha1_digest_to_base16(zResult, blob_buffer(pCksum));
return 0;
}
}
#endif
int fsl_md5sum_buffer(fsl_buffer const *pIn, fsl_buffer *pCksum){
if(!pIn || !pCksum) return FSL_RC_MISUSE;
else{
fsl_md5_cx ctx = fsl_md5_cx_empty;
unsigned char zResult[20];
int rc;
fsl_md5_update(&ctx, pIn->mem, pIn->used);
fsl_buffer_reuse(pCksum);
rc = fsl_buffer_resize(pCksum, FSL_STRLEN_MD5/*resize() adds 1 for NUL*/);
if(!rc){
fsl_md5_final(&ctx, zResult);
fsl_md5_digest_to_base16(zResult, fsl_buffer_str(pCksum));
}
return rc;
}
}
char *fsl_md5sum_cstr(const char *zIn, fsl_int_t len){
if(!zIn || !len) return NULL;
else{
fsl_md5_cx ctx;
unsigned char zResult[20];
char * zDigest = (char *)fsl_malloc(FSL_STRLEN_MD5+1);
if(!zDigest) return NULL;
fsl_md5_init(&ctx);
fsl_md5_update(&ctx, zIn,
(len<0) ? fsl_strlen(zIn) : (fsl_size_t)len);
fsl_md5_final(&ctx, zResult);
fsl_md5_digest_to_base16(zResult, zDigest);
return zDigest;
}
}
int fsl_md5sum_stream(fsl_input_f src, void * srcState, fsl_buffer *pCksum){
fsl_md5_cx ctx;
int rc;
unsigned char zResult[20];
enum { BufSize = 1024 * 4 };
unsigned char zBuf[BufSize];
if(!src || !pCksum) return FSL_RC_MISUSE;
fsl_md5_init(&ctx);
for(;;){
fsl_size_t read = (fsl_size_t)BufSize;
rc = src(srcState, zBuf, &read);
if(rc) return rc;
else if(read) fsl_md5_update(&ctx, (unsigned char*)zBuf, read);
if(read < (fsl_size_t)BufSize) break;
}
fsl_buffer_reuse(pCksum);
rc = fsl_buffer_resize(pCksum, FSL_STRLEN_MD5);
if(!rc){
fsl_md5_final(&ctx, zResult);
fsl_md5_digest_to_base16(zResult, fsl_buffer_str(pCksum));
}
return rc;
}
#if 0
void fsl_md5_to_base16(fsl_md5_cx const * cx, char *zBuf){
static char const zEncode[] = "0123456789abcdef";
int i, j;
for(j=i=0; i<16; i++){
int a = digest[i];
zBuf[j++] = zEncode[(a>>4)&0xf];
zBuf[j++] = zEncode[a & 0xf];
}
zBuf[j] = 0;
}
#endif
#if 0
/*
Add the content of a blob to the incremental MD5 checksum.
*/
void md5sum_step_blob(Blob *p){
md5sum_step_text(blob_buffer(p), blob_size(p));
}
#endif
int fsl_md5sum_filename(const char *zFilename, fsl_buffer *pCksum){
if(!zFilename || !pCksum) return FSL_RC_MISUSE;
else{
int rc;
FILE *in = fsl_fopen(zFilename, "rb");
if(!in) rc = FSL_RC_IO;
else{
rc = fsl_md5sum_stream(fsl_input_f_FILE, in, pCksum);
fsl_fclose(in);
}
return rc;
}
}
void fsl_md5_update_buffer(fsl_md5_cx *cx, fsl_buffer const * b){
if(b->used) fsl_md5_update(cx, b->mem, b->used);
}
void fsl_md5_update_cstr(fsl_md5_cx *cx, char const * str, fsl_int_t len){
if(len<0) len = fsl_strlen(str);
if(len>0) fsl_md5_update(cx, str, (fsl_size_t)len);
}
int fsl_md5_update_stream(fsl_md5_cx *ctx,
fsl_input_f src, void * srcState){
int rc;
enum { BufSize = 1024 * 4 };
unsigned char zBuf[BufSize];
if(!ctx || !src) return FSL_RC_MISUSE;
for(;;){
fsl_size_t read = (fsl_size_t)BufSize;
rc = src(srcState, zBuf, &read);
if(rc) return rc;
else if(read) fsl_md5_update(ctx, (unsigned char*)zBuf, read);
if(read < (fsl_size_t)BufSize) break;
}
return 0;
}
int fsl_md5_update_filename(fsl_md5_cx *cx, char const * fname){
if(!cx || !fname) return FSL_RC_MISUSE;
else{
int rc;
FILE *in = fsl_fopen(fname, "rb");
if(in) rc = fsl_errno_to_rc(errno,FSL_RC_IO);
else {
rc = fsl_md5_update_stream(cx, fsl_input_f_FILE, in);
fsl_fclose(in);
}
return rc;
}
}
#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP
#undef byteReverse